European Society of Human Reproduction and Embryology

COURSE 8

Update in stem cell derivation and cell therapy

Special Interest Group Stem Cells

18 June 2006 Prague - Czech Republic

Contents

<u>Program</u>	page 2
Submitted contributions	
Feeder free culture and derivation of clinical quality human Embryonic stem cell lines – O. Hovatta (S)	page 3
Use of PGD embryos for stem cell derivation – S.L. Minger (UK)	page 13
Trophoblast stem cell lines: implantation model – H. Moore (UK)	page 19
Human embryonic stem cells for neural repair – B. Reubinoff (IL)	page 31
Stem cells for cardiac repair – A. Bayes – Genis (E)	page 44
The future of stem cell research – A. Trounson (AUS)	page 47
Stem cell research: EU policy and program – G. Joliff-Botrel (EU)	page 59

Course 8 - Pre-congress course organised by the Special Interest Group Stem Cells

"Update in stem cell derivation and cell therapy"

PROGRAM

Course co-ordinators: A. Veiga (E) and L. Gianaroli (I)

Course description: The aim of the course is to provide the attendants with updated information in stem cell research.Recent improvements in human embryonic stem cell derivation and culture will be described together with therapeutic approaches involving the use of both embryonic and adult stem cells. Banking, registry organisation as well as legislation will also be treated. Leaders in research in the field of stem cells have been selected as speakers.

09.00 - 09.30 09.30 - 09.45	Feeder free hESC derivation and culture - O. Hovatta (FIN) Discussion
09.45 - 10.15 10.15 - 10.30	Use of PGD embryos for stem cell derivation - S.Minger (UK) Discussion
10.30 - 11.00	Coffee break
11.00 - 11.30 11.30 - 11.45	Trophoblastic stem cell lines: implantation model - H. Moore (UK) Discussion
11.45 - 12.15 12.15 - 12.30	hESC for neural repair - B. Reubinoff (IL) Discussion
12.30 - 13.30	Lunch
13.30 - 14.00 14.00 - 14.15	Stem cells for cardiac repair - A. Bayes-Genis (E) Discussion
14.15 - 14.45	Stem cell banks and registries: the UK Stem Cell Bank – G. Stacev (UK)
14.45 - 15.00	Discussion
15.00 - 15.30	Coffee break
15.30 - 16.00 16.00 - 16.15	The future of stem cell research - A. Trounson (AUS) Discussion
16.15 - 16.45:	EU legislation, guidelines and funding for hESC research – G. Joliff-Botrel (EU)
16.45 - 17.00:	Discussion

Feeder free culture and derivation of clinical quality human embryonic stem cell lines

Outi Hovatta Karolinska Institutet, Karolinska Universtetssjukhuset Huddinge Stockholm, Sweden

ESHRE 2006, Prague

Learning objectives

- Derivation procedure of human embryonic stem (hES) cells
- Requirements of clinical quality stem cell lines, GMP
- Feeder cells
- Feeder-free cultures
- Feeder free derivation
- How a safe feeder-free derivation procedure might be achieved
- Immunological problems, SCNT
- An existing feeder-cell containing system for derivation of clinical quality hES cells

Derivation of permanent human embryonic stem cell (ES) lines

- Outgrowth of cells from the inner cell mass (Fishel, Edwards, Evans, Science 1984, see also Edwards Nature 2001, RBMonline 2002, Bongso et al.1994)
- Nine permanent lines cultured as foetal mouse fibroblasts as feeder cells (Thomson et al. Science 1998)
- Six lines (Reubinoff et al. Nature Biotechnol 2000), also on mouse derived feeder cells
- In 2006, some 250-300 hES lines existed in the world

Derivation of hESC lines

6-day-old blastocyst Isolated ICM plated on feeders Cells attach and expand on human skin fibroblast feeder cells
Inner cell mass
Inner cell m

Human embryonic stem cell lines at Karolinska University Hospital Huddinge

- A total of 25 permanent lines 2002-2006
 - → HS181, HS207, HS235, HS237, HS293, HS306, HS346, HS351, HS360, HS361, HS362, HS363, HS364, HS366, HS368, HS380, HS382, HS386, HS401, HS402, HS415, HS420, HS421, HS426, HS429
- 17 additional early lines which stopped growing during the period
- 139 blastocysts have been obtained 2002-2006
- Success dependent on embryo quality
 - → The good embryos are always used for patients' infertility treatment

All the lines have been derived using serum replacement instead of fetal calf serum in the medium Hovatta et al. Hum Reprod 2003
The lines HS293-429 (n=22) have been derived on postnatal human skin fibroblasts using serum replacement containing medium Inzunza et al. Stem cells 2005
The lines HS415-429 (n=5) have been derived after mechanical isolation of the Inner cell mass

Cell IQ system

- Machine vision + artificial intelligence, a controlled culture system (Chipman Technologies, Tampere, Finland)
- Enables detailed follow-up of the developing cells in long-term culture
- Records all the events in culture
 →Cell divisions, apoptosis, morphological changes
 etc
- Recognizes single cells, 24 wells can be followed at a time
- Allows comparison of culture constituents

GMP

- The EU commission directive 2003/94/EC, of October 2003, presents the principles and guidelines for good manufacturing practice (GMP)
- → Cell transplantation under this directive
- The EU commission directive 2004/23/EC, of March 2004
 - \rightarrow Human cells and tissues, quality and safety requirements, comes to effect 1 April, 2006, includes all stem cells
- A quality approach to manufacturing
 - ightarrowEnables the manufacturers to eliminate or minimise
 - instances of contamination, mixups and errors.
 - → Protects the consumer from purchasing products which are not effective or even dangerous.
- GMP regulations address record keeping, personnel qualification, sanitation, cleanliness, equipment verification, validation of the processes, and complaint handling

Animal proteins in cultures are immunogenic

- Animal protein containing culture components are absorbed by the growing cells
 - ightarrow Mouse feeder cells
 - ightarrow Fetal bovine serum
 - → Serum replacements
- The cells contain non-human sialoproteins
- Most human individuals have antibodies against these mouseand bovine proteins, and the cells may be rejected

Risk of infections with animal derived culture components

- Mouse cells and antibodies
 - →Viruses in mice: Hantaan, LCMV, reovirus 3
 - →EMEA guidelines contains a long list of possible microbes
- Bovine serum and serum albumin →Prions etc

 - →Not considered suitable for human use, even though used for the time being

Other types of human feeder cells also feasible

- Foetal skin and mucscle, tissue from adult Fallopian TUDES Richards et al Nature Biotechnol 2002
- Human placental fibroblasts Genbajev et al. Fertil Steril 2005, Simon et al. Fertil Steril 2005
- Adult bone marrow stroma cells Lee et al. Biol Reprod 2005
- Human endometrial cells Cheng et al. Stem Cells 2003
- hESC derived fibroblasts Wang et al. Stem Cells 2005

Culture medium

- Knockout D-MEM + Glutamax, β-mercaptoethanol
- In the first five derivations foetal calf serum
- from 2003, Knockout Serum Replacement 15% (Invitrogen) + rhFGF-basic (R&H Systems) 8 ng/ml → this SR contains animal proteins
- a systematic comparison between FCS, human serum and SR was made, best non-differentiated growth with SR (Koivisto et al RBMonline 2004)
- a completely animal-protein free medium would be better because of immunogenicity of and risk of infectious agents ightarrow systematic comparisons going on, several human protein
 - media function, but not very well →A defined medium, Ludwig et al. 2006

Feeder-free derivation successful in mouse

- Feeder-free nondifferentiated culture of mouse feeder cells is possible by adding leukemia inhibitory factor (LIF) to the culture medium (Smith et al. Nature 1988)
- Feeder-free derivation also possible (Nichols et al. Development 1990)

LIF does not keep human ES cells undifferentiated

-The expression of LIF and its receptors (LIFR and gp130) is low in undifferentiated hESCs, but increases during differentiation. -Added LIF does not prevent spontaneous

differentiation.

