Basic course on environment and human male reproduction

Special Interest Group Andrology

27 June 2010
Rome, Italy
Basic course on environment and human male reproduction

Organised by the Special Interest Group Andrology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to ESHRE</td>
<td>3</td>
</tr>
<tr>
<td>Course programme</td>
<td>9</td>
</tr>
<tr>
<td>Speakers' contributions</td>
<td></td>
</tr>
<tr>
<td>- Intrauterine exposure to environmental chemicals on human male reproduction – Jaime Mendiola-Olivares (Spain)</td>
<td>11</td>
</tr>
<tr>
<td>- Occupational risk and human male reproduction - Jacques Auger (France)</td>
<td>24</td>
</tr>
<tr>
<td>- Semen quality in European populations - Niels Jørgensen (Denmark)</td>
<td>36</td>
</tr>
<tr>
<td>- Endocrine disruptor and semen quality - Marieta Fernández (Spain)</td>
<td>48</td>
</tr>
<tr>
<td>- Puberty and environment - Anders Juul (Denmark)</td>
<td>65</td>
</tr>
<tr>
<td>- Lifestyle factors and indications of male reproductive function - Sally Perreault Darney (USA)</td>
<td>74</td>
</tr>
<tr>
<td>- Hypospadias and cryptorchidism and environment - Jorma Toppari (Finland)</td>
<td>80</td>
</tr>
<tr>
<td>Upcoming ESHRE activities</td>
<td>96</td>
</tr>
<tr>
<td>Notes</td>
<td>98</td>
</tr>
</tbody>
</table>
What is ESHRE?

ESHRE was founded in 1985 and its Mission Statement is to:

- promote interest in, and understanding of, reproductive science and medicine.
- facilitate research and dissemination of research findings in human reproduction and embryology to the general public, scientists, clinicians and patient associations.
- inform politicians and policy makers in Europe.
- promote improvements in clinical practice through educational activities
- develop and maintain data registries
- implement methods to improve safety and quality assurance

Executive Committee 2009/2011

Chairman
- Luca Gianaroli Italy
- Anna Veiga Spain
- Joep Geraedts Netherlands

Chairman Elect
- Jean François Guérin France
- Temur Gürgan Turkey
- Ursula Eichenlaub-Ritter Germany
- Antonis Makrigiannakis Greece
- Miodrag Stojkovic Serbia
- Anne-Maria Suikkari Finland
- Carlos Plancha Portugal
- Françoise Shenfield United Kingdom
- Eleni Van den Abbeel Belgium
- Heidi Van Ranst Belgium
- Vejko Vlaisavljevic Slovenia
- Søren Ziebe Denmark
ESHRE Activities – Annual Meeting

- One of the most important events in reproductive science and medicine
- Steady increase in terms of attendance and of scientific recognition

Track record:
ESHRE 2008 – Barcelona: 7559 participants
ESHRE 2009 – Amsterdam: 8132 participants

Future meetings:
ESHRE 2011 – Stockholm, 3-6 July 2011

ESHRE Activities – Scientific Journals

- Human Reproduction with impact factor 3.773
- Human Reproduction Update with impact factor 7.590
- Molecular Human Reproduction with impact factor 2.537
ESHRE Activities – Campus and Data Collection

- Educational Activities / Workshops
 - Meetings on dedicated topics are organised across Europe
 - Organised by the Special Interest Groups
 - Visit: www.eshre.eu under CALENDAR

- Data collection and monitoring
 - EIM data collection
 - PGD data collection
 - Cross border reproductive care survey

ESHRE Activities - Other

- Embryology Certification
- Guidelines & position papers
- News magazine “Focus on Reproduction”
- Web services:
 - RSS feeds for news in reproductive medicine / science
 - Find a member
 - ESHRE Community

ESHRE Membership (1/3)

- ESHRE represents over 5,300 members (infertility specialists, embryologists, geneticists, stem cell scientists, developmental biologists, technicians and nurses)

- Overall, the membership is distributed over 114 different countries, with 50% of members from Europe (EU). 11% come from the US, India and Australia.
ESHRE Membership (2/3)

<table>
<thead>
<tr>
<th>Membership Type</th>
<th>1 yr</th>
<th>3 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Member</td>
<td>€ 60</td>
<td>€ 180</td>
</tr>
<tr>
<td>Paramedical Member*</td>
<td>€ 30</td>
<td>€ 90</td>
</tr>
<tr>
<td>Student Member**</td>
<td>€ 30</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

*Paramedical membership applies to support personnel working in a routine environment such as nurses and lab technicians.
**Student membership applies to undergraduate, graduate and medical students, residents and post-doctoral research trainees.

ESHRE Membership – Benefits (3/3)

1) Reduced registration fees for all ESHRE activities:
 - Annual Meeting
 - Ordinary: € 480 (€ 720)
 - Students/Paramedicals: € 240 (€ 360)
 - Workshops
 - All members: € 150 (€ 200)

2) Reduced subscription fees to all ESHRE journals – e.g. for Human Reproduction €191 (€ 573)

3) ESHRE monthly e-newsletter

4) News Magazine “Focus on Reproduction” (3 issues p. a.)

