Human Embryonic Stem Cells – From Bench to Patients

Benjamin Reubinoff M.D. PhD

The Hadassah Human Embryonic Stem Cell Research Center The Goldyne Savad Institute of Gene Therapy & The Obstetrics & Gynecology Department Hadassah University Hospital

Road map for preclinical development of hESCs for transplantation in neurological and retinal disorders

1. Mouse feeders – xenotransplantation

- 2. Inappropriate documentation of derivation processes
- 3. Inappropriate culture systemwith animal products

New Clinical Grade Human ES Cell Lines

1. Human feeders / feeder free

2. Defined animal-free culture systems

3. GMP facility

4. Bulk cultures

Derivation of human ES cell lines

Reubinoff et al., Nature Biot. 2000

Clinical Grade Human ES Cell Lines

Lazer assisted isolation of ICM cells from the embryo

Lazer assisted isolation of stem cells from the embryo

Development of clinical grade hESCs •

GLP-grade new hESC lines

Clinical grade human feeders

Limitations of the culture system.

Adherent feeder-dependent culture is a major limitation for large-scale expansion of hESCs.

Detachment

The current notion is that detachment into free-floating clusters induces differentiation (EBs).

Monolayer colonies

Differentiation (EB's)

Upon neural differentiation, the obtained neural spheres were mixed with small clusters of undifferentiated hESCs.

hESC colonies

hESC floating clusters

Neural differentiation

Neurobasal Medium

Neural spheres

Clusters of undifferentiated hESC

The key components of the suspension culture system

allows the culture of cells in suspension without serum.

Steiner et al., Nature Biotech. 2010.

hESCs cultivated in suspension for 7-10 weeks maintain their pluripotency

Steiner et al., Nature Biotech. 2010

hESCs cultivated in suspension for 7-10 weeks differentiate into the three germ layers *in vitro* and *in vivo*.

mesoderm

ectoderm

endoderm

Derivation of three new hESC lines in suspension

15 ICMs; 1 intact embryo

Steiner et al., Nature Biotech. 2010

Bulk cultures of cells suitable for clinical trials.

RCCS-4 (Rotary Cell Culture System)

Road map for preclinical development of hESCs for transplantation in neurological and retinal disorders

The default model in Xenopus blastula

BMP-signaling Inhibition and Neural Induction of hESCs

FGF signaling initiates and is required for neural induction in the chick and xenopus

FGF signaling probably also repress BMP signaling

The role of FGF-signaling in mammals neuralization?

 Neural differentiation in mouse ESC cultures is not a simple default pathway but depends on autocrine FGF induced Erk1/2 signaling. (Ying et al., Nat. Biotechnol, 2003)

(Ying et al., Nat. Biotechnol. 2003) (Stavridis et al., Development. 2007)

 Neuralization of mouse single ESCs is independent of FGF signaling

(Smukler et al., J Cell Biol. 2006)

FGF-signaling and Neural Induction of hESCs

The role of FGF in neural induction of hESC The experimental model

FGF-signaling induces neuralization during days 4 to 7 of differentiation

hESC clusters differentiate initially into primitive ectoderm in an FGF-independent process

Cohen et al., Dev. Biol. (2010)

FGF dependent

+SU5402

day 4

NPs

Primitive Ectoderm

FGF signaling is not essential for neural specification of hESCs

day 14

Cohen et al., *Dev. Biol. (2010)*

Conclusions

Cohen et al., *Dev. Biol. (2010)*

Controlled conversion of hES cells into neural precursors

Defined

Undifferentiated hES cells Culture Conditions Noggin & FGF

Neural spheres

Reubinoff et al., Nature Biot. 2001 Itzikson et al., MCN 2005 Cohen et al., Dev. Biol. 2010

Road map for preclinical development of hESCs for transplantation in neurological and retinal disorders

Multiple Sclerosis (MS)

A multifocal, chronic, auto-immune disease of the CNS

The leading cause of neurological disability in young adults

Manifestations: paralysis, sensory disturbances, incoordination and visual impairment.