-SOCS-1 may inhibit LIF signaling in hESCs

* Aghajanova L, *Skottman H, Strömberg A, Inzunza J, Lahesmaa R, Hovatta O: The expression of leukemia inhibitory factor and its receptors is increased during differentiation of human embryonic stem cells. Fertil Steril 2006, in press

Feeder-free culture of existing hES cell lines

- Culture of a line on Matrigel using conditioned medium from mouse foetal fibroblasts, Xu et al. Nature Biotechnol 2001, Carpenter et al. Cloning Stem Cells 2003, several articles since then
- Culture of a line on human laminin and fibronectin, using a medium containing FGF, LIF and TGF beta, Amit et al. Biol Reprod 2004
- BMP signalling inhibition by very high concentration of bFGF (100ng/ml) or combination of Noggin and bFGF (40ng/ml) (Xu et al. Nature Methods 2005)
 - These unphysiologically high concentration of growth factors may cause epigenetic changes in the ES cells (Steele et al. 2005)
- Chromosomal changes may be promoted in feeder-free cultures (Draper et al. Nat Biotechnol 2004)

Feeder-free derivation

- Would be optimal in many respects
- A successful derivation reported in 2005, Klimanskaya et al. Lancet
 - \rightarrow An ECM manufactured from mouse tissues was used \rightarrow not suitable for transplantable human cells
- Two lines derived using high concentrations of bFGF and noggin in the derivation medium, culture on matrigel and laminin-collagen
 - \rightarrow Ludwig et al. Nature Biotechnol 2006
 - \rightarrow One line had karyotype 47 XXY, one had gained an extra chromosome 17 at passage level 40
 - \rightarrow Probably not optimal conditions to derive transplantation quality cells

Human matrix

- From human cells ?
- Or chemically defined culture medium after identifying the mechanisms of self renewal

→genomics

→proteomics

Mechanism of self-renewal of hES cells

- Gene expression profling
- Proteomics

Helsinki: Timo Tuuri/Tinom Otonkoski, Tukholma: Heli Skottman/Outi HovattaTurku:Riitta Lahesmaa

Genes expressed in seven hES cell lines

Skottman et al. Stem cells, Aug 4, 2005

Genetic and epigenetic stability

- Repeated karyotypes
- Comparative genomic hybridisation, microarrays
- Gene expression profiling
- Epigenetic profiling

Karolinska Institutet

Human Embryonic Stem Cells induced immunity when transplanted to immunologically competent mice

they express:

- HLA class I
 - low levels of HLA class II
 - low levels of co-stimulatory molecules
 - no expression of immunosuppressive cytokines
 - when transplanted into an immunologically competent host, these stem cells induce rejection and immunity
 - this immunological response is dependent on the same signalling pathways as other allogeneic and xenogeneic cell transplants.

Grinnemo et al. 2006

How to avoid rejection in embryonic stem cell transplantation

- 1. Somatic cell nuclear transfer
- A large number of lines in an international registry to obtain donated cells to minimize the need of immunosuppression

 a challenge to all IVF units
- 3. Immunosuppression

Somatic cell nuclear transfer

- A method to avoid rejection in stem cell transplantation
- Ethics approval June 2005
- Immature oocytes from ICSI women treated by intracytoplasmic sperm injection, usually discarded
- In vitro maturation = IVM
- Mll oocytes if more that 20 obtained in retrieval (1-2)
- Enucleation
- Nuclear transfer from granulosa cells or skin fibroblasts
- Fusion and activativation using electric pulse
- Blastocyst culture
- Derivation of stem cell lines

Team: Jose Inzunza, Julius Hreinsson, Lev Levkov, Susanne Ström, Ami Strömberg, Eija Matilainen, Outi Hovatta

GMP-quality feeder cells

- Human skin fibroblast lines can be cultured in GMP conditions
- In initial derivation, the cells attach poorly in serum replacement medium
- Human serum works well
 - →Human AB-serum obtained from GMP-quality blood bank in intial derivation
 - →Then human protein-containing serum replacement for propagation
- A safe option if many infections can be excluded (RNA and DNA measurements), EMEA's list

Clinical quality

- . GMP quality process and laboratory
- . Animal protein free derivation and propagation
- . Mechanical isolation of the inner cell mass
- Derivation using GMP-quality human skin fibroblasts as feeders or
- Feeder-free derivation
- ightarrow Human matrix would be optimal, but to obtain safe cells, it would be necessary to know more about the mechanisms of self-renewal
- GMP quality serum replacement which only contains human . proteins, none of the present commercially available ones functions perfectly
- Mechanical splitting safe, and easy in our hands .

Conclusions

- Most of the existing hES cell lines have been derived using feeder cells, first mouse and then human feeders
- . Feeder-free cultures of hES cells possible using conditioned medium from mouse feeders, or combinations of growth factors
- Feeder-free derivation reported on mouse-derived extracellular matrix, and on human matrix udsing high concentrations of bFGF and noggin
- · Feeder-free culture and derivation may drive hES cells to chromosomal and epigenetic changes and mutations
- Derivation of GMP-quality hES cell lines feasible using human . feeder cells

Chimborazo, Ecuador, January 2006

Use of PGD Embryos for Stem Cell Derivation

Dr Stephen L Minger Director, Stem Cell Biology Laboratory Wolfson Centre for Age-Related Diseases King's College London

Lecture Objectives

- Understand the rationale for the use of PGD embryos for human embryonic stem (hES) cell derivation
- Outline of the characterisation process of hES cell lines
- Outline of the differentiation protocols relevant to disease-specific hES cell lines

New regulations give UK the lead in stem cell work Nature Medicine, April 2002

UK human embryonic stem cell first Human embryonic stem cells have been grown in the UK for the first time, a team at King's College London announced on Wednesday. BBC, August 13, 2003

Pickering and Minger, (2003) Reprod BioMed

Human Embryo Research in UK

- Human Fertilisation and Embryology Authority Created in 1990
- All Reproductive Medicine & Human Embryo Research must be licensed by HFEA
- HFEA-Licensed Research Areas
 - Treatment of Infertility
 - Causes of Congenital Diseases
 - Causes of Miscarriage
 - Development of more Effective Conception
 - Improvements in Preimplantation Genetic Diagnosis

License for Derivation of Human ES cells from UK Human Fertilisation and Embryology Authority

Awarded to Drs Susan Pickering, Stephen Minger & Professor Peter Braude in May 2002 – renewed in 2005 for three additional years

Derivation from donated embryos with informed consent
 No financial inducement for donation
 Cannot create embryos for stem cell derivation
 All cell lines must be deposited in UK Stem Cell Bank and made freely available to other research groups
 Cell Nuclear Replacement (Therapeutic) permitted with license
 Cell Nuclear Replacement (Reproductive) banned with criminal penalties

Early human development in vitro

Day 6

In the UK a Licence from the HFEA is required for each specific condition for PGD