5) Active participation in the Society’s policy-making

Special Interest Groups (SIGs)

The SIGs reflect the scientific interests of the Society’s membership and bring together members of the Society in sub-fields of common interest

- Andrology
- Psychology & Counselling
- Early Pregnancy
- Reproductive Genetics
- Embryology
- Reproductive Surgery
- Endometriosis / Endometrium
- Stem Cells
- Ethics & Law
- Reproductive Endocrinology
- Safety & Quality in ART
Task Forces

A task force is a unit established to work on a single defined task / activity

- Fertility Preservation in Severe Diseases
- Developing Countries and Infertility
- Cross Border Reproductive Care
- Reproduction and Society
- Basic Reproductive Science
- Fertility and Viral Diseases
- Management of Infertility Units
- PGS
- EU Tissues and Cells Directive

Annual Meeting

Rome, Italy 27 June to 30 June 2010

Pre-congress courses (27 June):

- PCC 1: Cross-border reproductive care: information and reflection
- PCC 2: From gametes to embryo: genetics and developmental biology
- PCC 3: New developments in the diagnosis and management of early pregnancy complications
- PCC 4: Basic course on environment and human male reproduction
- PCC 5: The lost art of ovulation induction
- PCC 6: Endometriosis: How new technologies may help
- PCC 7: NOTES and single access surgery
- PCC 8: Stem cells in reproductive medicine
- PCC 9: Current developments and their impact on counselling
- PCC 10: Patient-centred fertility care
- PCC 11: Fertility preservation in cancer disease
- PCC 12: ESHRE journals course for authors

Annual Meeting – Scientific Programme (1/2)

Rome, Italy 27 June to 30 June 2010

- Molecular timing in reproduction
- Rise and decline of the male
- Pluripotency
- Preventing maternal death
- Use and abuse of sperm in ART
- Live surgery
- Emerging technologies in the ART laboratory
- Debate: Multiple natural cycle IVF versus single stimulated cycle and freezing
Annual Meeting – Scientific Programme (2/2)

- Fertility preservation
- Congenital malformations
- ESHRE guidelines
- Data from the PGD Consortium
- European IVF Monitoring 2007
- Debate: Selection of male/female gametes
- Third party reproduction in the United States
- Debate: Alternative Medicine, patients feeling in control?
- Historical lecture: “Catholicism and human reproduction”

Certificate of attendance

1/ Please fill out the evaluation form during the campus
2/ After the campus you can retrieve your certificate of attendance at www.eshre.eu
3/ You need to enter the results of the evaluation form online
4/ Once the results are entered, you can print the certificate of attendance from the ESHRE website
5/ After the campus you will receive an email from ESHRE with the instructions
6/ You will have TWO WEEKS to print your certificate of attendance

Contact

ESHRE Central Office
Meerstraat 60, 1852 Grimbergen, Belgium
Tel: +32 (0)2 269 09 69
Fax: +32 (0)2 269 56 00
E-mail: info@eshre.eu
www.eshre.eu
Basic course on environment and human male reproduction

Organised by the Special Interest Group Andrology

Course coordinators: Jose A. Castilla (Spain) and Sheena Lewis (United Kingdom)

Course description: This course will present the causal links between the intrauterine exposure and occupational risk and their impact on human reproductive health. The basic principles on how to perform quality studies of human semen and toxicology will be presented. The overall role of environmental risks in the introduction of male reproductive disease (hypospadias, cryptorchism) will be covered. Finally, Influence of environment on puberty will be analyzed.

Target audience: All those with interest in the effects on human male reproduction of environment factors.

Scientific programme:

09:00 – 09:30 Intrauterine exposure to environmental chemicals on human male reproduction – Jaime Mendiola-Olivares (Spain)
09:30 – 09:45 Discussion
09:45 – 10:15 Occupational risk and human male reproduction - Jacques Auger (France)
10:15 – 10:30 Discussion
10:30 – 11:00 Coffee break
11:00 – 11:30 Semen quality in European populations - Niels Jørgensen (Denmark)
11:30 – 11:45 Discussion
11:45 – 12:15 Endocrine disruptor and semen quality - Marieta Fernández (Spain)
12:15 – 12:30 Discussion
12:30 – 13:30 Lunch
13:30 – 14:00 Bisfenol A and human male reproduction – G. Schönfelder (Germany)
14:00 – 14:15 Discussion
14:15 – 14:45 Puberty and environment - Anders Juul (Denmark)
14:45 – 15:00 Discussion
15:00 – 15:30 Coffee break
15:30 – 16:00 Lifestyle factors and indications of male reproductive function - Sally Perreault Darney (USA)
16:00 – 16:15 Discussion
16:15 – 16:45 Hypospadias and cryptorchidism and environment - Jorma Toppari (Finland)
16:45 – 17:00 Discussion
learning objectives

• To understand how animal models can help identify environmental chemicals that can alter human male reproduction.

• To become familiar with endocrine-sensitive male reproductive outcomes that have been related to prenatal exposure to environmental chemicals.

• To learn about the testicular dysgenesis syndrome (TDS).

• To learn which environmental chemicals have been shown to alter human male reproduction.

Diethylstilbestrol (DES)

• 1941-1971 Prescribed to 3-5 million women to prevent miscarriage

• 1971 Shown to cause vaginal cancer in adolescence among daughters exposed prenatally

• Genital malformations were three times as frequent among DES-exposed as unexposed men (sons of women in an RCT)
Sperm counts are declining

50% decline in sperm concentration in 50 years (Carlsen, et al. 1992)

Decline confirmed in two reanalyses (Swan, et al. 1997 and 2000)

Testicular Dysgenesis Syndrome (TDS)

Altered in utero testicular development resulting in one or more of:

- Decreased semen quality
- Reduced testosterone
- Testicular cancer
- Hypospadias and cryptorchidism

Associated with exposure to fetal and perinatal EDC exposure (Sharpe and Skakkebaek, 2008)
Some Endocrine Disrupting Chemicals (EDCs)

- **Phthalate Esters** (Anti-androgens)
 - Di(2-ethylhexyl) phthalate (DEHP)
 - Di(n-butyl) phthalate (DBP)
- **Bisphenol A (BPA)** (xenoestrogen)
- **Pesticides** (e.g. vinclozolin, PCBs)
- **Perfluorinated Compounds** (PFOS, PFOA)

 May act cumulatively (mixture problem)

