PRE-CONGRESS COURSE 9

SIG Reproductive Surgery

"Training and education in endoscopy"

CONTENTS

Program overview	p. 1
Speakers' contributions	
• Objective evaluation of endoscopic skills - <i>R. Campo (B)</i>	p. 3
• (How) Does preclinical lab training influence the surgical learning curve	
in residents? -G. Dewin (B)	p. 19
• Setting up a multicenter clinical anatomy and surgical skills training	
programme (CASST) -K. Kenton (USA)	p. 31
• Validity of computer based methodology to evaluate surgical skill –	
L. Mettler (DE)	p. 45
• Is there still a need for a reproductive surgeon? -S. Gordts (BE)	p. 78

PRE-CONGRESS COURSE 9 - PROGRAMME

SIG Reproductive Surgery

Training and education in endoscopy

Course co-ordinator: S. Gordts (B)

Course description: the course intends to offer an overview of the actual different possibilities of training and to evaluate their potential advantage and influence on skills and learning curves. The course will also elucidate on the future guidelines and accreditation of the European commission and their practical application

Target audience: All those involved with endoscopy and education in gynaecology and reproductive medicine

Programme

09.00 - 09.30: <i>09.30 - 09.45:</i>	Endoscopic surgical skill lab – <i>J. Deprest (B)</i> <i>Discussion</i>
09.45 - 10.15: <i>10.15 - 10.30:</i>	Objective evaluation of endoscopic skills - <i>R. Campo (B)</i> <i>Discussion</i>
10.30 - 11.00:	Coffee break
11.00 - 11.30:	(How) Does preclinical lab training influence the surgical learning curve in residents? - <i>G. Dewin (B)</i>
11.30 - 11.45:	Discussion
11.45 - 12.15:	What is the place of a specialised center in endoscopic surgical training? - <i>A. Wattiez (F)</i>
12.15 - 12.30:	Discussion
12.30 - 13.30:	Lunch
	Virtual reality training
13.30 - 14.00:	Setting up a multicenter clinical anatomy and surgical skills training programme (CASST) - <i>K. Kenton (USA)</i>
14.00 - 14.15:	Discussion
<i>14.00 - 14.15:</i> 14.15 - 14.45:	The OR 1 of the future: system-integration and education for quality
14.15 - 14.45:	The OR 1 of the future: system-integration and education for quality assessment - <i>D. Wallwiener (DE)</i>

16.00 - 16.15:	Discussion
16.15 - 16.30:	Validity of computer based methodology to evaluate surgical skill - <i>L. Mettler</i> (<i>DE</i>)
16.30 - 16.45	Is there still a need for a reproductive surgeon? -S. Gordts (BE)
16.45 - 17.00:	Round table: "Requirements for endoscopic surgical training" - B. Tarlatzis, A. Wattiez, R. Campo, S. Gordts, D. Wallwiener

Training in Gynaecological Surgery

The paradigm for training in surgery is the *apprentice-tutor model*

- Trainee first observes then assists and finally operates.
- Procedures with increasing complexity are performed
- $\, The \, presence \, of \, the \, tutor \, is \, permanently \, required$
- Reported learning curves are usually very long, i.e. number of procedures needed for reaching proficiency is remarkably high, making this issue critical for gynaecologists.

*heAcademy

Training in Gynaecological Surgery

Critical factors for the current use of this model

- 1. the necessity of a high volume of surgical procedures,
- 2. the availability of a sufficient number of skilled mentors
- 3. the time consuming aspect of this system.
- 4. the difficulties in objective assessment of clinical competence on different surgical levels,
- 5. the limited methods of credentialing and the lack of correct reimbursement policy towards the mentors.

*heAcademy

Laparoscopic surgery

- Laparoscopy requires specific skills, different from those required in open surgery the Psychomotor Skills
 - Depth appreciation from 2D screen using subtle visual clues
 - Remote handling of instruments without tactile feedback
 - Hands-eyes coordination
 - Fine motor skills
 - Long Instruments
 - Fulcrum effect
- Effective acquisition of Laparoscopic Psychomotor Skills (LPS) is essential for minimal access surgery to become a real minimal invasive & atraumatic surgery.

the Academy

Training in Gynaecological Surgery

ALARMING REPORT IN THE NETHERLANDS

- Because of inacceptable amount of serious (lethal) complications in common laparoscopic procedures within general surgery and gynaecology the ministry of health performed a major inspection regarding patient safety
- Report is published in November 2007.

the Academy

Training in Gynaecological Surgery

Conclusion of report

- Training in laparoscopic techniques was found to be variable and inadequately structured.
- It is a matter of concern that the standards which a future laparoscopist must meet in order to operate, either independently or under supervision, have not been adequately established.

+heAcademy

Standardisation of training programs necessary !

- Using the patient as a model to acquire laparoscopic skills decreases patient safety!
- A standardised and quality-controlled in house training programme to acquire the laparoscopic skills does not exist.
- No test is currently accepted to differentiate laparoscopic surgeons in different levels of expertise.
- No test is available to score the basic skils of an individual and permit in OR laparoscopic surgical activities.

the Academy

Questions ?

- Is the classic apprentice-tutor model sufficient for acquiring the appropriate Laparoscopic skills?
- Do *in vitro* and animal training provide a more objective evaluation of the training process?
- What are the ideal characteristics of a training program?
- -Model? Length?
- Intensity? Level of supervision?
- How can we measure objectively the typical endoscopic skills?

*heAcademy

Training in Gynaecological Surgery

The paradigm for training in surgery is the *apprentice-tutor model*

- Trainee first observes then assists and finally operates.
- The presence of the tutor is permanently required
- Insufficient amount of procedures and mentors to train laparoscopic gynaecological surgery.

the Academy

Training in Laparoscopy

In vitro models:

- Relatively cheap , Relaxed and controlled environment
- Pelvi-trainers: learning curves for stitching, knot-tying, cutting, dissection
- Virtual-reality: more objective evaluation of the learning process

• Animal models:

- Usually in large animals, such as pigs
- Simulation of the clinical scenario, e.g. anaesthesia, pulsating vessels, pneumoperitoneum.
- Very expensive and therefore not widely and routinely used
- Short training period, not appropriate for basic skill training

+heAcademy

Maximal Learning effect: trainingsession duration

G. Dewin, unpublished data stitching and knot tying

6 training sessions of 1.5h

160 students

6 groups with different distribution of training sessions

the Academy

Skill Assessment: Possible Goals

- To define someone's **laparoscopic or psychomotor** skill level
- To guide trainees to the right training courses
- To help mentors and training centers to differentiate different skill levels of trainees
- To define the cut off for entering a one to one clinical teaching program.
- To evaluate someone's **surgical** skills
- To establish minimal standard for surgical licence .