Sexing for X-linked disorders hoortheath Pigmenti Ducherne Muscular Dystophy Haenophilia A Anderson Fabry Disease Wiskott-Aldhich Syndrome Adrenoleukodystrophy Hunter's Syndrome X-linked Mental Retardation Ornifhine Carbonoy I Transferase Deficiency Pelizaeus Merzbacher Disease Choroideraemia (OMMIM 303200) Alpott syndrome Becker's Muscular dystrophy Sexing for X-linked disorders

22		TV	100 C 100	a la site internet	and the second sec	1.00
- 11	20100	100 000	10000		STREET, SAL	78 N
<u> </u>	Statement of the local division of the local		and the second se		and the second se	

Spichte cell disease Spinal Muscular Atrophy Cystic Fibrosis Epidemolysis Bullosa Compound heteroxygous mutations leading to ablation of Plakophilin 1 (PKP 1) resulting in skin-fagility ectodemal dysplasia syndrome Huntington's disease

Specific Diagnosis (FISH) Roberts anian Translocation Karyotype 45,XK,der (14;21)(q10;q10) Roberts anian Translocation Karyotype 45,XK,der (13;21)(q10;q10) Roberts anian Translocation Karyotype 45,XK,der (13;21)(q10;q10)

Chromosomal Translocation Karyotype 46,XXt(1;19)(q32.1;q13.1)
Chromosomal Translocation Karyotype 46, XX1(12,17)(p13,p13)
Chromosomal Translocation Karyotype 46, XX1(11,22)(q233;q112)
Chromosomal Translocation Karyotype 46, XX1(14:22)(q11.2:q13.3)
Chromosomal Translocation Karyotype 46, XV ±(7, 12)(q22; q13.1)
Chromosomal Translocation Karyotype 46, XX1(8,18)(p21.1;q21.1)
Chromosomal Translocation Karyotype 46, XX1(3,5)(p12,q14.2)
Chromosomal Translocation Karyotype 46, XX1(4:15)(q21.1;q13)
Chromosomal hoversion Karyotype 46, XX, irov (13)(p11.2; q21.2)
Chromosomal hoversion Karvotype 46 XY, inst(14 Yp11 2024.1)

Strengths of UK Stem Cell Research

- World-class academic research centres
- Tight regulation on Assisted Reproduction & Human Embryo Research by HFEA
- Government Commitment to Stem Cell Research (~£45) million - 2003-2004); £350 million 10-year strategy from Chancellor's Office announced Dec 2005
- Government Funded UK Stem Cell Bank for foetal, adult & embryonic human stem cell lines
- UK Human ES Cell Forum 3 research mtgs/year
- London Regenerative Medicine Network drive towards clinical applications

Stem Cell Biology Laboratory and Collaborators Dr Stephen Minger Minal Patel Hannah Taylor Sarah Pringle Jessica Cooke Zhenling Luo Prof Peter Braude Dr Sue Pickering Sara Hall **Emma Stephenson** Dr Susan Duty Dr Agi Grigoriadis Prof Clive Ballard Prof Elaine Perry Prof Gillian Bates Eva Sirinathsinghji Prof Constantino Pitzalis Prof Adrian Hayday Dr Cosimo De Bari Dr Francesco Dell'Accio Prof Steve McMahon Dr Liz Bradbury Daniel Webber UBC/Vancouver Prof William Honer Dr Antigoni Ekonomou Dr SH Cedar Dr Chetan Shatapathy Novartis Dr Alan Jackson Dr Phil Kemp Dr Reginald Docherty Stobhan Connor Glaxe SmithKline Professor Paul Sharpe Dr Aaron Chuang Bayler/Houston St Bart's Hospital Prof Anthony Mathur Matthew Lovell Dr Jules Ellis Dr Karen Hirschi Dr Sukhi Bansal Prof Peter Jones Dr Shanta Persaud Dr Chris Burns **Dr Yue Wu Oxford University** Dr Paul Fairchild Karl Karlsson Professor Tony Ng Inst. Opthamology (UCL) Prof Robin Ali UCL Bioprocessing Chris Mason *Birmingham* Prof Anne Logan Dr Wendy Leadbeater Norwich/Vienna Prof Brian Salter Prof Herbert Gottweis Mayo Clinic

Aalborg/Aarhos Dr Helle Andersen Dr Anette Gabrielsen

Uppsala Univ. Professor Jonas Bergquist

MRC/Hammersmith Dr Huseyin Mehmet Dr Jan Brosens

Funding: MRC, JDRF, BBSRC, ESRC, EPSRC, EU, Oliver Bird Foundation, Wellcome Trust, Francesca Patrizi, Helen Robertson, Dept Trade & Industry, Guy's & St Thomas' Charitable Trust

Trophoblast stem cell lines: implantation model

Harry Moore Centre for Stem Cell Biology University of Sheffield, S10 2TN UK E-mail: h.d.moore@shef.ac.uk

Learning objectives

- 1. List requirements for trophoblast cell lines for studying human implantation
- 2. Describe mechanisms of early differentiation of human embryonic stem cells
- 3. Outline methods for haracterisation of human trophoblast and differentiation strategies
- 4. Describe in vitro implantation models

Summary

Background: An effective embryonic-maternal interaction is crucial for successful human pregnancy. Failure of this process is a major cause of infertility and can lead to placental dysfunction resulting in recurrent miscarriage, foetal retardation and preeclampsia. Current research is severely constrained by ethical and practical considerations. It is now possible to generate cytotrophoblast stem (CTBS) cell lines from human embryonic stem cells (HESCs) as tools to investigate early placentation. *Method:* Human chorionic gonadotrophin (hCG) is used as a marker of trophoblast. In defined culture, embryoid bodies are generated from HESCs and selected for trophoblast enrichment by rounds of cellular aggregation and disaggregation. Distinct cytotrophoblast stem cell (CTBS) lines can be isolated and characterised. Spheroid CTBS aggregates are formed and their interaction with luteal-phase endometrial stroma analysed by real-time image analysis.

Findings: CTBS lines were derived which could be maintained in the absence of residual HESCs, fibroblast feeder cells or extra-cellular matrix. CTBS cells displayed typical cyto- and syncytio-trophoblast characteristics and exhibited further differentiation to the invasive endovascular phenotype involved in uterine blood vessel remodelling. Spheroid CTBS cells mimicked closely the early invasive stages of implantation when incubated with human endometrial stroma *in vitro*. *Interpretation:* These human CTBS cell lines are a significant new model for investigating human placentation and have considerable potential in cell therapy applications.

Introduction

During human implantation the continuous proliferation of cytotrophoblast stem cells (CTB) enables the embryo to rapidly invade the endometrial stroma and establish a haemochorial placenta. The early differentiation of cytotrophoblast to an invasive endovascular phenotype is critical for promoting feto-maternal immune tolerance and for remodelling uterine blood vessels for continuation of pregnancy. Aberrant development of trophoblast is associated with serious complications, including recurrent miscarriage, pre-eclampsia (maternal high blood pressure) and restricted fetal growth

(1,2). The process of trophoblast differentiation is poorly understood in women as investigations are severely constrained by ethical and practical considerations.