Exposure is nearly universal

- These are found throughout our environment:
 - Plasticizers in polyvinyl chloride
 - Solvents (lacquers, varnishes)
 - Flooring and wall coverings
 - Food contact applications (cans, baby bottles)
 - Medical devices
 - Personal-care products (perfumes, lotions, cosmetics)
 - Coatings (including used to time releases in pharmaceutical products)

Endocrine-Sensitive Endpoints (male)

- Physical and genital exam including:
 - Breast size (gynecomastia)
 - Location of the testis, testicular and penis size
 - Anogenital distance (AGD)
- Endocrine status (hormonal profile)
 - FSH, LH, T, E2, FT, FAI, Inhibin B and SHBG
- Male reproductive function (semen quality)
 - Sperm concentration, motility and morphology
Prenatal exposures (animal models)

- Fetal stage is the most sensitive period for development.
- Several environmental chemicals produce effects on reproductive development in male offspring after *in utero* exposure.
- Critical period: Altered fetal testicular hormone production at critical window for reproductive tract development (rodents gest. days 19-21).

Prenatal exposures (animal models)

- Phthalate esters DEHP, DBP are anti-androgens.
- Marked reduction in fetal testicular T production.
- Male reproductive tract development under androgen control.
- T decreased by changes in gene expression of enzymes involved in T biosynthesis and transport in the fetal Leydig cell.

Prenatal exposures: The phthalate syndrome

- First defined in rodents: Cluster of androgen-mediated male developmental endpoints that are altered by *in utero* phthalate (DEHP and DBP) exposure.
- Characterized by malformation of the:
 - Epididymis
 - Vas deference
 - Seminal vesicles and prostate
 - External genitalia (hypospadias)
 - Cryptorchidism and retention of nipples (feminization)
 - Reduced AGD
The Phthalate Syndrome and TDS
(Hu 2009)

Relevance of animal studies to humans:

- Animals show a continuum of responses:
 - High doses: severe reproductive tract malformations
 - Low doses: changes in AGD and nipples retention

- Low doses of phthalates in rats are higher than reported exposure levels in humans….BUT
 - Alterations have been reported at very low doses
 - Enzymes involved in steroidogenesis are identical
 - Animals tested one chemical at a time (human exposure to mixtures)

Low dose effects (DBP)

FIG. 4. Fetal testicular testosterone concentration of fetal testes collected on GD 19 from control and DBP-exposed fetuses. Values are expressed relative to control values and represent the average ± SEM from three to four separate rat fetuses from one to four dams per treatment group. *p < 0.05.

Lehmann et al. (2004)
Prenatal exposures (animal models)

• Bisphenol A (xenoestrogen)
 - Rodents exposed to BPA during prenatal or perinatal periods show decreased epididymal weight and daily sperm production (Richter et al. 2007)

• Cumulative risk of chemicals (mixtures)
 - Risk assessment (RA) on chemical-by-chemical basis
 - In real life we are exposed to mixtures of chemicals
 - Cumulative RA of chemicals acting via similar pathways
 - Cumulative effects of anti-androgenic chemicals (combinations) behaved in a dose-additive manner

Dose additivity of mixtures

Rider et al. (2009)

Human studies

• European men giving a semen sample and physical exam were asked to answer, in collaboration with their mother, questions on in utero exposures, including smoking while pregnant. (Jensen et al. 2004)
In utero exposure to Maternal smoking

- Semen quality among European men exposed to smoking in utero or in childhood as compared with unexposed men (Jensen et al., 2004)

<table>
<thead>
<tr>
<th>Change in sperm count (%)</th>
<th>Change in % of motile sperms</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>95% CI</td>
</tr>
<tr>
<td>-20.1</td>
<td>-33.5, -6.8</td>
</tr>
<tr>
<td>β</td>
<td>95% CI</td>
</tr>
<tr>
<td>-1.85</td>
<td>-3.23, -0.46</td>
</tr>
</tbody>
</table>

- Exposed men had a 20.1% lower sperm concentration and 1.85% fewer motile sperm cells than unexposed men.

Phthalates and AGD in humans

- AGD and other genital measurements in boys 2-36 months. Examined in relation to their concentrations of phthalate metabolites in prenatal urine samples (Swan et al. 2005, 2008).

- Several phthalate metabolites were inversely related to AGD, supporting the hypothesis that prenatal phthalate exposure may adversely affect male reproductive development in humans.

<table>
<thead>
<tr>
<th>Monoester Metabolite</th>
<th>Percentile (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th</td>
</tr>
<tr>
<td>MEHP</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Likelihood of short AGD in boys

- 4.6x
- 13x
Summary of results on phthalates and male genitalia

• DEHP metabolites in prenatal urine were associated in males with:
 – Shorter AGD
 – Smaller penile width
 – Incomplete testicular descent

• DBP metabolites associated with shorter AGD but not significantly with smaller penile width or testicular descent.

Swan (2008)

Xenoestrogens and male malformations

• Fernández et al. (2007) compared 50 newborns with diagnosis of cryptorchidism and/or hypospadias with 114 boys without malformations matched by gestational age, date of birth, and parity.

• The aim of the study was to determine whether the combined effect of environmental estrogens (in placenta) measured as total effective xenoestrogen burden (TEXB) is a risk factor for male urogenital malformations.

Fernández et al. (2007)

<table>
<thead>
<tr>
<th>Variable</th>
<th>P-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDT</td>
<td>0.02</td>
<td>2.63 (1.21-5.72)</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>0.03</td>
<td>2.19 (0.99-4.82)</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.002</td>
<td>3.38 (1.36-8.38)</td>
</tr>
<tr>
<td>Mirex</td>
<td>0.02</td>
<td>2.85 (1.22-6.66)</td>
</tr>
</tbody>
</table>

Fernández et al. (2007)
Maternal beef intake and semen quality

• Swan et al. (2007) investigated possible long-term risks from anabolic steroids and other xenobiotics in beef. Authors examined men's semen quality in relation to their mother's self-reported beef consumption during pregnancy.