+heAcademy

Skill assessment: Systems

- Quantitative and Qualitative
- Time
- Observations
 - checklists
 - Global Rating Scale
 - eg. OSATS, GOALS,....
- Motion trackers
- Virtual reality

*heAcademy

_				TS; exampl	-	
Respect for the tissue		Frequently used unnecessary force or caused damage by inappropriate use of instruments	2	3 Careful handling of tissue but occasionally cause inadvertent tissue damage	4	5 Consistently handl tissues appropriate within minimal dam
Γ	Time and Motion	Many unnecessary movements		Efficient time/motion but some unnecessary movements		Clear economy movement and maxi efficiency
	Instrument Handling	Repeatedly makes tentative awkward or inappropriate moves with instruments		Competent use of instruments but occasionally stiff or awkward		Fluid moves with instruments and awkwardness
	Knowledge of instruments	Frequently asked for wrong instrument or used inappropriate instrument		Know names of most instruments and uses appropriate tool for task		Obvious familiar wit instruments and th names
	Flow of operation	Frequently stopped operating and seemed unsure of next move		Demonstrated some forward planning with reasonable progression of procedure		Planned course o operation effort from move to next
	Use of assistants	Failed to use assistants		Appropriate use of assistants most of the time		Strategically uses assistants to the be advantage at all tin
	Knowledge of specific procedure	Required specific instruction at most steps		Knew all important steps of the operation		Familiar with all asp of the operation
,	Overall serformance	Unable to perform operation independently		Competent, could perform operation with mini mal teaching assistance		Clearly superior, ab perform operatio independently wit confidence

	Objective	Accuracy	Easy	Endoscopic	Price	Easy to	Evaluation
			Available	Dimension Only		detect progression	self difined skills
Time	\checkmark	χ	\checkmark	\checkmark	\checkmark	V	
OSATS and GOALS	χ	\checkmark	V	χ	\checkmark	χ	$\sqrt{\chi}$
Motion Tracking		V	χ	V	χ	V	χ
Virtual Reality		V	χ	V	χ	V	χ

Project From Anatomy to Endoscopic surgery

• Gather scientific evidence to:

• define the necessary Laparoscopic Psychomotor Skills (LPS) for laparoscopic surgery,

- provide a scoring system to test the individual student's ability in this field,
- provide a training program for in house training that give the students the opportunity to master and acquire the psychomotor skills.

*heAcademy

Project

From Anatomy to Endoscopic surgery

• Redifine the educational levels of Gynaecological endoscopic training:

-Within the Standing Committee on Training and Assessment (SCTA) of the European Board and College of Obstetrics and Gynaecology (EBCOG), a project is started with all European parties involved to define 3 educational levels in the training of an endoscopic surgeon.

the Academy

Project

From Anatomy to Endoscopic surgery

- First educational platform in gynaecological endoscopic surgery
- Aim
- Preclinical training to acquire basic theoretical knowledge of surgical principles
- full endoscopic psychomotor skills (EPS)
- basic theoretical knowledge of instrumentation and OR functioning

+heAcademy

Project From Anatomy to Endoscopic surgery

First educational platform in gynaecological endoscopic surgery

Target audience

- Preclinical phase of education for all trainees aiming at an abdominal surgical discipline.
- Content and Teaching strategy: Patient free environment – Theoretical lectures
 - Practical sessions in pelvic trainer (dry exercises)

*heAcademy

Project From Anatomy to Endoscopic surgery

- Second educational platform in gynaecological endoscopic surgery
 - Board certified Gynaecologist
- Third educational platform in gynaecological endoscopic surgery
 - Special modules of surgical skills (training centers)

*beAcademy

From Anatomy to Endoscopic surgery

New design of training programs for endoscopic surgery:

- The scientific evidence gathered by theAcademy research programs has inspired the experts of the Academy to work on a new design of training programs. It is a global concept with the aim to transfer the knowledge to mentors and provide them the necessary tools to be able to start in house training and evaluation.

the**Academy**

Pilot study LASTT Laparoscopic Skill Trainer and Tester

- General Objective:
- To develop a system for training and evaluation of LPS
- Methodology:
 - –12 exercises where tested on novices, gynaecologists and expert surgeons
 - Time of successful performance is used as the objective outcome parameter.

• Result

- Feasibility and Construct validity was proven for 3 laparoscopic psychomotor exercises.

*heAcademy

Conclusion

- Our data demonstrate that a simple inanimate model is feasible for both testing and training laparoscopic Psychomotor skills.
- The data also indicate that systematic repetitions of simple tasks, even without any tutor's feedback have a major impact in the learning process.
- The learning curves demonstrate that experts have better skills than novices, proving the construct validity of the model.
- In conclusion, our study demonstrate that a simple, cost friendly and reproducible inanimate model, with proven construct validity, is suitable for both testing and training laparoscopic skills

the Academy

Final Study LASTT

•Evaluation of the learning curve of a basic psychomotor skill versus a more complex exercise

the Academy

Study characteristics

Subjects

- 60 gynaecologists 25-50 years old
- Gynaecologists with little or no experience in laparoscopy

Laparoscopic exercises

- E1: basic laparoscopic skill (stereotaxis). Dominant hand (DH) and non-dominant hand (NDH) separately
- E2: intermediate laparoscopic skill (intracorporeal knot-tying). Dominant and non-dominant hands together

• Experimental design:

- 5 phases
- 3 groups (n=20)

the Academy

Conclusion

- Training of intracorporeal knot-tying only does not provide full skill acquisition.
- Also specific psychomotor skills exercises are necessary.
- Training and Testing can be done in a simple model suitable for in house training.
- Instrumentation setup is cheap and easy movable, multifunctional use is possible
- OR or Animal training should only start when full acquisition of EPS has been achieved.

+heAcademy

Conclusion

- Within the Standing Committee on Training and Assessment (SCTA) of the European Board and College of Obstetrics and Gynaecology (EBCOG), a project is started with all European parties involved to define **3 educational levels** in the training of an endoscopic surgeon.
- The same scientific evidence has inspired the experts of the Academy to work on a new design of training programs. It is a global concept with the aim to transfer the knowledge to mentors and provide them the necessary tools to be able to start in house training and evaluation.

*heAcademy

(How) Does preclinical lab training influence the surgical learning curve in residents?

> Gunter De Win Dirk De Ridder Marc Miserez Centre Surgical Technologies KU Leuven Belgium

> > Barcelona July 2008

See One, Do One, Teach One?

Simulation

Structured training program needed; from simulation in the lab to real operations in theatre room

- Trainee: central
- Repetitivity Standardized No stress

- Critical situations

Different Curricula

- Psychomotor skills
- Suturing and Knot Tying
- Tissue Handling, Coagulation, Dissection

Scientific Evidence? : What Study we need?

- Experimental group: Structured preclinical Training and Standard Residentship
- Control Group: Standard Residentship
- Real Clinical Transferstudy on learning curve

No single publication

Scientific Evidence??

- Dozens of validation studies on different models
- Few studies on training transfer to theatre room
- Recent RCT's on training curricula

Training Transfer?

Training Transfer

- Proficiency ?
- Automaticity?
- Proficiency Maintenance ...

Stimulating peformance during training?

Randomisation

- 145 students (novices, 18-23 years) randomized into 6 comparable groups with respect to:
- Spatial Ability: Schlaufigurentest
- Ambidexterity: Oldfield Questionnaire
- Laparoscopic Skills: Southwestern drills
- Motivation
 Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ et al.
 Laparoscopic training on bench models: better and more cost effective than
 operating room cosperience? J An Coll Surg 2000; 191(3):272-283
- Age and Sex

С

D

Е

Different Groups 9 hours of training in each group

Deliberate Practice

Χ2

X 6

X 6

Short Daily Training

- Promote Local
 Training Centers
- Selftraining: Webcam

RCT's						
s	effect of tro kills with vi operating i	rtu al re a	lity sin	ulator	s	
Target group	Seymour 2002 surgical residents	Hyllander 2002 medical students	Ahlberg 2002 médical studonts	Hamilton 2002 junior surgical residents	Grantcharov 2004 surgeons witt limited laparoscopic experience	
Training	standard training +/- MIST VR	LapSim	MISTVR	MIST VR or video-trainer	MISTVR	
Surgical Performance	3-8 sessions Iap CCE human	2hrs/week (5 weeks) basic skills pig	3 hrs "lap app pig	2 weeks (10x30 min) "lap CCE human	10x6 exercices lap CCE human	
Interval	< 2weeks			1 week(?)	< 2weeks	
Effect	yes	Yes		y es	yes	

Comment on RCT's

- Only Psychomotor skills Trained
- No comparison virtual dissection and real dissection
- Maybe better because of:
 - \rightarrow cognitive modelling
 - \rightarrow inherent feedback

Knowledge of Procedure

• Mimics...