In the mouse, trophoblast stem cells isolated from the pre- and post-implantation embryo can be maintained indefinitely in culture and have the capacity to differentiate along the trophoblast lineage (3). However, until recently, the derivation of human trophoblast stem cells from pre-implantation blastocysts has been achieved, highlighting the differences in early embryo and placental development between these species (figure 1). Therefore we used human embryonic stem cells (HESCs ,4) as a route to obtaining a trophoblast stem cell population (5). While HESCs differentiate spontaneously to trophoblast-like cells in cultures when supplemented with bone morphogenetic protein 4 or when Oct 4 is down regulated, these cells are terminally differentiated and display a limited proliferative capacity (6). Trophoblast differentiation can develop further when HESCs are aggregated to form embryoid bodies (EBs) but residual HESCs and other cell types in the culture resulting from spontaneous differentiation confound the findings from these preparations (7). We surmised that the proportion of trophoblast cells that developed in human EBs in vitro would vary and sought to identify viable EBs containing trophoblast cells undergoing syncytium by measuring secretion of the β subunit of hCG (hCG β); a hormone essential for maintaining early pregnancy. Such EBs might potentially contain a trophoblast stem cell population for enrichment and purification.

Methods and Results

Details of the method have been reported (5). First, we generated trophoblast containing EBs, using HESCs (H7 and H14) of normal karyotype, which were maintained and passaged by standard protocols using serum-replacement medium. EBs were prepared by aggregation of single HESCs (dissociated with 1 mg/ml collagenase IV) in ES medium without basic fibroblast growth factor in Petri dishes in 5% CO₂ in air. On day 5, EBs were then transferred singly to wells of a 96-well culture plate and cultured for a further three days before aliquots of medium were subjected to ELISA assay. HCG β was detected in most wells (4 x 96 well plates) but only 3.8% of wells had concentration of hormone greater than 500 m I.U./ ml (figure 2A). The EBs in these wells were of equivalent size and morphology, indicating that any increase in hCG β was likely to be due mainly to the proportion of trophoblast cells rather than a greater overall number of cells.

To select for CTBS cells, EBs exhibiting high hCGβ secretion were subjected to several rounds of selective enrichment by growth in 'TS' medium comprising conditioned medium from fibroblast feeders supplemented with fibroblast growth factor 4 (FGF4) and heparin. TS medium promotes differentiation of murine trophoblast stem cells from extra-embryonic ectoderm. Those EBs maintaining a high secretion of hCGβ were pooled, disaggregated and allowed to form new EBs and this enrichment protocol repeated consecutively for three rounds until all EBs displayed consistently high hCGβ secretion. EBs were disaggregated (0.25% trypsin-EDTA) and then single cells allowed to proliferate in adherent culture in TS medium without feeders. Control cultures of EBs in HES medium without bFGF exhibited only basal hCGβ levels indicating poor trophoblast differentiation. Initially, four cell lines were generated with variable proliferation, two of which have maintained persistent proliferative capacity for more

than 30 passages (CTBS1 from H7 HESC and CTBS2 from H14 HESC) and form epithelial-like cell colonies with single and multinucleated cells (figure 2B). An additional CTBS cell line (CTBS-GFP1) was generated by the same methods but from H7 HESCs with constitutive expression of enhanced green fluorescent protein, eGFP (figure 2H and 2I). Continuous proliferation of each cell line was related to the persistence of a mononuclear cytotrophoblast population (relative to syncytium formation) as determined by immunostaining for cytokeratin and hCG β (figure 2D-G). Cell proliferation was maintained by regular cell passage every 5 days as this inhibited terminal differentiation. When CTBS cells were aggregated and returned to mouse embryonic fibroblast feeders with HES medium they failed to revert to or generate either HESC colonies or EBs with pluripotent developmental capacity other than trophoblast. This indicated the absence of residual HESCs in the cell lines and the likely restricted developmental capacity of CTBS cells as has been shown for the mouse.

The trophoblast phenotype of the cell lines was confirmed by immunolocalisation of the pan trophoblast marker cytokeratin 7, Stage-Specific Embryonic Antigen 1 (SSEA1, 8), and human placental lactogen (hPL). Additionally, reverse transcription and the polymerase chain reaction (RT-PCR) were performed with primer sequences for marker genes of HESCs and trophoblast. Compared with HESCs, mRNA expression for Oct 4, Sox2, FGF4, Nanog in the derived cell lines was absent while trophoblast- related mRNAs for Cdx2 (caudal-related homeobox), Ck7, HLA- G, and Cd9 and were up regulated or maintained (figure 3A). The latter two are known markers for extravillous cytotrophoblast, which invades the uterine stroma (deciduas) during placentation (9). Surprisingly, eomesodermin (eomes), a marker of mouse early postimplantation trophoblast, was expressed strongly in HESCs but was weak or absent in the CTBS cell lines (figure 3A). Several reports have highlighted differences between mouse and human ESCs including eomesodermin expression in HESCs but not mouse ES cells (10). Furthermore, the expression of some trophoblast markers in stock cultures of HESCs may relate to spontaneous differentiation to trophoblast lineage. We had previously shown that expression of trophectodermal markers in such cultures occurred predominantly in the SSEA (-) and SSEA1(+) subsets of cells, consistent with their expression in the differentiated derivatives of the HESCs rather than in the HESCs themselves.

To further assess the subtype of trophoblast cells, the comparative cell surface expression of histocompatibility HLA class I (pan HLA antibody W6/32) and HLA-G (antibody G233) antigens was determined by fluorescent activated cell sorting (FACS) and immunolocalisation. The majority of cells (~90%) expressed HLA- class I histocompatibility antigens consistent with extravillous trophoblast (figure 3B). The expression of HLA-G (11), the non-classical HLA-class I antigen also specifically expressed in anchoring extravillous cytotrophoblast of first trimester placentae was relatively weak in most cells, but a small proportion (~10%) of cells displayed strong immunoreactivity (figure 3B and C). Some cells expressed vimentin, possibly indicating interstitial CTB. Following extended culture for one week or more in T25 flasks, the proportion of HLA-G⁺ cells increased considerably (>90%). These cells exhibited distinct endothelial cell morphology similar to cultures of differentiating cytotrophoblast from first trimester human placental tissue and resembled endothelial

morphological differentiation from embryonic stem cells (12). Significantly, however, the cells coexpressed HLA-G and the platelet endothelial cell adhesion molecule-1 (PECAM-1), both markers of invasive endovascular (endothelial-like) CTB (figure 4). VE –cadherin and E-cadherin immunolocalisation was weak or absent on endovascular cells but strong on a relatively small proportion (<5%) of multinucleated cells also present at this stage and most likely equivalent to the syncytial giant cells found in stroma of the developing placenta. As determined by RT-PCR, adherent endovascular trophoblast in culture exhibited PECAM –1 mRNA expression but neither vascular endothelial growth factor receptor 1 (flt -1) or VE-cadherin in comparison with EBs again distinguishing these cells from a true endothelial phenotype (Figure 4i).

To determine the functional capacity of CTB cells, we first investigated the formation of non-proliferative, syncytiotrophoblast by cell-cell fusion of villous cytotrophoblast (1). The spontaneous generation of syncytium in adherent cell cultures of CTBS1 was monitoring cells under an inverted microscope for up to 3 days in a chamber at 37 °C in 5% CO₂ in air by continuous time-lapse recording. Adherent cells displayed progressive migration across the culture dish promoted by pseudopodial-like extension of cells. When cells occasionally converged they fused to form multi-cellular syncytiotrophoblast cells (figure 2G) that were hCG β , and Ck7 positive but HLA class 1 negative. This cell fusion was captured unequivocally by digital time-lapse microscopy.