• Sperm concentration was inversely related to mothers' beef meals per week. In sons of 'high beef consumers' (>7 beef meals/week), sperm concentration was 24.3% lower.

• Maternal beef consumption, and possibly xenobiotics in beef, may alter a man's testicular development in utero and adversely affect his reproductive capacity.

Table 3: Regression analyses of semen parameters in relation to two measures of mother's beef consumption.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mothers' beef servings per week</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>0.0102</td>
</tr>
<tr>
<td>>7 versus ≤7</td>
<td>-0.1208</td>
</tr>
</tbody>
</table>

Swan et al. (2007)

Pesticide exposure and male malformations

• Andersen et al. (2008) investigated whether occupational pesticide exposure during pregnancy causes adverse effects on the reproductive development in the male infants.

• 113 mother–son pairs were included. The mothers were categorized as occupationally exposed (91 sons) or unexposed (22 sons) to pesticides during pregnancy.

• Testicular position and volume, penile length, and position of urethral opening were determined at 3 months of age using standardized techniques.
Pesticide exposure and male malformations

• Prevalence of congenital cryptorchidism at 3 months of age in sons of female greenhouse workers in Funen and boys born in the Copenhagen area.

<table>
<thead>
<tr>
<th>Prevalence of congenital cryptorchidism</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funen [% (n)]</td>
<td>Copenhagen area [% (n)]</td>
</tr>
<tr>
<td>6.2 (7)</td>
<td>1.9 (19)</td>
</tr>
<tr>
<td></td>
<td>3.2 (1.4 - 7.4)</td>
</tr>
</tbody>
</table>

Andersen et al. (2008)

Occupational exposures and male malformations

• Ormond et al. (2009) assessed the risk of hypospadias associated with occupational exposure of the mother to endocrine-disruptor chemicals, between others.

• The authors designed a case–control study of 471 hypospadias cases referred to surgeons and 490 randomly selected birth controls, born 1 January 1997–30 September 1998 in southeast England.

<table>
<thead>
<tr>
<th>Variable</th>
<th>P-value</th>
<th>OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folate during 1st trimester</td>
<td>0.02</td>
<td>0.64 (0.44-0.93)</td>
</tr>
<tr>
<td>Maternal occupational exposure to hair spray</td>
<td>0.004</td>
<td>2.93 (1.40-4.17)</td>
</tr>
<tr>
<td>Maternal occupational exposure to phthalates</td>
<td>0.01</td>
<td>3.12 (1.04-11.46)</td>
</tr>
</tbody>
</table>

Ormond et al. (2009)
Human studies: Postnatal exposure

- Concentrations of phthalate metabolites in human breast milk examined in relation to serum hormones in newborn boys (n=130).
- Two phthalate metabolites (MEP, MBP) positively associated with infant serum LH/FT ratio, SHBG and LH levels.
- MBP was negatively associated with serum FT levels.

Main et al. (2006)

Phthalates in breast milk and male hormones

Figure 2. Regression plots of MEP levels (μg/L) in human breast milk and serum hormonal levels in boys 3 months of age (n = 96).

Main et al. (2006)

Conclusions

- Animal studies consistently demonstrate intrauterine exposures to environmental chemicals affect male reproductive system in adulthood.
- Environmental chemicals are ubiquitous and much more studies about chemical mixtures are needed.
- Only a few human observational studies looked into in utero exposures related to male reproductive outcomes.
- However, every single study found a kind of alteration related to impaired male reproductive function, consistently with the findings in rodents exposed to EDCs.
References

- Foster PM. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006;29:140-7.

• Swan SH. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res. 2008;108:177-84.

I declare not to have commercial relationships or other activities that might be perceived as a potential conflict of interest

Occupational Risk and Human Male Reproduction

Jacques Auger,
Service de Biologie de la Reproduction/CECOS,
Hôpital COCHIN - PARIS - FRANCE

Learning objective:
Lifestyle and environmental factors are the main suspects to explain the increase of various anomalies of the male genital tract recently reported. The vulnerability of the male genital tract and fertility to various chemicals has been shown notably by a number of occupational studies. Occupational hazards are by far the best documented in epidemiological research in reproductive health. Occupational studies are necessary for assessing the reproductive risk for the workers themselves. They may also generate useful data for our understanding of the impact of various chemical and/or physical factors in the general environment as well as for risk assessment policies.

Where do we stand now? Overall, it will be shown that indisputable evidence of occupational adverse effects on male reproduction exists only for a relatively limited number of exposures or toxicants while for other exposures, the association is only suspected or suggested requiring further evaluation.

It will be explained how the study design for investigating possible associations between occupational exposure (which should be measured as precisely as possible) and various endpoints such as natural fertility, semen quality, hormone levels, etc... is of the utmost importance.

Updated knowledge in this domain should help the andrologist, gynecologist, occupational physician or the general practitioner, as well, to improve counseling and management of their patients, notably those trying to have a child.
High vulnerability of the male reproductive function to a number of lifestyle / man made factors

Occupational exposure

Lifestyle

Environmental exposure

Working and living with poison: The DBCP (dibromochloropromane) story

- Lesions of the seminiferous tubules
- Changes in sex-ratio (↑ female)
- Irreversible azoospermia or severe oligozoospermia
- Decreased motility
- Hormonal Changes
- Embryonic/fetal injuries? few cases studied

What are the factors involved?
In humans, 5 categories of factors may theoretically interfere with male reproductive function:

- Genetic factors
- Physical factors: Radiation, temperature, ...
- Biological / clinical factors: STD ...
- Socio-cultural / lifestyle factors: stress, tobacco, ...
- Chemical factors: Industrial and or agricultural chemical compounds

Chemical exposures

- Constant increase of chemical compounds in use since the 2nd World War
- >10^6 compounds known
- ~10^5 products used in the industrial/agricultural world

Endocrine Disruptor Compounds (EDc)
What are the reproductive risks in men occupationally exposed?