Setting Up a Multi-center Clinical Anatomy & Surgical Skills Training Program

Kimberly Kenton, MD, MS

Associate Professor Fellowship Director, Female Pelvic Medicine & Reconstructive Surgery Departments of Obstetrics & Gynecology and Urology Loyola University Stritch School of Medicine USA

Disclosures

None

Learning Objectives

Participant should be able to:

- Discuss advantages to multi-center, multidisciplinary collaboration.
- List strategies to build educational programs with other centers or departments.
- Be familiar with one multi-center, multidisciplinary program.

Chicago

Le 1-1 condestituted about a 1

- 5 Large Academic Medical Centers
- 6 Medical Schools
- 13 Residency Programs

Optimizing "Limitations"

- · Less time spent in the OR
 - ≻Limited work hours
 - ➢Decreased surgical volume
 - ➢Patient safety concerns
- Maximize time & teaching in OR
 Need to come to OR with more knowledge and skills
- Universal to surgical residents
 >Ob/Gyn, Urology, General Surgery

Resources

- Faculty time
- ➤Most valuable
- Facilities
- Trainers, instruments
- Cadavers

Principles

- Teamwork & collaboration
- Think of "unique" or "non-traditional" teams
 Female Pelvic Medicine & Reconstructive Surgery
- "Make sure you get at least 2 uses of each academic effort"
 Dr Linda Brubaker

How Maximize Time & Resources?

- Multiple Disciplines
 >FPMRS: Gyn & Urology
- Multiple Centers
 - ➤Faculty
 - ➤Facilities
 - ≻Resources

Clinical Anatomy and Surgical Skills Training

• Aim:

- ➤To develop a multicenter, multidisciplinary anatomy and surgical skills training program
- Methods
 - ➤4 Residency Programs❖3 Ob/Gyn Program
 - ✤1 Urology Program

	Needs Assessment					
	Knowledge					
	Excellent	Adequate	Marginal/Poor			
Surgical Knots	7%	68%	25%			
Suture Properties	0%	25%	75%			
Abdominal Wall Anatomy	0%	46%	54%			
Pelvic Anatomy	0%	39%	61%			
Hysterectomy	0%	7%	93%			
3 rd & 4 th Degree Laceration	0%	7%	93%			

Needs Assessment

- 100% benefit from more formal basic surgical skills training
- 86% prosected cadavers increase anatomy knowledge
- PGY2 more likely than PGY1s to
 > Rate knot tying skills as excellent or adequate (p=0.009)
- Urology more likely than Gynecology to
 Rate knowledge of pelvic anatomy as poor (p=.001)
 - ➤ Rate knowledge of hysterectomy as poor (p=.012)

Pretest

- 40% knew difference between 1-4^o laceration
- 27% identify 3 branches of pudendal nerve
- 10% knew 3 most common sites of ureteral injury during TAH

Curriculum

- 5, 3 hour sessions

 - a) S floti Sessions
 b) Knot tying & instrumentation
 b) Abdominal wall anatomy
 b) Opening and closing the abdomen
 b) Pelvic & neural anatomy and TAH
 b) Repairing perineal lacerations
- 1st hour didactics
 - 13 didactics/10 faculty
- 2nd-3rd hours gross anatomy or surgical skills labs
- · 2-3 learning objectives per session

Learner Assessment

Urology vs Gynecology

- Gyn residents scored higher in anatomy and surgical skills on pre-test
 >P=.03 & P=.002
- No DIF in post-test scores
 Anatomy, P=.11
 - ≻Surgical skills knowledge, P=.82

Program Assessment

Residents	Excellent/ Helpful	Marginal	Waste of Time
Knot Tying	78%	22%	0
Abdominal Wall	96%	4%	0
Opening & Closing	92%	8%	0
Pelvic & Neural Anatomy	96%	4%	0
Repairing Lacerations	87%	10%	3%

Faculty

Multidisciplinary collaboration heightened educational benefit for residents

> Multicenter collaboration lessened individual burden

Program Assessment

Residents	Excellent/ Helpful	Marginal	Waste of Time
Knot Tying	78%	22%	0
Abdominal Wall	96%	4%	0
Opening & Closing	92%	8%	0
Pelvic & Neural Anatomy	96%	4%	0
Repairing Lacerations	87%	10%	3%

• Faculty

- \succ Multicenter collaboration lessened individual burden
- Multidisciplinary collaboration heightened educational benefit for residents

Costs

Formal Cost Analysis not done a priori

- Faculty time NOT included
 >Biggest cost
- 1 site (6 residents): \$1700 per resident
- 4 sites (32 residents): \$800 per resident
- 45% start-up costs
 ≻~ half next time

CASST Sr

- Similar program for senior residents
- Included 1 additional program (N=5)
- Similar process of curricular development

CASST Sr

• FACULTY

- ➤ General Gynecology (9)
- Urogynecology (3)
- ≻ Urology (3)
- ➤ Gynecologic Oncology (1)
- Program Directors (3)
- ► Endourology and Urogyn fellows (2)
- RESIDENTS
 - ➤ Ob/Gyne (34)
 - ≻ Urology (6)

Curriculum

4 sessions (3 hours)

- 1 hour: didactics
- 2 hours: workshops
 > round table discussions
 > prosected cadavers
 > bench models

Curriculum

- Urogyn and Endoscopy
 Clinically relevant anatomy
 Advanced surgical skills
- Ethics of Surgical Innovation
- Problem-Solving in the OR
- Surgical Complications: Identification & Treatment
- Enhancing Communication

Conclusions

- Multicenter, multidisciplinary approach to surgical education is
 - ≻Feasible
 - ➤Cost effective
 - ➤Maximizes faculty time & effort
 - ≻Perceived as beneficial by residents
- Expands education for residents & faculty
- Think outside the box for potential collaborators

www.ajog.org

Clinical anatomy and surgical skills training (CASST): Development of a multicenter, multidisciplinary program

Kimberly Kenton, MD, MS,^{a,*} Elizabeth R. Mueller, MD,^a Scott Graziano, MD,^b Sondra Summers, MD,^b Leslie Rickey, MD,^a Lisa Oldham, MD,^c Xavier Pombar, DO,^c Francesca Turner, DO,^d Brenda Darrell, MD^d

Division of Female Pelvic Medicine and Reconstructive Surgery, Departments of Obstetrics and Gynecology and Urology,^a Department of Obstetrics and Gynecology,^b Loyola University Medical Center, Maywood, IL; Department of Obstetrics and Gynecology,^c Rush University Medical Center; Department of Obstetrics and Gynecology,^d Illinois Masonic Medical Center, Chicago, IL

Received for publication January 16, 2006; revised June 9, 2006; accepted July 5, 2006

KEY WORDS

Surgical skills Technical skills Surgical education Resident education Urology **Objective:** The aim of this program was to develop a multicenter, multidisciplinary anatomy and surgical skills training program for junior residents in obstetrics and gynecology and urology. **Study design:** After administering a needs assessment, we developed a collaborative clinical anatomy and surgical skills training program for junior residents in obstetrics and gynecology and urology at 3 academic medical centers in Chicago.

Results: Thirty-two residents participated in the program. Needs assessment results indicated that all residents felt they could benefit by more formal training in basic surgical skills. Learning objectives were developed for each of the 5 3-hour sessions that dealt with basic surgical skills, anterior abdominal wall anatomy, opening and closing the abdomen, female pelvic anatomy, and perineal anatomy and laceration repair. The cost of training each of the residents was approximately \$600. Forty-five percent of the costs were one-time "start-up" costs for abdominal trainers and surgical instruments.