Next, we examined the invasive implantation potential of the CTBS cell lines by adopting a three- dimensional spheroid culture. This technique has been shown to maintain extra villous CTB phenotype of first trimester placental tissue (13). Aggregates of CTBS cells were generated from confluent monolayers following brief trypsinisation and incubation in non-adherent culture for 5-10 days. When cultured in extracellular matrix (Matrigel) drops, these CTBS spheroid aggregates developed characteristic outgrowths, which expressed hCGB and cytokeratin (figure 5Ai and ii). The hCG receptor is expressed on invasive cytotrophoblast and similar observations have been reported for EB differentiation to trophoblast. On further culture with primary human endometrial tissue (luteal phase) prepared using well-characterised protocols (14), CTBS aggregrates attached to both epithelial cells and stromal cells. Significantly, as shown by time-lapse microscopy (figure 5B) CTBS spheroids with stromal cell cultures displayed a characteristic circular migratory movement and exhibited polar outgrowths from which endovascular cells streamed After about 24-36 hours in co-culture, these trophoblast outgrowths were the site of an erosion of the extracellular matrix of the stroma. This was identified by the rapid retraction of the trophoblast vesicle due to the dissolution of underlying extracellular matrix of the stromal cells (figure 5B, 2-5). A similar process of trophoblast invasion has been observed for human blastocyst coculture with stromal cells in vitro (15). The erosion site was characterised by extravillous (HLA $-G^+$) trophoblast that expressed matrix metalloproteinase 2 (gelatinase A, figure 5b4, i and ii), identified recently as a key enzyme correlated with first trimester invasive capacity of human cytotrophoblast and whose activity is altered in cytotrophoblast in women with pre-eclampsia. Single GFP- trophoblast cells with endometrial stroma in culture displayed a similar response.

Discussion

These CTBS cell lines are the first distinct set of multipotent progenitor stem cell lines to be derived from HESCs and maintained independently. The method of selecting individual viable EBs with an appropriate secretory marker, followed by rounds of enrichment by the regeneration of EBs, could be applied in principle to derive a range of other cell types. It has been shown previously that clonally derived HESCs maintain full pluripotency and proliferation suggesting that CTBS cells develop from a homogeneous HESC population rather than multiple (i.e. ES and TS) precursors. Hence, our findings differ from the mouse where trophoblast cells may be derived from extraembryonic ectoderm but not from murine ESCs without conditional gene expression.

Human cytotrophoblast stem cell lines differ from immortalised placental lines in their capacity to differentiation into several cytotrophoblast subtypes including terminal differentiation of endovascular cells. Cell cultures therefore closely mimic the implantation process *in vitro* and represent an important new model of placental dysfunctions such as pre-eclampsia which causes 15% of pregnancy associated morbidity. The efficient generation of endovascular cytotrophoblast also offers the prospect of using these cells for regenerative medicine. Their pseudo-vasculogenic and invasive characteristics might be utilised in a variety of cell therapies remote from the uterus but related to angiogenesis and vessel remodelling, especially as expression of HLA-G (16) and indoeamine 2,3, -dioxygenase (17) render the cells naturally refractory to immune rejection.

References

- 1. Paria BC, Reese J, Das SK and Dey SK (2002) Deciphering the cross-talk of implantation: Advances and challenges. Science 296, 2185–2188.
- Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher SJ. (2004) Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 114, 744-754.

Excellent reviews of implantation events

3. Tanaka S, Kunath T, Hadjantonakis A-K, Nagy A and Rossant J (1998) Promotion of trophoblast cell proliferation by FGF4. Science 282, 2072–2075.

Report of trophoblast cell lines from mouse

4. Thomson J, Iskovitz-Eldor J, Shapiro S, Waknitz M, Swiergiel J, Marshall V and Jones J (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

First report of human ES cells

5. Harun R, Ruban L. Matin M, Draper J, Jenkins N, Liew G, Andrews P, Li T, Laird S and Moore H. (2006) Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events. Hum. Reprod. Feb 14; [Epub ahead of print]

Report from presenters lab on generation of cytotrophoblast cell lines

6. Matin MM, Walsh JR, Gokhale PJ, Draper JS, Bahrami AR, Morton I, Moore HD and Andrews PW (2004) Specific knockdown of Oct4 and β2-microglobulin expression by RNA interference in human embryonic stem cells and embryonal carcinoma. Stem Cells 22, 659-68.

- 7. Gerami-Naini B, Dovzhenko O, Durning M, Wegner F, Thomson J and Golos. T. (2004) Trophoblast differentiation in embryoid bodies derived from human embryonic stem cells. Endocrinol 145, 1517–1524.
- Papers describing trophoblast production via Oct 4 knockdown or spontaneously from **EB** formation
- 8. Draper J, Pigott C, Thomson J and Andrews PW (2002) Surface antigens of human embryonic stem cells: changes on differentiation in culture. J Anat 200, 249-258.
- 9. King A, Thomas L and Bischof P (2000) Cell culture models of trophoblast II Trophoblast cell lines – A workshop report. Placenta 21, supplement A. Trophoblast Research. 14. S113–S119.
- Workshop report giving details of cell markers of trophoblast.
- 10. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter M, Iskovitz-Eldor J and Rao M (2004) Differences between human and mouse embryonic stem cells. Dev Biol, 269, 360-280.
- 11. Kovats S, Main E, Librach C, Stubblebine M, Fisher S and Demars R (1990) A class I antigen, HLA-G expressed in human trophoblasts. Science 248, 220-223.
- First report of HLA-G expression in human trophoblast
- 12. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99, 4391-4396
- 13. Korff T, Krauss T, Augustin HG (2004) Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies. Exp Cell Res 297, 415-423.
- 14. Laird SM, Li TC and Bolton AE (1993) The production of placental protein 14 and interleukin 6 by human endometrial cells in culture. Hum Reprod 8, 795-798.
- 15. Carver J, Martin K, Spyropoulou I, Barlow D, Sargent I and Mardon H (2003) An in vitro model for stromal invasion during implantation of the human blastocyst. Hum Reprod 18, 283–290.
- 16. Le Boutellier P, Pizzato N, Barakonyi A and Solier C (2003) HLA-G, preeclampsia, immunity and vascular events. J Reprod Immunol 59, 219-234.
- 17. Mellor AL, Chandler P, Lee GK, Johnson T, Keskin DB, Lee J, Munn DH. (2002) Indoleamine 2,3-dioxygenase, immunosuppression and pregnancy. J Reprod Immunol 57, 143-150.

General methods

Reverse transcription and polymerase chain reaction (RT-PCR).

Polymerase chain reaction (PCR) technique is used to identify genetic markers that are characteristic to cell type. Total RNA (2 µg) was reverse transcribed using 1 µg oligodT primer with MMLV Reverse-Transcriptase (Promega) in a 40 µl reaction volume containing 1.25 mM dNTPs at 37°C. PCR was performed using 1µl of cDNA in 50 µl reaction volume containing 15 pmol of each primer, 0.2 mM dNTPs and 1 unit Taq polymerase (Promega). Primer sequences used and conditions of these reactions were as follows:

β-actin-F: 5'-ATCTGGCACCACACCTTCTACAATGAGCTGCG-3'; β-actin-R:5'-CGTCATACTCCTGCTTGCTGATCCACATCTGC-3' (60°C annealing, x23 cycles). Oct4-F: 5'-CGACCATCTGCCGCTTTGAG-3';

Oct4-R: 5'-CCCCCTGTCCCCATTCCTA-3' (60°C annealing, x23 cycles).