The problem of identifying an association between a single factor and fertility

Reproductive health

Likelihood of pregnancy within the shortest possible period of time

Varicocele

Occupational exposure

Welding

What type of solder?

What metals?

Radiation effect?

Duration of exposure?

Semen characteristics

Ovulation quality

Chronic psychological stress

taking potentially reprotoxic medication

The problem of identifying an association between a single factor and fertility

Reproductive health

Likelihood of pregnancy within the shortest possible period of time

Varicocele

Occupational exposure

Welding

What type of solder?

What metals?

Radiation effect?

Duration of exposure?

Semen characteristics

Ovulation quality

Chronic psychological stress

taking potentially reprotoxic medication

Occupation and male reproduction: Study design(s)

Exposed

Unexposed

MARKERS OF EXPOSURE

ENDPOINTS

Infertility duration

ART results

Sexuality

Hormone levels

Semen quality

Sperm DNA

ENDPOINTS

Quality of conceptus

Time to pregnancy

Cases

Controls

Patient consulting for infertility

Partner of pregnant women/Sperm donor

ADJUSTMENT OF DATA

Cases

Controls

Patient consulting for infertility

Partner of pregnant women/Sperm donor

Basic course on Environment and Human Male Reproduction ESHRE PRE-Congress Course / Rome 2010
Occupational exposure and semen quality

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Semen quantity and quality by current blood lead concentration [median [range], crude and adjusted OM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current blood lead concentration (ppb)</td>
<td>0-9.5</td>
</tr>
<tr>
<td>Volume (mL)</td>
<td>2.7 (2)</td>
</tr>
<tr>
<td>Sperm concentration (10^6/ml)</td>
<td>2.1 (2)</td>
</tr>
<tr>
<td>Total sperm count (x10^9)</td>
<td>92 (1)</td>
</tr>
</tbody>
</table>

Adjusted OM (50)

Adjusted OM (60)

<table>
<thead>
<tr>
<th>p Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.05</td>
</tr>
</tbody>
</table>

Bonde et al., 2002

Occupational exposure to pesticides in Guadeloupe: Semen quality and hormones

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Semen characteristics Unexposed (n=6) Exposed (n=22) Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume seminal (mL)</td>
<td>3.8 (1.7)</td>
</tr>
<tr>
<td>Concentration (10^6/ml)</td>
<td>90 (85)</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>42 (12)</td>
</tr>
<tr>
<td>Morphology (%)</td>
<td>14 (7.0)</td>
</tr>
<tr>
<td>Vitality (%)</td>
<td>54.1 (21.0)</td>
</tr>
</tbody>
</table>

Hormones

Testosterone (ng/ml)	m (p<0.05)	M (p<0.05)	0.921
Estradiol B (pg/ml)	170 (72)	168 (57)	0.070
FSH (mIU/ml)	6.3 (4.4)	5.8 (4.1)	0.052
LH (mIU/ml)	4.7 (1.9)	5.4 (2.6)	0.359

Multigner et al., 2008
1/ Mr L.: Arborist and infertile: pesticides used

<table>
<thead>
<tr>
<th>Active compound</th>
<th>Reprotoxic category</th>
<th>Banned in</th>
<th>Year/ Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-DX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-MCPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminotriazole</td>
<td>Tox dev cat 3 (UE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitraz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. N. A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td></td>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>Bitertanol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bupirinate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captane</td>
<td></td>
<td></td>
<td>2007</td>
</tr>
<tr>
<td>Carbaryl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinomethionate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyproconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diflubenzaron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dithianon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>Anti-androgenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNOC</td>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doguadine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenarimol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenazaquin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenoxycarbate</td>
<td>Reprotox (US-TR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flusilazole</td>
<td>Reprotox cat 2 (UE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>EU cat 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoxaben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mancozebe</td>
<td>Reprod & dev toxicant (US-TRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraquat</td>
<td></td>
<td></td>
<td>2007</td>
</tr>
<tr>
<td>Phosmet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propargite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tebufenozide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiophanate methyl</td>
<td>Dev tox (CA & US-TRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triadimefon</td>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamidothion</td>
<td>2003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2/ Mr L.: Intermittent exposure to pesticides and semen quality

![Graph showing exposure levels and semen quality](image)

Year / Months: Auger, unpublished

2/ Mr L.: Intermittent exposure to pesticides and semen quality

![Graph showing exposure levels and semen quality](image)

Year / Months: Auger, unpublished

Occupational exposure to glycol ethers:
Semen quality and hormones

<table>
<thead>
<tr>
<th>Non-exposed n = 30</th>
<th>Exposed n = 68</th>
<th>Mean difference (95% CI)</th>
<th>Adjusted p</th>
</tr>
</thead>
<tbody>
<tr>
<td>sperm concentration (million/mL)</td>
<td>3.7</td>
<td>4.1</td>
<td>-0.3 (-0.6 to 0.0)</td>
</tr>
<tr>
<td>viable sperm count (million)</td>
<td>118.1</td>
<td>78.6</td>
<td>40.5 (35.0 to 46.0)</td>
</tr>
<tr>
<td>"a" = sperm motility (%)</td>
<td>18.4</td>
<td>72.8</td>
<td>54.0 (44.0 to 64.0)</td>
</tr>
<tr>
<td>normal sperm morphology (%)</td>
<td>34.2</td>
<td>47.1</td>
<td>71.8 (61.8 to 81.8)</td>
</tr>
</tbody>
</table>

Semen hormones

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Non-exposed ng/mL</th>
<th>Exposed ng/mL</th>
<th>Mean difference (95% CI)</th>
<th>Adjusted p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>6.2</td>
<td>6.3</td>
<td>0.1 (-0.2 to 0.6)</td>
<td>0.79</td>
</tr>
<tr>
<td>Estradiol</td>
<td>3.8</td>
<td>5.5</td>
<td>-1.7 (-3.0 to -0.4)</td>
<td>0.02</td>
</tr>
<tr>
<td>DHEA-Sulfate</td>
<td>27.0</td>
<td>21.5</td>
<td>8.5 (-19.5 to 9.5)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

*GH: Lh, follicle stimulating hormone; DHEA: dehydroepiandrosterone.
*Calculated using analysis of variance; covariates to adjust for age, smoking variables, and season of semen sample.
*Calculated using analysis of variance; covariates to adjust for age and basic mass index.