Conclusion: By including multiple centers and disciplines, we were able to reduce costs of teaching basic surgical skills and anatomy and maximize faculty teaching time and effort. © 2006 Mosby, Inc. All rights reserved.

Funded in part by an unrestricted educational grant from Astellas Pharma US, Inc.

Presented at the Thirty-Second Annual Meeting of the Society of Gynecologic Surgeons, Tucson, AZ, April 3-5, 2006.

* Reprint requests: Kimberly Kenton, MD, MS, Departments of Obstetrics and Gynecology & Urology, Division of Female Pelvic Medicine & Reconstructive Surgery, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153.

E-mail: kkenton@lumc.edu

Resident surgical training is increasingly challenging because of limited resident work hours, decreased surgical volume, concerns for patient safety, and increasing clinical demands of academic faculty.^{1,2} As a result, much basic surgical education has moved outside the operating room and into structured surgical skills laboratories. Multiple authors have demonstrated that structured surgical skills laboratories can be used to reliably

train and evaluate resident surgical skills.³⁻⁵ In a survey of 199 obstetric and gynecology residency programs about their surgical education curriculum, only 58 programs (30%) had developed formal curricula.⁶ Of the programs without formal curricula, 100% used direct observation in the operating room, while only 61% had bench laboratories. The relatively low rate of technical skills laboratories is likely a result of limited faculty time and limited resources. As a result, new, innovative, cost-effective programs must be developed to teach junior residents anatomy and basic surgical skills. Junior residents from all surgical disciplines need to master the same basic technical skills and clinical anatomy. By collaborating with other departments and institutions teaching similar concepts and skills, we may be able to increase teaching efficacy, decrease faculty burden, and reduce costs.

The aim of our program was to develop a multicenter, multidisciplinary anatomy and surgical skills training program for junior residents in obstetrics and gynecology and urology. We will describe how we developed and assessed our clinical anatomy and surgical skills training (CASST) program.

Material and methods

Program directors from 3 obstetric and gynecology residency programs and 1 urology residency program agreed to develop a joint clinical anatomy and surgical skills training program. We followed a basic 5-step process for developing the CASST curriculum.⁷

Needs assessment

We administered a needs assessment questionnaire on knowledge of basic surgical skills and clinical anatomy to first and second year residents from 4 residency training programs in the Chicago area.

Learning objectives

Clearly defined objectives were developed based on the consensus opinion^{8,9} of the faculty and the results of the needs assessment. Faculty opinions were derived from personal experience and consulting with national experts in surgical education. Specific objectives were written for each session and distributed to the residents at session one.

Educational strategies and implementation

We used results of the needs assessment to develop 5 3-hour workshops, including 13 short didactics, surgical skills laboratories, and prosected cadaver dissections to teach basic surgical skills and anatomy.

 Table I
 Needs assessment results-resident responses (n = 32)

	Knowledge			
	Excellent	Adequate	Marginal	Poor
Suture properties	0%	25%	57%	18%
Surgical knots	7%	68%	25%	0%
Anterior abdominal wall anatomy	0%	46%	39%	14%
Pelvic anatomy	0%	39%	43%	18%
Hysterectomy anatomy and skills	0%	7%	46%	46%
Third and fourth degree lacerations	0%	7%	29%	64%

Assessment of learners

A short answer, fill-in the blank, pretest was given before the first session to assess baseline knowledge. The same test was administered at the conclusion of the fifth session and will be given again at the end of the academic year to assess the resident's short- and long-term knowledge retention.

Program evaluation

We used 2 methods to assess the CASST program: all residents completed a course evaluation after the final session and faculty met to formally discuss and evaluate what they thought of the program.

The needs assessment, learning objectives, and program evaluation results are presented here. We also describe the start-up and on-going costs of the program.

SPSS (Version 13, Chicago, Ill) was used for data entry and analysis. Chi-square test of association was used for nominal data. Data were considered significant at the .05 level.

Results

Thirty-two residents participated in the program. Faculty included physicians from gynecology (n = 7) and urology (n = 3) from 3 different academic medical centers.

Educational outcomes

Needs assessment

Ninety-three percent of participants preferred hands-on surgical models or cadavers to didactic lectures. One hundred percent of participants agreed or strongly agreed that they would benefit from more formal training in basic surgical skills before entering the operating room, and 86% thought that prosected cadavers would increase their knowledge of anatomy. Table I demonstrates participants' assessment of their current knowledge regarding anatomy and surgical skills. Over half

Table II Resident learning objectives

Session 1: Basic surgical skills
Choose appropriate surgical instruments and suture based on biomechanics and tissue, suture, and healing properties.
Demonstrate how to tie surgical knots, including 1-handed, 2-handed, and instrument.
Place a tie using a passer and free hand.
Session 2: Abdominal wall anatomy
Discuss the muscular and fascial layers and vasculature of the abdominal wall.
Compare common surgical incisions used in gynecology and urology and identify specific instances in which each is beneficial
Session 3: Opening and closing the abdomen
Select appropriate instruments (eg, smooth vs toothed pick-ups) and suture for the different layers of an abdominal closure.
Demonstrate how to create and close an abdominal incision.
Demonstrate how to first assist opening and closing an incision.
Session 4: Pelvic anatomy
Identify clinically important anatomic structures in the pelvis and apply anatomic relationships to clinical scenarios.
Demonstrate how to position a patient in stir-ups and place a self-retaining retractor to prevent pelvic nerve injury.
Discuss steps of abdominal hysterectomy and identify common sites of ureteral injury.
Session 5: Perineal anatomy and laceration repair
Define the anatomic structures involved in the 4 degrees of perineal lacerations.
Demonstrate how to repair a fourth-degree laceration on a beef tongue model, ¹⁰ including repairing all layers and choosing
appropriate suture types for each layer.

of residents thought their knowledge and/or skills in all areas surveyed (except knot tying) were marginal or poor. A significantly higher percentage of second year residents felt their knot tying skills were excellent or adequate (P = .009). Urology residents were significantly more likely to report that their knowledge of pelvic anatomy and hysterectomy was poor compared to gynecology residents (P = .001 and P = .012, respectively).

Pretest results further emphasized the need for the CASST program. Twenty-seven percent of residents could correctly identify all 3 branches of the pudendal nerve, and less than half (40%) accurately described differences between first- and fourth-degree perineal lacerations. Only 10% knew the 3 most common sites of ureteral injury during hysterectomy, while another 33% could name 2 sites. Only 50% of residents selected an appropriate suture type to close fascia, subcutaneous tissues, and skin.

Learning objectives

The objectives for each session included cognitive and psychomotor components. Table II contains the objectives for each session.

Educational strategies and implementation

We developed 5 sessions, each containing 2 or 3 short didactics followed by a 'hands-on' workshop in either the surgical skills or gross anatomy laboratories. The following briefly describes the curricular content of each session, including the didactic and laboratory portions.

Session 1: Basic surgical skills

The first hour contained 3 didactics: (1) Introduction to the operating room, specifically how to position patients, lights, check equipment; (2) reviewing common surgical instruments used in obstetrics and gynecology

Table III Resider	its' ratings (of 5 CASSI	sessions (n = 32)
	Excellent	Helpful	Marginal	Waste of time
Knot tying	26%	52%	22%	0
Abdominal wall anatomy	36%	60%	4%	0
Opening and closing	56%	36%	8%	0
Pelvic and neural anatomy	50%	46%	4%	0
Repairing perineal lacerations	56%	31%	10%	3%

.

and suture properties and types; (3) knot tying principals. The laboratory session consisted of 6 stations, where residents practiced knot tying (1-handed, 2-handed, and instrument), passing with a free tie and instrument, and reviewing the names and purpose of various surgical instruments.