Sox2-F: 5'-CCCCCGGCGGCAATAGCA-3';

Sox2-R: 5'-TCGGCGCCGGGGGAGATACAT-3' (60°C annealing, x38 cycles). *FGF4-F*: 5'-CTACAACGCCTACGAGTCCTACA-3';

FGF4-R: 5'-GTTGCACCAGAAAAGTCAGAGTTG -3' (56°C annealing, x40 cycles). *Nanog-F:* 5'-GCCTCAGCACCTACCT-3'

Nanog-R: 5'-GGTTGCATGTTCATGGAGTAG-3' (60 annealing and x30 cycles).

Eomes-F: 5'-TCACCCCAACAGAGCGAAGAGG-3';

Eomes-R: 5'- AGAGATTTGATGGAAGGGGGGGTGTC-3' (57°C annealing, x35 cycles). *Cdx2-F*: 5'-CCTCCGCTGGGCTTCATTCC-3';

Cdx2-R: 5'-TGGGGGGTTCTGCAGTCTTTGGTC-3' (60°C annealing, x35 cycles); *HLA-G-F*: 5'-GCGGCTACTACAACCAGAGC-3';

HLA-G-R: 5'-GCACATGGCACGTGTATCTC-3' (55°C annealing, x26 cycles).

CD9-F: 5'- TTGGACTATGGCTCCGATTC-3';

CD9-R: 5'-GATGGCATCAGGACAGGACT-3' (55°C annealing, x26 cycles).

CK7-F: 5'-ACAGAGCTGCAGTCCCAGAT-3';

CK7-R: 5'-GTAGGTGGCGATCTCGATGT-3' (55°C annealing, x26 cycles).

Fluorescence activated cell sorting (FACS)

Trophoblast cells were prepared for cell sorting by dissociating CTBS cells into single cells with Trypsin-EDTA. Cells were resuspended at 5×10^6 /ml in FACS buffer with 40% normal goat serum to block on ice for 20 minutes. 90 µl of the cell suspension were aliquoted into FACS tube and 10 µl of G233 (TS marker for HLA-G) and W6/32 HLA-Class I control was added. G233 supernatant with NaN₃ (mouse IgG_{2a}) was kindly given by Dr Ashley King, University of Cambridge. The cells were incubated on ice for 30 minutes. After incubation, the cells were washed twice before being labelled with anti-mouse polyvalent immunoglobulin FITC conjugate for 30 minutes on ice. The cells were washed again and resuspended in 300 µl buffer.

Determination of $hCG\beta$ concentration in cell cultures.

Concentrations of hCG β were determined using a sandwich enzyme immunoassay kit (Cat. # EIA-1469, DRG Diagnostics). The standards and the samples were incubated with 100 µl anti-hCG enzyme-conjugate for 30 minutes at room temperature followed by a five times washing procedure. A second incubation with 100 µl substrate solution for 10 minutes was stopped with the addition of 50 µl stop solution. Absorbance was read at 450 ± 10 nm with a microtitre plate reader. The concentration of hCG β in the samples was determined from the standard curve as m I.U./ml.

Constitutive expression of eGFP in HESCs

A pCAG-GFP expression vector was constructed by excision of eGFP from pEGFP-1 (Clontech) with XhoI and NotI and insertion into the pCAG vector. H7 cells were seeded at the equivalent of $2x10^5$ per well of a 6-well plate on Matrigel. The next day they were transfected using ExGen 500 (Fermentas) according to the manufacturer's instructions. The DNA/NaCl Exgen mixture was then added directly to the normal growth medium in the well. The plate was centrifuged at 280 g for 5 minutes and placed back in the incubator. The medium was exchanged the next day with hES growth medium containing puromycin (at 1ug/ml). Viable colonies were picked after 2-3 weeks.

Endometrial – CTBS spheroid co-culture.

Luteal phase endometrial biopsies were obtained from women undergoing hysterectomy under full ethical approval and patient consent. Endometrial epithelial and stromal cells were isolated using a method described previously. Preparations were embedded in Matrigel on membrane inserts and primed with progesterone for 24 hours before the start of co-culture with CTBS. In monolayer co-culture, CTBS spheroids were cultured on a confluent layer of stromal or epithelial cells in culture wells. The co-cultures were maintained in 500 μ l of either conditioned TS medium or serum-free HES medium up to six days.

Time-lapse Microscopy

Adherent CTBS cultures or CTBS–endometrial co-cultures were continuously monitored under an inverted microscope in a humidified physiological chamber at 37°C in 5% CO₂ in air (DigitalPixel Ltd) for up to three days. Preliminary experiments indicated no difference in the viability of cells maintained under these conditions compared to a standard incubator. Regions of interest (ROI) were identified and programmed for analysis using Simple PCI software (C-Imaging) with control over xyz scan, transmitted light, and image capture. Routinely 20 ROIs were identified with image capture every 15 minutes.

- 1. Movie of adherent multinuclear TS cells exhibiting cell fusion
- 2. Movie of TS vesicle attached and migrating on endometrial stromal cells in coculture and displaying erosion site.

Figure 1. A comparison in the pathways of early differentiation of mouse and human embryos to trophoblast stem cells.

medium in 96-wells containing single 1000 hCG m I.U/ml embryoid bodies. 750 (A) Adherent epithelial CTBS cells in 500 'TS' culture without feeder cells. Bars = $20 \,\mu m$ throughout 250 (B) Adherent multinucleated بالرا الس syncytiotrophoblast in same culture as (B). В С (C) & (E) adherent CTBS cells under phase contrast and UV light displaying cytokeratin (green) and $hCG\beta$ (red/orange) immunolocalisation (nucleus, blue). (F) & (G) Single CTBS cells fusing to adherent multinucleated syncytium under phase contrast and UV. Single cells mainly cytokeratin⁺ and E syncytium mainly $hCG\beta^+$. (H) Adherent GFP-syncytial trophoblast (phase contrast and UV) and (I) UV (A) Gene expression (RT-PCR) for H7 CTBS1 CTBS2 undifferentiated HESCs (H7) and CTBS 1 and 2 cell lines. (B) FACS analysis profile for G CTBS2 (similar data for CTBS1 not shown) in early culture. A proportion of cells express non classical HLA-G (peak A) while the majority express all forms of HLA class 1. (C) Phase-contrast and immunofluorescent labelling of cells used for FACs analysis indicating HLA-G staining. Bar

Ck7

Figure 2. Derivation and initial characteracterisation of human CTBS cell lines

Histogram of hCG β concentration in culture

 $= 20 \, \mu m$

A

Figure 4. Differentiation of CTBS cell line to endovascular cells in 'TS' conditioned medium.

Figure 5. CTBS spheroids in extracellular matrix and endometrial co-culture.

- (A) CTBS spheroid (CTBS1 cell line) in Matrigel culture for 5 days with long microvilli protrusions of syncytium. Inset (i) and (ii): higher magnification phase contrast and immunostaining displaying cytokeratin(green) and hCG β (red) in syncytial bed. Bar = 100 μ m
- (B) Images from time-lapse movie (see supplementary information) of CTBS1 aggregate in co-culture with endometrial stromal cells; bar = 150 μ m. Black arrow throughout indicates direction of migration of vesicle. (1), white arrow indicates invasive cytotrophoblast outgrowth; (4 and 5), white arrow indicates stromal erosion site; (4) inset (i) and (ii), higher magnification of margin at erosion site showing phase contrast and MMP-2 immunolocalisation.
- (C) CTBS GFP cells in co-culture with endometrial stroma; bar = $20 \ \mu m$.