Multigner et al., 2007

Page 29 of 105
Self-reported occupational exposure and semen quality in men consulting for couple's infertility

<table>
<thead>
<tr>
<th>Total (n=66)</th>
<th>Men with normal semen (n=58)</th>
<th>Men with subnormal semen (n=8)</th>
<th>p value</th>
<th>Adjusted OR</th>
<th>Adjusted p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO99 sperm reference values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational exposure to organophosphorus compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (n=66)</td>
<td>49 (35.3)</td>
<td>41 (63.2)</td>
<td>8 (12.8)</td>
<td>0.006</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Organophosphorus compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>25 (62.8)</td>
<td>21 (77.8)</td>
<td>4 (14.3)</td>
<td>0.005</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>108 (17.7)</td>
<td>101 (64.6)</td>
<td>7 (37.8)</td>
<td>0.001</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Flame retardants</td>
<td>18 (15.9)</td>
<td>15 (86.1)</td>
<td>3 (16.8)</td>
<td>0.002</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Plasticizers</td>
<td>9 (2.2)</td>
<td>6 (67)</td>
<td>3 (33.3)</td>
<td>0.009</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Vegetable fatty acids</td>
<td>20 (2.2)</td>
<td>15 (75)</td>
<td>5 (25)</td>
<td>0.009</td>
<td>7.4 (6.8-15.2)</td>
</tr>
<tr>
<td>Other fatty acids</td>
<td>20 (2.2)</td>
<td>15 (75)</td>
<td>5 (25)</td>
<td>0.009</td>
<td>7.4 (6.8-15.2)</td>
</tr>
</tbody>
</table>

De Fleurian et al., 2009

Occupational exposure and sperm DNA

<table>
<thead>
<tr>
<th>Physical occupational factors</th>
<th>Total (n=66)</th>
<th>Men with normal semen (n=58)</th>
<th>Men with subnormal semen (n=8)</th>
<th>p value</th>
<th>Adjusted OR</th>
<th>Adjusted p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic fields</td>
<td>25 (62.8)</td>
<td>21 (77.8)</td>
<td>4 (14.3)</td>
<td>0.005</td>
<td>7.4 (6.8-15.2)</td>
<td>0.005</td>
</tr>
<tr>
<td>Mechanical vibrations</td>
<td>94 (17.7)</td>
<td>78 (64.6)</td>
<td>16 (12.8)</td>
<td>0.001</td>
<td>7.4 (6.8-15.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Excess heat</td>
<td>25 (62.8)</td>
<td>21 (77.8)</td>
<td>4 (14.3)</td>
<td>0.005</td>
<td>7.4 (6.8-15.2)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Sánchez-Peña et al., 2004

Occupational exposure to organophosphorus and abnormal sperm chromatin

Relationship between the urinary concentration of diethylthiophosphate (DETP) and the level of denatured sperm DNA

- **P value:**
 - DFI (mean): 0.477, 0.026
 - DFI (SD): 0.1628, 0.022
 - % DFI: 0.000062, 0.079

Sánchez-Peña et al., 2004
Occupational exposure to styrene and abnormalities of sperm DNA

- 44 workers exposed to styrene for at least 2 years
- 27 unexposed workers
- Exposure in 3 geographically distinct factories
- No difference in routine semen characteristics
- Differences on sperm DNA by the comet assay

Migliore et al., 2002

<table>
<thead>
<tr>
<th>% fragmented DNA</th>
<th>Olive tail moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>10.9 (3.0)</td>
</tr>
<tr>
<td></td>
<td>1.5 (0.6)</td>
</tr>
<tr>
<td>Unexposed</td>
<td>7.4 (2.3)</td>
</tr>
<tr>
<td></td>
<td>0.8 (0.4)</td>
</tr>
<tr>
<td>p</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Male occupational exposure hormone levels and fertility

Olive tail moment

Occupational lead exposure and TTP

<table>
<thead>
<tr>
<th>Time period</th>
<th>Exposed control</th>
<th>Exposed treated</th>
<th>20-39 μg/dl</th>
<th>40-59 μg/dl</th>
<th>60-89 μg/dl</th>
<th>90-119 μg/dl</th>
<th>≥120 μg/dl</th>
<th>Missing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>44 (2.0)</td>
<td>10 (0.8)</td>
<td>9.1 (9.7)</td>
<td>18.2 (11.0)</td>
<td>3.4 (0.7)</td>
<td>0.2 (0.0)</td>
<td>0.3 (0.0)</td>
<td>0.1 (0.0)</td>
<td>49 (0.1)</td>
</tr>
<tr>
<td>4 weeks</td>
<td>43 (2.0)</td>
<td>11 (1.0)</td>
<td>8.3 (9.7)</td>
<td>18.2 (11.0)</td>
<td>3.4 (0.7)</td>
<td>0.2 (0.0)</td>
<td>0.3 (0.0)</td>
<td>0.1 (0.0)</td>
<td>49 (0.1)</td>
</tr>
<tr>
<td>6 weeks</td>
<td>42 (2.0)</td>
<td>11 (1.0)</td>
<td>8.3 (9.7)</td>
<td>18.2 (11.0)</td>
<td>3.4 (0.7)</td>
<td>0.2 (0.0)</td>
<td>0.3 (0.0)</td>
<td>0.1 (0.0)</td>
<td>49 (0.1)</td>
</tr>
<tr>
<td>12 months</td>
<td>23 (0.0)</td>
<td>11 (1.0)</td>
<td>8.3 (9.7)</td>
<td>18.2 (11.0)</td>
<td>3.4 (0.7)</td>
<td>0.2 (0.0)</td>
<td>0.3 (0.0)</td>
<td>0.1 (0.0)</td>
<td>49 (0.1)</td>
</tr>
</tbody>
</table>