Session 2: Clinical anatomy of the anterior abdominal wall

Didactics were given on the layers and anatomy of the anterior abdominal wall, on common incision types, including midline, paramedian, Pfanenstiel, Maylard, Gibson, and Cherney, and on laparoscopic port placement for various procedures. We spent the remainder of the time in the gross anatomy laboratory. Four prosected cadavers were used to review layers, musculature, vessels, and innervation of the abdominal wall. We demonstrated where different incisions would be placed and important nearby structures by presenting clinical scenarios for the groups to discuss. We also repeated the knot tying and instrument naming stations from the first session.

_ . . _...

Item	Budgeted cost	Actual cost	Start-up or ongoing	\$/resident actual
Abdominal trainers	\$1452	\$3494	Start-up	\$109
Instruments	\$11,792	\$5241	Start-up	\$164
Pads for trainers	\$2816	\$1747	On-going	\$55
Cadavers	\$2400	\$4800	On-going	\$150
Breakfast items	\$0	\$578	On-going	\$18
Administrative support	\$0	\$500	On-going	\$16
Meeting costs	\$0	\$1500	On-going	\$47
Misc costs for supplies	\$750	\$1500	On-going	\$47
Physician salaries	\$0	\$0	On-going	\$0
Total	\$19,200	\$19,360		\$605

Session 3: Opening and closing the abdomen

Two didactics were presented on opening and closing the abdomen emphasizing abdominal wall anatomy and basic surgical principles (traction and counter traction, how to hold knife, pick ups, needle driver). The residents spent the remainder of the time in groups of 2 practicing making and closing incisions using abdominal wall trainers and pig's feet.

Session 4: Pelvic anatomy

The didactic portion of this session was dedicated to a review of basic pelvic and retroperitoneal anatomybroad and cardinal ligaments, uterus, ovaries, and tubes, vessels, the course of the ureter-steps of abdominal hysterectomy focusing on clinically relevant anatomic relationships, and important neural anatomy and injuries. Laboratory session included reviewing pelvic and retropubic anatomy on prosected cadavers, using clay models to practice the steps of abdominal hysterectomy, and case scenarios of common nerve injuries associated with pelvic surgery.

Session 5: Perineal anatomy and laceration repair

Three short didactics were presented at the beginning of this session: review of perineal anatomy, repairing episiotomies and second-degree lacerations, and repairing third- and fourth-degree lacerations. We used a beef tongue model¹⁰ for repairing third- and fourth-degree lacerations during the laboratory session.

Program evaluation

Upon completion of the program, all (100%) residents strongly agreed or agreed that the CASST program was beneficial. Table III shows residents' evaluations of the 5 individual sessions. There were few differences in responses between residency year and program. First year residents were more likely to rate the session on opening and closing the abdomen as excellent, while second year residents only found it helpful (P = .029). Urology residents were significantly more likely than gynecology residents to rate the session on perineal lacerations as marginal (P = .005). Similarly, urology residents were more likely to remain neutral to the statement that the session on perineal lacerations was beneficial (P < .0005).

Faculty assessment of the program was positive. Faculty unanimously agreed that collaborating with other centers/programs lessened their individual burden, resulting in an educational benefit for their residents. Faculty also benefited from working with specialists from other institutions and disciplines, frequently stating that they learned from the program. We identified several areas for improvement. More surgical instruments and trainers would improve some sessions. Next time, we will divide residents by specialty for certain breakout sessions. We will incorporate a more formal mechanism to provide formative feedback during individual sessions.

Cost analysis

The budgeted and actual expenses of the program for 32 residents are shown in Table IV. The abdominal trainers and surgical instruments were a one-time purchase and can be reused at further training sessions. Approximately 45% of the costs were associated with start-up.

Disposable or on-going costs included pads for the trainers, cadavers, supplies, and administrative support. Faculty salaries and meeting room expenses were not included. Four cadavers were prosected by the faculty to illuminate specific teaching points. The number of cadavers was dependent on the learning objectives and not the number of resident participants. If we consider doing the same program with only 6 residents from a single program, the costs would increase by \$800 per resident.

Conclusion

We have developed a unique multicenter, multidisciplinary program to train junior residents in clinical anatomy and surgical skills. By including multiple centers and disciplines, we were able to maximize faculty teaching time and effort, reduce costs to individual programs, and establish collaborative relationships with specialists outside our departments.

As medical education and training change to meet the Accreditation Council for Graduate Medical Education's new requirements for resident duty hours, increasing clinical demands are being placed on academic faculty.^{1,11} Experts predict that the clinical activity of academic surgeons will likely increase at the expense of their academic productivity (teaching and research).¹² By collaborating with other surgical residency programs, we decreased each individual faculty member's preparation, didactic, and teaching time. The CASST program included 13 short didactics, which complemented the 'hands-on' portion of each session. Each of the 10 faculty prepared at least 1 didactic session. Likewise, we shared preparation and cadaveric dissections. Most programs have a limited number of teaching faculty to participate in surgical skills programs, forcing a small number of faculty to develop, prepare, teach, evaluate, and assess their program. Our program maximized each program and faculty member's time.

Additional costs that were not included in the analysis were costs of faculty time, facilities fees, and actual administrative costs of the program. Our multicenter program allowed us to utilize each program's unique resource. For example, one program had new medical school facilities that could accommodate the didactic sessions and the anatomy breakout sessions.

Chicago is unique in having 5 university medical centers in addition to several strong community based medical centers in close geographic proximity, which lends to close working relationships with other centers. This certainly aided our efforts to assemble a team from multiple medical centers. However, we also successfully collaborated with our own urology department, demonstrating the potential for intrainstitutional collaboration within more remote medical centers. In fact, we hope to expand the program to include general surgery as well as urology and gynecology from other institutions. Our multidisciplinary collaboration provided several additional educational benefits: (1) the distinctive input and view-point of different specialties exposed residents and faculty to alternative ways of approaching a problem or task; (2) residents initiated professional relationships with future colleagues with whom they will collaborate clinically, and hopefully, academically; (3) residents witnessed professionalism and cooperation among surgical subspecialists.

Additionally, we believe the CASST program accomplished our major educational goals. We determined a need for an anatomy and technical skills program, developed concise, specific learning objectives, and put together a relevant curriculum. Program evaluations by residents and faculty judged the program to be beneficial. Final summative feedback will not be available until July 2006. Until that time we cannot comment on final assessment of resident's knowledge. However, most programs have subjectively acknowledged improvement in junior resident's knowledge and skill about objectives covered in CASST.

References

- Winslow ER, Bowman MC, Klingensmith ME. Surgeon workhours in the era of limited resident workhours. J Am Coll Surg 2004;198:111-7.
- 2. Reznick RK. Teaching and testing technical skills. Am J Surg 1993;165:358-61.
- 3. Goff BA, Lentz GM, Lee D, Houmard B, Mandel LS. Development of an objective structured assessment of technical skills for obstetric and gynecology residents. Obstet Gynecol 2000;96: 146-50.
- Lentz GM, Mandel LS, Lee D, Gardella C, Melville J, Goff BA. Testing surgical skills of obstetric and gynecologic residents in a bench laboratory setting: validity and reliability. Am J Obstet Gynecol 2001;184:1462-8; discussion 1468-70.
- Goff B, Mandel L, Lentz G, et al. Assessment of resident surgical skills: is testing feasible? Am J Obstet Gynecol 2005;192:1331-8; discussion 1338-40.
- Mandel LP, Lentz GM, Goff BA. Teaching and evaluating surgical skills. Obstet Gynecol 2000;95:783-5.
- Kern DE. Curriculum development for medical education: a sixstep approach. Baltimore (MD): Johns Hopkins University Press; 1998.
- Miller L. A look at two planning devices. Administrator's Bulletin 1974;5:1-4.
- 9. Harden R. Ten questions to ask when planning a course curriculum. Med Educ 1986;20:356-65.
- Woodman PJ, Nager CW. From the simple to the sublime: incorporating surgical models into your surgical curriculum. Obstet Gynecol Clin North Am 2006;33:267-81.
- 11. Gaba DM, Howard SK. Patient safety: fatigue among clinicians and the safety of patients. N Engl J Med 2002;347:1249-55.
- 12. Weinstein DF. Duty hours for resident physicians—tough choices for teaching hospitals. N Engl J Med 2002;347:1275-8.