HUMAN EMBRYONIC STEM CELLS-FOR NEURAL REPAIR

The Hadassah Human Embryonic Stem Cell Research Center The Goldyne Savad Institute of Gene Therapy & The Obstetrics & Gynecology Department Hadassah University Hospital

hESCs for neural repair

Learning Objectives:

To understand:

- The potential of hESC for neural repair
- The obstacles that need to be overcome
- Current status with regard to potential solutions

THE KEY PROPERTIES OF EMBRYONIC STEM CELL LINES

Indefinite undifferentiated proliferation in vitro. (stem cell markers, AP, OCT-4)
Stable normal karyotype.
Pluripotency. HUMAN EMBRYONIC STEM CELLS - THE POTENTIAL!!

POTENTIAL APPLICATIONS OF HUMAN ES CELLS THERAPY:

Parkinson's disease Huntington's disease Alzheimer's disease

Multiple sclerosis

Stroke

Spinal cord injuries ALS

Macular degeneration

POTENTIAL APPLICATIONS OF HUMAN ES CELLS THERAPY:

- Over 16,000,000 patients worldwide suffer from neurodegenerative disorders.
- Over 1,000,000 patients in the USA suffer from Parkinson's disease.

Generation of lineage specific progenitors

Clinical grade human ES cell lines

Current cell lines are not suitable for clinical trials

- 1. Mouse feeders xenotransplantation
- 2. Inappropriate documentation of derivation processes
- 3. Inappropriate culture system

- 1. Human feeders / feeder free
- 2. Appropriate animal-free reagents
- 1. GMP facility

- 1. Human feeders / feeder free
- 2. Appropriate animal-free reagents
- 1. GMP facility

HUMAN ES CELS – FROM THE LAB TO FUTURISTIC MEDICINE

Factors suggested to support feeder free cultures

- 1. TGFβ-1+ LIF + FGF2 on fibronectin (Amit et al., 2004)
- 2. Activation of WINT signaling (Sato et al., 2004)
- 3. High **FGF2** +/- noggin on matrigell (Xu et al., 2005)
- 4. Activin and FGF2

(Vallier et al 2005)

5. TGF β -1 + FGF2+ LiCl+GABA+pipecolic acid

(Ludwig et al., 2006)

Human ESCs for neuronal repair

Objective:

To develop a strategy for the controlled conversion of hESCs into neural precursors in defined culture conditions.

Embryonic neural induction

The default model of neural induction (Xenopus)

Dissociated cells avoid paracrine endogenous BMP-like activity

Dissociated mouse ES cells avoid paracrine endogenous BMP-like activity

(Tropepe et al Neuron 2001)

Controlled conversion of hESCs into neural precursors

Controlled conversion of hESCs into neural precursors

(Itsykson et al., MCN 2005)

Controlled conversion of hES cells into neural precursors

BMPs signal transduction pathway

Noggin prevents the phosphorilation of Smad1/5/8

	NPM	NPM+ noggin	hESC
P-Smad1/5/8	-		
Smad1	-	-	-
β-actin	-		-

(Itsykson et al., MCN 2005)

T al Killson's disease

The second most common neurodegenerative disorder

Results from: Degeneration of dopaminergic neurons in the midbrain.

Parkinson's disease

Characterized by:

- Tremor at rest
- Muscle rigidity
- Postural instability
- Inability to perform routine movements

No cure!!!

L-DOPA – Transient effect Side effects

Transplantation of dopaminergic neurons from aborted fetuses:

Clinical benefit in some patients Impractical Ethical problems

Research question

To test following transplantation of the neural precursors to the midbrain of Parkinsonian rats:

- 1. Whether the striatal micro-environment will promote the differentiation of the transplanted neural precursors towards a dopaminergic fate.
- 2. Whether the transplanted neural precursors will induce functional recovery of the rats.

Histological analysis

Pharmacological behavioral tests

■ Controls △ NPs transplanted

(Ben-Hur et al., 2004)

Conclusions:

The host lesioned striatum could not direct the transplanted neural precursors to acquire a dopaminergic fate.

Induction of differentiation towards a midbrain fate prior to transplantation is probably required for complete correction of behavioral deficit.

Safety!!!!

Teratoma formation or non-neural tissues were not observed in any of the host brains.

With time, transplanted cells cease to proliferate.

24 hours

12 weeks

Conclusions:

Human ESCs may be converted into developmentally competent neural precursors, in a controlled fashion and under defined culture conditions.

Human ESC-derived neural precursors can induce partial functional recovery in an experimental model of Parkinson's disease.

Human ESCs for neuronal repair

Conclusions:

This data set the stage for further developments

that may eventually allow the exploitation

of hESCs in cell and gene therapy of the CNS

as well as in basic neuroscience.

Human ESCs for Parkinson's Disease

Conclusions:

Nevertheless, new cell lines eligible for clinical trials, improved control of the growth and differentiation, rigorous evaluation of safety issues, are required to allow the exploitation of hESs for therapeutic purposes.

Hadassah University Hospital Department of Obstetrics & Gynecology Institute of Gene Therapy Michal Gropp Hanita Khaner Israel Ben-Dor Etti Ben-Shushan Pavel Itsykson Tikva Turetsky Masha Idelson **Orna Singer** Shelly Tannenbaum **Michal Aharonovitz** Nili Iluz Nurit Yechimovitz Talia Mordechai

Eitan Galun Galit Zur

Neri Laufer

Department of Neurology Tamir Ben-Hur Anna Itzik Etti Reinhartz

<u>Bar-Ilan University</u> Ron Goldstein

<u>The Weizmann Institue</u> Menachem Segal Ianai Fishbein

<u>Monash University, Australia</u> Martin F Pera

Stem cells for cardiac repair

Antoni Bayes-Genis Cardiology Service Hospital Santa Creu i Sant Pau ICCC, Departament de Medicina, Universitat Autònoma de Barcelona C/ Sant Antoni Mª Claret 167 08025 Barcelona. Barcelona Spain E-mail: abayesgenis@santpau.es

Spontaneous cardiac regeneration occurs in zebrafish after surgical resection of the left ventricle [1]. In rodents, the potential of bone marrow cells of becoming cardiomyocytes is yet controversial [2,3]. In humans, damaged myocardium is irreversibly replaced by a scar. Recent findings suggest, however, that cardiomyocytes may proliferate in end-stage cardiac failure [4] and after myocardial infarction [5].

Cardiac chimerism: 'proof of concept' of cardiac regeneration in humans

Experiments performed in recipients of organs donated by other humans (human chimerism) have shed light about the regenerative potential of the human heart. Investigators have followed the trace of the Y chromosome, by FISH and/or PCR, in sex-mismatch transplants. Quaini et al examined hearts from female donors that had been transplanted into male recipients and found that ~10% of the myocytes contained a Y chromosome [6]. This finding was only partially supported by other groups that found significantly lower post-transplant chimerism [7]. The reported differences in the magnitude of cardiac chimerism could be due either to intrinsic biological characteristics of the specimens examined or to differences in the technical approach. To assess whether the source of these cells was the bone marrow, Deb et al studied the heart of female patients who had received male donor bone marrow and died of noncardiac causes [8]. After examination of 80,000 cardiomyocyte nuclei they found a mean percentage of Y chromosome-positive cardiac myocytes of 0.23±0.06%. Bayes-Genis et al examined the presence of cardiac chimerism after peripheral-blood stem cell transplantation (previously mobilized by G-CSF) by means of PCR of highly polymorphic short tandem (STR) markers [9]. Gender and non-gender STR donor alleles were identified in the recipient heart. These data suggest that adult human bone marrow may be a source of extracardiac progenitor cells contributing to cardiomyocyte formation.

Autologous adult stem cells for cardiac regeneration after myocardial infarction.