Joffe et al., 2003

Basic course on Environment and Human Male Reproduction ESHRE PRE-CONGRESS COURSE / ROME 2010
• FSH positively associated with exposure

RESULTS

Exposed workers had a significantly increased risk of:
- reduced sexual desire OR = 3.9, 95% CI: 1.8–8.6
- erectile difficulty OR = 4.5, 95% CI 2.1–9.8
- ejaculation difficulty OR = 7.1, 95% CI 2.9–17.6
- reduced satisfaction with sex life OR = 3.9, 95% CI 2.3–6.6

Li et al., 2010
Two direct/indirect factors at work:

- Heat exposure
- Chronic Stress

Heat exposure

Impact of heat exposure at work on semen characteristics
- Posture at work and sperm concentration
 Hjollund et al, 2002
- Posture at work and sperm morphology
 Figa-Talamanca et al, 1996
 Auger et al, 2001

Role of lifestyle factors
- Improvement of semen quality by nocturnal scrotal cooling
 Jung et al, 2001
- Sperm characteristics of endurance trained cyclists
 Gebreegziabher et al, 2004

Psychological stress at work and delayed TTP

OBJECTIVE:
The aim of this study was to explore an association between psychosocial stress in married male workers of a large Korean petrochemical enterprise and TTP

RESULTS:
After adjustment for confounding effects of life-style characteristics and benzene exposure, delayed TTP was associated with one standard deviation (SD) increase of the effort-reward ratio in the chronically stressed group of married men (OR = 0.47; 95% CI = 0.22-0.99)

Lee et al., 2009
Male Occupational Exposure

- Able to alter sperm production and quality?
- Factor increasing time to pregnancy?
- Involved in early miscarriage?
- Involved in sperm DNA damage?
- Genetic/Epigenetic/Phenotypic alterations in the offspring?

The risk of infertility depends on:

- To how many chemicals the man is exposed
- Is there any protection?
- The duration of exposure (how many hours?)
- The frequency of exposure: daily? weekly? with possible prolonged alternance periods (farmers)
- From how many years the man is exposed?

It also depends on his medical history, current health status, various lifestyle factors,... and ... the same is true for the female partner

In practice? for the andrologist/occupational physician

- For any worker potentially exposed, living with a female partner and having a child project
- Question +++ on the duration of infertility (evaluated similarly to a TTP)
- Check-up by andrologist recommended
- For a given exposure with recommended measures of protection, assess the degree of effective protection in order to contribute in reducing at best the potential male reproductive hazards
- Vigilance +++ for any exposure(s) suspected to provoke sperm DNA damage
Reviews

Literature cited

Reviews

Literature cited

Reviews

Literature cited

Endocrine disrupters and semen quality

Marieta Fernández
Biomedical Research Center
University of Granada,
University Hospital, Granada, Spain

Rome, Italy
June, 2010

Overview

• Background
• EDs: Mechanisms and classes
• Human health effects of EDs
• Human exposure to EDs
• Lessons learned and implications

Background

News Release

Government of Canada Takes Action on Another Chemical of Concern: Bisphenol A

OTTAWA, - The Honourable Tony Clement, Minister of Health, and the Honourable John Baird, Minister of the Environment, today announced that the Government is taking action to protect the health of Canadians and the environment from another chemical of concern.
The Precautionary Principle:

...the Government of Canada is proposing to reduce bisphenol A (BPA) exposure in infants and newborns by the following actions:

1. To ban polycarbonate baby bottles
2. To develop stringent migration targets for BPA in infant formula cans
3. To work with industry to develop alternative food packaging and develop a code of practice
4. To list BPA under Schedule 1 of the Canadian Environmental Protection Act.

Background

- Scientific community has the feeling that systems for environmental protection have failed....

- Medical community has the feeling that things are not as good as expected....

*Prague Declaration on Endocrine Disruption
http://www.edenresearch.info/public/PragueDeclaration.pdf

Table 2

Table 2: Levels of DDTs [ng/g placenta extracts]

| Pesticide | Mean* | ± SD | Median* | Maximum* | Frequency (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dieldrin-DDE</td>
<td>1.02</td>
<td>1.47</td>
<td>0.50</td>
<td>6.66</td>
<td>59.00</td>
</tr>
<tr>
<td>dieldrin-DDT</td>
<td>2.37</td>
<td>2.90</td>
<td>1.78</td>
<td>28.29</td>
<td>96.03</td>
</tr>
<tr>
<td>ΣDDTs</td>
<td>5.28</td>
<td>3.28</td>
<td>3.69</td>
<td>31.50</td>
<td>99.33</td>
</tr>
</tbody>
</table>

* ng/g of placenta.
Organohalogens in placenta and in human milk

Inadvertent exposure to POPs

In total, the nine subjects carried:

- 76 chemicals linked to cancer in humans or animals (average of 58)
- 96 chemicals that are toxic to the brain and nervous system (average of 66)
- 86 chemicals that interfere with the hormone system (average of 50)
- 79 chemicals associated with birth defects or abnormal development (average of 55)
- 77 chemicals toxic to the immune system (average of 53)

Body Burden

Exposure monitoring (biomonitoring)
Definition

Endocrine Disrupter:
An exogenous substance that alters functions of the endocrine system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub)populations.
Mechanisms of Action of EDs