000	Learning objectives
	 Basic endoscopic training models are still essential for laparoscopic and hysteroscopic procedures
	2. Computerized trainers offer better teaching possibilities
	3. Virtual reality trainers are advantageous
	 Live animal surgery and human cadaver surgery should be performed when possible
	4 LMetter, KIEL 2008

L.Mettler, KIEL 2008

$_{\odot} \odot Objectives$

o 3. Telesurgery

 Advances in telecommunications now routinely allow surgeons to view operations taking place in distant hospitals using video conference techniques.
 Adding a robot assistant to this set up

allows a distant surgeon to participate directly in the operation, controlling the robot in exactly the same way as if they shared the same room.

000	Enhancing laparoscopic skills with the LTS3e: A computerized hybrid physical reality		
	• What are our study objectives?		
	• To determine the value of this interactive simulator in acquiring basic laparoscopic skills among its users and to evaluate the correlation between the frequency of trials/practice and the		

overall performance o Accepted for publication in Fertility and Sterility 2008, Soyinka,A.,Meinhold,I, Schollmeyer,T. and L. Mettler

L.Mettler, KIEL 2008

9

000	De	esign
	o	Cross-sectional study with paired analysis.
	10	L.Metter, KEL 2008

000	Subjects
	 Twenty-five in-training gynaecological endoscopic surgeons from various parts of the and world and fifteen third-year medical students of the above institution.
	12 L.Metfer, KIEL 2008

000	Results	
	achieved in all t	/ better post-test scores were asks for both groups e pre-test scores p>0.0001.
	16	L.Mettler, KIEL 2008

000	Results
	• No significant difference in group mean scores between the group of trainees who performed five or more rounds of trials and those with two and three trials (p<0.012 and p<0.018 respectively) was detected.
	18 LMester, KIEL 2008

000	Conclusions	
	 The LTS3e simulator device substantially contributes to the acquisition of laparoscopic skills in the less experienced or novice trainee surgeon. Performance improves progressively with practice. 	
	28 LMetter, KIEL 2008	

○Simulators

29

- Mechanical simulators, also called box trainers or conventional trainers, have long been used to teach laparoscopic skills. Box trainers are a popular alternative to animal and cadaver models, because they are less expensive and more convenient
- Computer-based virtual reality simulators are relatively new to surgical education but are growing in popularity
- Virtual reality simulators allow more independent instruction and objective feedback.

L.Mettler, KIEL 2008

Box trainers Commenly using for practicing or assessing laparoscopic skills So toox trainer simulators use actual laparoscopic equipment The trainee performs the laparoscopic tasks under direct gedback Scott et al., 2000 randomized surgical residents to a box trainer global assessment tool for laparoscopic cholecystectomy on an actual patient the investigators found that the training group demonstrated significantly greater improvement

o Kirtua	l reality trainers versus box trainers
rand After asso o The duri imp	Iton E, Surg Endosc 2002;16:406–11. Iomized 50 surgery residents to box training or virtual reality training t the designated training, participants had their technical skills sesed during an actual laparoscopic cholecystectomy virtual reality training significantly improved resident performance ng operating room case, whereas training with a box trainer did ony rove performance slightly authors concluded that virtual reality training is superior
In th	ngblood P, J Am Coll Surg 2005;200:546–51. nat study, performance was assessed in an animal model. in, investigators found that the virtual reality trainer was superior

L.Mettler, KIEL 2008

32

33

 VR training in the Endoscopy
 School at the Dpt. Obstet. Gynec. In Kiel
 Education model project at our 3 months courses
 1. group conventional training
 2. group VR training (LapSim, VR1, LAP-Mentor)
 2 hours per week VR training
 Both groups receive 10 hours of didactical education
 After 8 week education technical skills are assessed during an actual timed exam and best

assessed during an actual timed exam and best at home with an easy surgery, like tubal ligation

L.Mettler, KIEL 2008

٦

••• Virtual Reality Trainers

36

o One such system, the VR Pelviscopy Trainer ,VSOne, consists of two main components. The 3-D interaction to guide the surgical instruments and the 2-D user interface for visual feedback and control of training session.

L.Mettler, KIEL 2008

000	 o To provide the virtual environment, a realistic 3-D representation of the anatomic situs is derived from 2-D medical image data using imaging algorithms and visualisation techniques.
37	L.Metter: KIEL 2008

Surgical Simulation Scene Application 2 Gynaecology Clivical partner Mixed partne Mixed partner Mixed p

000	Role and value of laparoscopic training devices in assesing nondominant and two handed dexterity			
	o Mettler et al. Gynecol.Surg (2006) 3: 110- 114			
	56 L.Metter, KIEL 2008			

••• Robotics	
● AESOP TM (automated endoscopic system for optimal positioning)	
was the robot of the year 2000 in medical application.	
It enables a tremor-free voice-commanded movement of the camera holding arm	
during laparoscopic surgery.	
62 L.Metter, KIEL 2008	

000	Methods
	o Zeus uses 3 robots, one for the camera movement and 2 for robotic instrumentation.
	64 L.Metter, KIEL 2008

○ ∩Methods

65

o Intelligent operation rooms
 o 2. The integration and the central steering of different operation room components are realised in the OR1 of Storz.
 This technology allows a completely new operation room management: central control of all room components, processing, capturing and mailing of all patient data for data exchange between clinics, doctors and health care staff; efficiency increase.

L.Mettler, KIEL 2008

000	
	o Using the da Vinci ^M Surgical System , it is possible to operate with the look and feel of open surgery, performing complex surgical manoeuvres through 1cm ports in a sitting position with a so-called Surgical Immersion™ Technology.
70) L.Metter, KIEL 2008

000

Other robotic tools are:

HUMPHRY

82

83

as robotic uterine manipulator for LAVH etc.

L.Mettler, KIEL 2008

••• Results o A comprehensive finite element framework to enable simulation of patient specific biomechanics gives new possibilities for diagnosis and surgical planning as well as training before the individual case. L.Mettler, KIEL 2008

• AESOP™ used in 132 laparoscopic gynaecological cases

0 0 0			operatio with assistant camera holder		with ro	boticarm control)
	o Surgical proced	ure n	n	time/*	n	time/*
	o ovarian cysts	55	25	90	30	60
	o myomectomies	62	24	95	38	60
	o hysterectomies	25	15	80	10	40
	o * times are rounded u					
	86	I	Mettler, KIEL 2	008		

- Surgical skills have to be **trained computerized** today. 90% of all surg. interventions will be performed by **laparoscopy or hysteroscopy**
- 2. 3.
- Natural orifice surgery

93

- Robotics with 3 dimensional surgery, high definition 4. optics
- A combination of molecular genetic early disease detection and endoscopic, minimal 5. invasive surgery will hopefully induce less trauma to our patients in the future.