MS Is Characterized By Multifocal CNS Lesions

Demyelination

Axonal pathology- Correlated with the permanent disability of MS patients

Transplantation of hESC in multiple sclerosis: Experimental design

Noggin

3W

GFP expressing hESC colonies

In-vitro differentiation potential

67 % neurons

12 % astrocytes

no oligodendrocytes

Neural Precursors

NPs Transplantation Attenuated Significantly The Clinical Signs Of CEAE

In-vivo Differentiation Fate Of The Transplanted NPs

Neuronal progenitors

Oligodendrocyte progenitors Astrocytes Oligodendrocytes

NPs Transplantation Attenuated Significantly The Pathological Features of CEAE

(Aharonowiz et al., PLoS ONE 2008)

Road map for preclinical development of hESCs for transplantation in neurological disorders

Age Related Macular Degeneration - AMD

- The leading cause of blindness in the western world
- 30% of people > 75 yrs have clinical signs
- 6-8% of people >75 are legally blind
- No effective treatment

Human ES Cells For Age Related Macular Degeneration - AMD

Nicotinamide (NIC;B3) promotes neural differentiation in a defined culture system NIC increases cell proliferation, cell survival, and is neuroprotective in *vitro*

(Shen et al. 2004; Chong et al., 2005).

Musashi

PSA-NCAM

Nestin

+DAPI

NIC promotes neuralization via prevention of apoptosis

Apoptosis

Proliferation

NIC promotes differentiation into pigmented cells

with NIC

w/o NIC

Idelson et al., Cell Stem Cell 2009

TGFβ and FGFs in retinal development

TGF β factors promote while FGFs inhibit RPE differentiation

Activin A

NIC+Activin A

NIC+Act+SB431542

NIC+TGFβ1

bFGF

Idelson et al., Cell Stem Cell 2009)

The Pigmented Cells are RPE-like

(Idelson et al., Cell Stem Cell 2009)

Electron microscopy

Immunostaining for RPE markers in-vitro

Idelson et al., Cell Stem Cell 2009

Fluorescent latex beads

In-vivo transplantation of RPE-like cells derived from hESCs

Royal College of Surgeons (RCS) rats with a mutation in the MERTK gene – a model of retinal degeneration caused by dysfunction of the RPE

Trans-scleral, trans-choroidal approach

In-vivo imaging of transplanted pigmented cells in RCS rat eye

Transplanted Eyes Show Functional Rescue

Structural Rescue of Host Retina

Road map for preclinical development of hESCs for transplantation in neurological disorders

Lack of retinal rescue following intra vitreal hESC-derived RPE grafting

(Idelson et al., Cell Stem Cell 2009)

Rhodopsin within transplanted RPE-like cells supports phagocytic activity

Arrows point to host RPE which expresses RPE65 but does not contain rhodopsin

No teratomas

No evidence of non-neural tissues or neural rosette tumors

Long term studies are required

Road map for preclinical development of hESCs for transplantation in neurological and retinal disorders

The Hadassah Human ES cell

Research Center Shelly Tannenbaum Tikva Turetsky **Orna Singer** Nili Iluz **Debora Steiner** Masha Idelson **Sharona Even Ram Michal Gropp** Hanita Khaner **Israel Ben-Dor Etti Ben-Shushan Malkiel Cohen Michal Aharonowiz** Nurit Yechimovitz **Talia Mordechai Yaniv Gil Yael Berman Zaken Yoel Shufaro**

Ariella Felger <u>Institute of Gene Therapy</u> Eitan Galun Kobi Rachmilevitz

Department of OB/GYN

Neri Laufer Alex Simon Nizhia Geva Einal Aizenmann

Department of Neurology Tamir Ben-Hur Ofira Einshtein

Department of Ophthamology

Eyal Banin Alexey Obolensky Roslana Alpher

Itzhak Hemo

<u>Genomic Data Analysis Unit</u> Yoav Smith

Genetic Department

Rita Ram Dvora Abeliovich Naomi Weinberg

<u>Chaim Sheba Medical Center</u> Gideon Rechavi

<u>Tel-Aviv University</u> Miguel Weil

Hebrew Universisy Chaim Cedar

<u>Cell Cure Neurosciences Ltd</u> Charles Irving Ofer Weiser Miri Gov Limor Mitzrafi