The revolutionary concept of human cardiac regeneration by bone marrow-derived cells was immediately attempted in patients to replace damaged myocardium after myocardial infarction (MI). Investigators obtained mononuclear cells from bone marrow aspirates and injected them intracoronarily in the acute and sub-acute phase of MI. Preliminary, pilot and non-randomized studies suggested a positive effect of these cells in left ventricular ejection fraction and reverse remodeling [10,11]. However, two recent randomized studies have shed serious concerns about this therapy [12,13]. Janssens *et al* did a randomized, double-blind, placebo-controlled study in 67 patients from whom they harvested bone marrow after successful percutaneous coronary intervention for ST-elevation MI. They assigned patients optimum medical treatment and infusion of

placebo (n=34) or bone marrow stem cells (n=33). After 4-months follow-up, the investigators concluded that intracoronary transfer of autologous bone marrow cells within 24 hours of optimum reperfusion therapy did not augment recovery of global left ventricular function after MI.

A different and apparently simple approach was the mobilization of bone marrow stem cells by circulating cytokines. However, the results of the REVIVAL-2 trial recently published indicate that stem cell mobilization by G-CSF therapy in patients with acute MI and successful mechanical reperfusion has no influence on infarct size, left ventricular function, or coronary restenosis [14]. Perhaps only a small fraction of mobilized stem cells homed the infarcted myocardium. Homing and engraftment of mobilized stem cells into the site of myocardial injury displays a fundamental step in cell-based regeneration of the injured myocardium [15].

Fetal and cord-blood somatic stem cells.

Cardiac chimerism after pregnancy of a male offspring (fetal cell microchimerism) has also been demonstrated indicating the existence of cells of fetal origin capable of differentiating into cardiomyocytes [16]. The search for human somatic stem cells from placental cord blood with such properties has yielded erncouraging preliminary results. A population of pluripotent, CD45-negative population of cells from human cord blood, termed unrestricted somatic stem cells (USSC) has been described [17]. This cord blood stem cell population differentiated into osteoblasts, chondrocytes, adipocytes and myocytes both in vitro and in vivo in various animal models. These cells, when tested for the major transplantation antigens, may serve as an allogeneic stem cell source for the future development of cellular therapy for tissue repair and tissue regeneration. In conclusion, the human heart has limited regenerative capacity, only to maintain normal cardiac homeostasis, but it is unable to meet a long-term demand for cardiac repair after injury. We need to obtain extensive knowledge about adult (mesenchymal stem cells, endothelial progenitors, adipose-derived stem cells, MAPCs) and fetalembryonic stem cells (USSCs) capable of restoring the human heart before we can propose such therapeutic option to our patients.

References

- 1. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002;298:2188-90.
- 2. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705.
- 3. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-8.
- 4. Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 1998;95:8801-8805.
- 5. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiomyocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-1757.
- 6. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5-15.
- 7. Laflamme MA, Myerson D, Saffitz JE, et al. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002;90:634-640.

- 8. Deb A, Wang S, Skelding KA, et al. Bone marrow-derived cardiomyocytes are present in adult human heart. A study of gender-mismatched bone marrow transplantation patients. Circulation 2003;107:1247-1249.
- 9. Bayes-Genis A, Muñiz E, Catasus Ll, et al. Cardiac chimerism in recipients of peripheral-blood and bone marrow stem cells. Eur J Heart Fail 2004;6:399-402.
- 10. Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-8.
- 11. Fernandez-Aviles F, SanRoman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004;95:742-8.
- 12. Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141-8.
- 13. Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367:113-21.
- 14. Zohlnhöfer D, Ott I, Mehili J, et al. Stem cell mobilization by granulocyte colonystimulating factor in patients with acute myocardial infarction. A randomized controlled trial. JAMA 2006;295:1003-1010.
- 15. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005;115:572-583.
- 16. Bayes-Genis A, Bellosillo B, La Calle O, et al. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transpl 2005; 24:2179-83.
- 17. Kögler G, Sensken S, Airey JA et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004;200:123-35.

ESHRE The Future of Stem Cell Research

Alan Trounson

Australian Stem Cell Centre

Stem Cells and Respiratory Disease

The Disease

Sca-1 antigen expression is a marker of alveolarization

Characterization of Stem Cells in the Adult Murine Lung

Summary:

- Sca-1 antigen expression is a marker of lung alveolarization
- [CD45+CD31]^{neg} Sca-1^{pos} lung cells have a mesenchymal "signature" whereas the Sca-1^{neg} subset has a respiratory epithelial "signature"
- The majority of proliferative activity in culture resides in the [CD45+CD31]^{neg} - Sca-1^{pos} subset
 - growth patterns are heterogeneous
 evidence of transplantation potential
- Developmental potential and hierarchical relationships remain to be determined.

Mesenchymal Stem Cells

- Adult bone marrow stromal stem cells have been identified in damaged and grafted lung tissue
- The mouse MSC immuno-phenotype is similar to that of Sca+ putative stem cells of the adult lung
- BM MSCs may have significant trophic effects for lung function

MSCs differentiation down the Respiratory Epithelial Lineage by co-culturing GFP MSCs with Respiratory

<u>SPC and AQ5 expression in GFP MSCs</u> from co-cultured with respiratory epithelium

Transmission Electron Microscopy

Transmission Electron Microscopy

MSCs differentiate into Type I pneumocytes at day 15 of co-culture

Type I Pneumocytes Chen et al, 2004

•Electron Microscopy- 4-5% cells showed features according to the FACS data.

Mesenchymal stem cells

REPAIR OF UPPER AIRWAYS IN MODELS OF CYSTIC FIBROSIS

Scnn1b-transgenic Mice Mall et al. 2004

Normal and Mutant Embryonic Stem Cells – CF, HD, etc

Neurotrophins and ES cell growth

Inhibiting Neurotrophic Responses of hES Cells Pyle et al (2005)

Replicating developmental pathways

- Knockin of fluorescent reporter genes into key endogenous development gene promoter regions
- Sequential expression of mesendoderm

 definitive endoderm patterning genes eg foregut regional indicator genes – tissue progenitors
- Full functional demonstration of endocrine capability and importantly regulation of hormone production

Tools for discovery – Green ESCs ENVY

Differentiation of Human ES Cells

Formation of Spin-EBs and Differentiation into Blood Cells

(Ng et al. 2005)

Blood Cell Differentiation of ENVY Cells (Costa et al. 2005) (Ng et al. 2005)

Generation of blood cells from human ES cells

Multiple types of human of blood cells can be generated from human embryonic cells using directed differentiation

Directed differentiation of hESCs using tissue recombination

- Tissue recombination is based on the inductive/instructive potential of urogenital mesenchyme
- Kidney grafting provides a highly vascular site for grafts to grow for an extended period of time
- Cell-cell interactions are maintained and differentiation is dictated

Prostate grafts – 2 weeks in vivo

hES cell-derived prostate structures

Epithelial cell marker

Normal Human Prostate

Prostate grafts AR 8 weeks

- Androgen receptor positive
- Cytodifferentiation of the epithelium
- Characteristic of normal human prostate

Acknowledgements

- Yuben Moodley, Ivan Bertoncello
- Tayfur Tecirlioglu
- Andrew Elefanty, Ed Stanley, Liz Ng, Magdaline Costa
- Renea Taylor
- Richard Boyd and colleagues

Dr. Gwennaël Joliff-Botrel

Health Research Directorate European Commission

Prague ESHRE 2006

Prague ESHRE 2006