L.Mettler, KIEL 2008

○○○ Conclusions
 o With the da Vinci[™] Surgical System the future of surgery is at your fingertips. o We are able to take surgical precision and technique beyond the limits of the human hand.
94 LMetter, KIEL 2008

• • **Co**nclusions

- Robotic surgical instruments give the surgeon:
 - » telesurgery chances
 - » image guided positioning
 - image augmented dexterity »
 - » sensor guided positioning of instruments with multiple degrees of
 - liberty » data preservation

 - » sensor guided dexterity » task specific end-effectors
 - » increased manual dexterity

000	Thank you for your atten	tion
	-Confictures	
	97 LMetter, KIEL 2008	

RESTORATION NORMAL ANATOMY TREATMENT DISEASE OFFERING POTENTIAL FOR SPONTANEOUS CONCEPTION

OPTIMALIZATION RESULTS IVF

LIFE Leuven Institute for Fertility & Embryok

F

Hysteroscop Subfertik	ic Findings : Patients	in
	No	%
Total	530	100
Normal	370	69.8
No diagnosis	9	1.7
Abnormal	151	28.5
an Institute for Fertility & Embryology	_	

Hysteroscopy ar	nd IVF outcome
	Tarek El- Thouki RBM online 2008, 16
LIFE Leuven Institute for Fertility & Embryology	

P	UTERII Pre - and Post-ope	NE SEPT		
	No.	Pre-operative	Post-operative	
	Patients	43	31	
	Pregnancies	117	37	
	 abortions 	*104 (88.9%)	*5 (13.5%)	
	 premature 	6 (5.1%)	5 (13.5%)	
	• at term	7 (6.0%)	27 (73%)	
	 children alive 	*12 (10.2%)	*32 (86.5%)	
	E uven Institute for Fertility & Embryol	ogy		

Septated uterus								
Small Large								
	n= 1	125	n= 54					
before		after	before	after				
Time	22.44	6.6	20.88	4.98				
Pregn	109	97	38	42				
Deliv	16.5%	90.7%	18.4%	88.1%				
Abort.	78%	8.2%	71.1%	11.9%				
Ectop.	5.5%	1.1%	10.5%					
Gergolet et al, subm. Fertil Steril								

Laparoscopic findings in 92 oligo-ovulatory infertile patients after 4 failed cycles							
	No	%					
Normal	33	35	.9				
Endometriosis	37	40	.2%				
Endometrioma 8		8,7%	Pelvic				
adhesions 30	32.6%						
Tubal disease	1	1,1	%				
LIFE Leuven Institute for Fertility & Embryok		D ET AL. FERTIL S	STERIL, 80, 2004				

	RESULTS IN PA ERTILITY VERSU		UNEXPLAINED ENDOMETRIOSIS				
	Unexplained minimal						
	endometriosis						
	No. Patients	119	49				
	Pregnancy rate	33.6%*	16.3%*				
	Implantation rate	43.6%*	18.3%*				
	* p < 0.005						
1148 -	IFE euven Institute for Fertility & Emb		Hum Reprod 13, 9, 1998				

forced outwards or inwards: - Intramural

- Submucosal
- Subserosal

EPIDEMIOLOGY								
20-40% of women of reproductive age are affected by leiomyomas								
Myomas are associated directly or indirectly with 5-10% of cases of infertility								
Size Location Number Type								
	20 – 50%	▼ with symptoms						
Menorrhagia Dysmenorrhoea Infertility								
American Fertility Society. Guidelines for practice: myomas and reproductive dysfunction. 1992								

- BleedingPain and pressure
- Urinary symptomsPregnancy
- - Infertility
 - Recurrent spontaneous abortionObstetrical complications

Impact of Intramural Myomas on Fertility

Greater distance for sperm travel Encroachment on tubal ostium-occlusion Distortion of uterine cavity Vascular changes Interfere with normal rhythmic uterine contractions Impaired implantation Abnormal endometrial maturation Alteration on oxytocinase activity

et.Gynecol. tet.Gynecol.Scand Il Steril il 1992 92 et.Gynecol.Clin.N.Am.

¥

Mechanism of Impaired Fertility in Case of Intramural-submucosal Myoma

Richards et al.(Hum Reprod Upd;1998,4)

- The numbers of <u>caveolae</u> in host myometrium and fibromyomata are conceivably <u>decreased</u> compared with normal myometra.
- This specific structural abnormality may affect calcium metabolism by causing a decrease in calcium extrusion and thus <u>raising the intracellular calcium</u>.
- <u>Increased</u> intracellular calcium produces <u>myometrial irritability</u> and hyperactivity.
- Results in disruption of rhythmic contractions of the junctional zone.

Mechanism of Impaired Fertility in Case of Intramural-submucosal Myoma

Subendometrial tumors:

- Causing endometrial erosion with subsequent inflammation altering the nature of the intrauterine fluid, resulting in a hostile environment.
- Disrupt the endometrial blood supply, affecting nidation and maintenance of early embryo

Fahri et al 1995

Junctional Zone Myometrium

Functionally important entity in reproduction

- Ontogenetically related to endometrium
- Cyclic changes in SSH receptors
- Role in gamete transport and implantation

Myometrial Junctional Zone Important Role in Reproduction

Functionally important entity in reproduction

- Early changes from time of implantation
- Decidualization and trophoblast invasion
- Defective transformation of JZ spiral arteries in spectrum of pregnancy complications

THE OUTER MYOMETRIUM

Less important role in reproduction

Muscle contractions during delivery

Proposal of Classification

Submucosal (JZ) fibroid

- type 0, I, II (European Society for Hysteroscopy criteria, 1994)

- type III : abutting the endometrium
- "Outer myometrium" fibroid

- type IV: intramural

- type V, VI: subserosal, pedunculated

Impact of Intramural Myomas on In Vitro Fertilization

Myomectomy efficacy allows pregnancy in 60% of the patients with unexplained infertility in the first year following surgery

Vercellini P.1998 Hum.Reprod.

Impact of Intramural Myomas on *In Vitro* Fertilization

The decision to proceed with myomectomy in an asymptomatic patient with unexplained infertility remains controversial. Current data suggest surgical treatment for patients who have uterine cavity distortion.

Klatsky P et al 2007

Submucosa	a Myoma	and h	nfertil	ìty	in IVF	
		(0	nitts.	EA	.2001)	
	n Studies	Cycles	RR	*	95% C.I.	
Pregnancy	2	510	0.321	0.1	130 - 0.697	
Implantation	1	541	0.277	0.0	096 - 0.720	
	AFTER RE	SECTION				
	n Studies	Cycles	RR	*	95% C.I.	
Pregnancy	2	157	1.719	1.1	134 - 2.582	
Implantation	1	55	0.980	0.4	453 - 2.409	
		* Referent is	infertile c	ontro	ol without LM	

Intramural Leiomyoma Pregnancy Rate after IVF				
	Subjec	ts PR	Control	s PR
Hart	106	23%*	322	34%
Stovall (cycles)	91	37%*	91	53%
Eldar-Geva	46	16%*	249	30%
Khalaf Y	122	24%*	322	33%

Intramural Leionnyoma Pregnancy Rate after IVF				
	Subject	s PR	Contro	ls PR
Surrey	73	51%	316	60%
Check	61	34%	61	48%
Ramzy	39	38%	367	34%
Oliveira	130	48%	245	45%
Klatsky	94	47%	275	54%

Inframural Leionryoma Miscarriage Rate After INF					
		Subjects	MR	Controls	MR
ľ	Eldar-Geva	46	33%	249	30%
	Check	61	34%	61	20%
Ì	Ramzy	39	20%	367	15%
	Oliveira	130	27%	245	29%
	Gianaroli	129	40%*	129	19%*

Naterial and Methods				
	Group 1	Group 2		
	(N=75 patients with myomas)	(N=127 patients without myomas)		
N.of transferred cycles	129	129		
Age (M ± SD)	35.8 ± 4.9	35.7 ± 4.8		
Mean Oestradiol	1205 ± 874	1395 ±821		
% fertilized oocytes	67	56		
No of fibroids	2.46 ± 2.8	1		
		Gianaroli et al.		

	Results (I)	
	Group 1 (N=75 patients	Group 2 (N=127 patients
# of embryos/ET (M ± SD)	with myomas) 2.02 ± 0.4	without myomas) 2.14 ± 0.6
# of clinical pregnancies (%)	45 (34.9%)	53 (41.1%)
Implantation rate %	48/267 (18%) *	63/238 (26.5%) *
# of abortions (%)	18 (40%)*	10 (18.9%)*
*X²=4.34 p<0.05		

Uterine Myoma and Pregnancy Washington State Birth Records

• Retrospective population-based study 1987-1983

- 2,065 singletons
- Comparison group selected randomly; matched by birth year
- No match by age, parity, or race/ethnicity

Coronado et al. 2000

Uterine Myon <u>Washington</u>		• •
- Abruptio placentae	OR: 3.87	95% CI: 1.63, 9.17
- 1 st Trimester bleeding	g OR: 1.82	95% CI: 1.05, 3.20
- Dysfunctional labor	OR: 1.85	95% CI: 1.26, 2.27
- Breech presentation	OR: 3.98	95% CI: 3.07, 5.16
- Caesarean delivery	OR: 6.39	95% CI:5.46, 7.50
		Coronado et al. 2000

Sheiner et al 2004

Myomectomy Surgical Technique

Submucous myoma: hysteroscopic myomectomy

-diameter ≤ 5 cm

-partially protruding in cavity

-2-step procedure can be necessary

-in case of larger myomas a pre-treatment with

GnRHa can reduce the diameter

Myomectomy Surgical Technique

Intramural myoma: laparoscopic myomectomy

- diameter 6-7cm
- number max. 4
- no pre-treatment with GnRHa

Mini laparotomy with exteriorization of uterus

Myoma and Reproduction

Conclusions I

Infertility: retrospective IVF cohorts with controls - impaired fertility submucosal myoma

- - possible negative impact of intramural myoma - negative effect seems to be correlated with
 - size and numbers

Myoma and Reproduction

Conclusions II

Recurrent miscarriage:

not clearly established link

prospective studies needed

·increased risk of abortion in presence of several myoma

•increased risk with involvement of JZ

Myoma and Reproduction

Conclusions III

Obstetric outcome: retrospective population based

- cohorts increased risk of
- abruptio placentae
- Caesarean section
- pre-term delivery
- breech presentation

Leiomyomas and Infertility

It is rarely probable that they cause infertility but it has been described:

- Longer time to conception (Hasan et al. 1990)
- Reduction of the success of ART (Stovall et al. 1998; Khalaf et al. 2006)
- Relation to spontaneous abortion (Muhieddine et al. 1992) (Matsunaga et al. 1980)
- A similar probability of pregnancy after myomectomy compared with patients with no uterine pathology (Buttram & Reiter 1981)

Leiomyomas and Infertility

Consensus on the benefits of treating submucous leiomyomas

No consensus on the treatment of smaller intramural leiomyomas

Junctional Zone Myometrium

Functional important entity in reproduction

- Ontogenetically related to endometrium
- Cyclic changes in SSH receptors

Leuven Institute for Fertility & Embryology

LIFE

n Institute for Fertility & Em

Role in gamete transport and implantation

ADENOMYOSIS AND TREATMENT

Reduction in myometrial capacity:

LIFE Leuven Institute for Fertility & Embryology

B

Endometriosis as a Pleiotropic Reproductive Disorder

- Endometriotic lesions
- Peritoneal inflammatory microenvironment
- Subtle ovarian dysfunctions
- Aberrant endometrial SSH response
- Myometrial JZ hyperplasia and dysfunction

LIFE Leuven Institute for Fertility & Embryology

EN	ENDOMETRIOSIS-Associated INFERTILITY				
su	Randomized, controlled multicenter trial of laparoscopic surgery in minimal/mild disease (Marcoux et al, NEJM 1997)				
(101	, ,				
	No MF CPP (36w)				
	•Untreated 169 2.4% 18				
	•Treated 172 4.6% 31				
•Conclusion: " …factors other than the • endometriosis interfere with infertility."					
LIFE Leuven Institute for Fertility & Embryology					

Comparison of Pr	S-Associated INFER ⁻ regnancy Rates Reprod Endocrin 199	
	Stage of disease	
	Mini/Mild	Severe
Expectant	37,4%	3,1%
Surgical	51,7%	41,3%
LIFE Leuven Institute for Ferti	lity & Embryology	

LIFE Leuven Institute for Fertility & Embryology

	HYDROSALPINX AND IVF OUTCOME			
Pro	ospective studies			
		Hydros. Pos.	Hydros. Neg	
	Strandell et al. 1999	23.9%	36.6%	
	Dechaud et al. 1998	18.7%	34.2%	

	HYDROSALPIN	NX AND I	VF OUTCOME
1	Hydrosalpinx		
		positive	negative
		%	%
	pregnancy rate	19.67	31.2
	implantation rate	8.53	13.68
	delivery rate	13.40	23.44
	early pregn. loss	43.65	31.11
	LIFE Leuven Institute for Fertility & E		E. Camus Hum Reprod 14, 5; 1999

HYDROSALPINX AND IVF OUTCOME
Mechanism of impairment
Receptivity: - lower concentration integrin αvβ3 - out of phase histological maturation Meyer et al. 1997
Mechanical: - fluid interface - washing out Sharara et al. 1999

Tradesation			
Treatment option	IS:		
Correction of endom	etrial αvβ3	Pr/ET (%)	IR (%)
Salpingectomy	92.3% (n=13)	39	18.8
Neosalpingostomy	33.3% (n=3)	36.2	16.7
Proximal occlusion	66.7% (n=3)	60	27.3
Transvaginal aspiration	on 0% (n=1)		
Meyer et al. 1997 Hum Repro	od 12:1393-98		

	S	Salp	ingos	tomy	
	Microsurgery				
		Year	Nb	IUP %	E.P %
	Leuven	1980	333	21	6
	Winston	1980	241	24.5	9.5
	Verhoeven	1983	143	23.7	2
	Boer Meisel 1986	108	28.7	17.5	
	Gomel	1978	89	31	9
	Dubuisson	1985	76	36	22
Ń					
l	Leuven Institute fo	or Fertility	& Embryology		

Laparoscop	Salpii	ngos	tomy		
	Year	Nb	IUP %	E.P %]
Dubuisson	1990	65	27.7	4	
Donnez	1994	85	27		
Filippini	1996	104	32.5	4.8	
Canis	1991	87	33.3	6.9	
Audebert	1992	142	20.4		
LIFE Leuven Institut	e for Fertility & Er	nbryology			л

Salpingostomy Laparoscopy >< microsurgery						
Pregnancy ra			J	,		
grade	I	П	Ш	IV		
laparoscopy microsurgery	50 66.6	32.4 36.6	8.3 14.3	0 7.7		
LIFE Leuven Institute for Fe	ertility & Embry		Canis et al	. 1991		

R	<u>eversals</u>				
		Year	Nb	IUP %	E.P %
	Winston	1980	126	60.4	2.4
	Gomel	1980	118	82.5	1.7
	Rock	1982	125	65.0	4.0
	Schlösser	1983	119	60.5	2.5
	Dubuisson	1995	206	69.9	-
	Boeckx	1986	63	69.8	5
M	Gordts	2008	261	72.5	-

CONCLUSION

YES WE NEED REPRODUCTIVE SURGEONS

integrated in each unit of reproductive medicine urgent need specific training