- Mimic or block hormone-receptor binding
- Alter hormone production, metabolism, excretion
- Modify hormonal transport or carrier protein
- Change hormone/receptor gene transcription activity
- Alter receptor levels in specific tissues

Mechanisms of action EDs

- Receptor binding
 - ER, AR, AhR, GR, (agonists and antagonists)
- Enzyme inhibition
 - Steroidogenesis, thyroid peroxidase
- Enzyme induction
 - CYP450s, thyroxine conjugation
- Signal transduction pathways
 - Phosphatases/kinases, transcrip factors

Classes of EDs

- Fungicides: Vinclozoin, Ketaconazole
- Herbicides: Atrazine
- Insecticides: DDT, Methoxychlor
- Metals: Tributyltin, Cadmium
- Pharmaceuticals: Ethynyl Estradiol
- Phenols: Bisphenol A
- Plastizizers: Phthalates
- Polyaromatic Hydrocarbons: PCBs, dioxin
- Soy Products: Genistein
- Surfactants: Alkylphenol Ethoxylates, PFOS
- Flame retardants: PBDEs
Sources of Exposure

- Farming, livestock and forestry practices
- Industrial chemicals
- Waste incineration
- Sewage discharge
- Human and industrial waste
- Consumer products
- Food
- Pharmaceuticals

Exposure scenario in ED

How are humans exposed to EDs?

Exposure occurs mainly through diet but also in an occupational setting

- Food, Water, Indoor air, Dust, Soil

Timing and duration of exposure

- Children: Pregnancy and Lactation
Exposure to PCBs & Dioxins

PCBs were used since 1929 in various electrical applications.

While no PCBs are longer produced, they can be found in older electrical installations and marine sediments.

Dioxins are produced as a by-product during paper manufacturing, incineration and production of chlorinated aromatics.

These compounds are very persistent and continue to cycle in the environment.
Exposure to PCBs

Mean concentrations in woman adipose tissue

<table>
<thead>
<tr>
<th>PCBs ng/g</th>
<th>OH-PCBs ng/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.631</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Spanish National Plan for PCB elimination
A census of 250,000 Tm

Exposure to OBrs

Brominated flame retardants (BFRs) used in polymers and textiles and applied in construction materials, furniture, and electronic equipment.

BFRs with the highest production volume are:
- polybrominated diphenyl ethers
- tetra- and penta-bromobiphenyl (TBBP-A)
- hexabromocyclododecane (HBCD)

Inadvertent exposure to PBDEs and PBBs

PBDEs and PBBs in the adipose tissue of women from Spain

Exposure to OFs

Perfluorinated chemicals (PFCs), used since the 1950s, designed to repel grease and water in:

- Stain-resistant coatings such as Scotchgard and Stainmaster for carpets, couches, and other upholstered furniture and automobile seat
- Water-repellent like Gore-Tex

Exposure to phthalates

Phthalates have been widely used as plasticizers in many products since the 1930s.

- Found in plastic wrap, PVC, vinyl flooring, and ink used to print on plastic containers.
- High levels of DEHP in some products used in vehicles like brake pads, serpentine belts and tires.
- Phthalates are used in some cosmetics and some packaging.

Phthalates in perfumes and cosmetics
More than 1.2×10^6 Tons/year of Bisphenol A (BPA) are produced in the EU.

BPA is used in epoxy resins and polycarbonate plastic. It is an additive in acrylic and vinylic resins and in synthetic rubber, as well as in many other products: inks, toners, brake fluids…

Beside BPA, Bisphenol-F, Bisphenol A-F, Bisphenol-S, Bisphenol-C, BADGE and Bis-GMA are bisphenols of concern.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Concentrations of BPA (ug) and aliphatic alcohols in adipose tissue samples</th>
<th>ug/L</th>
<th>(nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA</td>
<td>1220.975 4.51 0.01 0.04 0.06 0.08 0.10</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BAD</td>
<td>320(13.4) 1.7 1.76 1.83 1.85 1.87 1.89</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BADF</td>
<td>230(118.1) 3.7 4.6 4.68 4.74 4.80 4.84</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BAPF</td>
<td>230(118.1) 3.7 4.6 4.68 4.74 4.80 4.84</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BSA</td>
<td>230(118.1) 3.7 4.6 4.68 4.74 4.80 4.84</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BADGE</td>
<td>230(118.1) 3.7 4.6 4.68 4.74 4.80 4.84</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
<tr>
<td>BIS-GMA</td>
<td>230(118.1) 3.7 4.6 4.68 4.74 4.80 4.84</td>
<td>6.8</td>
<td>1.74 1.72 1.70</td>
</tr>
</tbody>
</table>

*OSF: 1000-pico-seconds exposure of irradiation (PMN: 0.001% of FEF)
Exposure to alkylphenols

Detergents contain surfactants, such as nonylphenol, used to improve cleaning.

Alkylphenols are also used as carriers for some pesticides to make the pesticide stick to the plant.

They are used as plasticizers and UV stabilizers in plastics.
Exposure to UV-filters

Benzophenone-3 (BP-3)
Octyl-methoxycinnamate (OMC)
3-(4-methylbenzylidene) camphor (4-MBC)

...once they are absorbed by the skin they modify hormone levels

Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans

Some putative outcomes in humans

- Urogenital malformations (male)
- Impaired spermatogenesis (male)
- Breast cancer (female)
- Sexual maturation (female)
- Endometriosis (female)
- Sex ratio
- Immune effects
- Prostate and thyroid carcinogenesis
Working Hypothesis

The exposure to environmental pollutants (EDs) may cause diseases in humans:

Several studies indicate that semen quality has been declining during the past half century in industrialized countries, with remarkably geographical variations.

Epidemiology

- Epidemiology studies show a strong evidence of association between persistent organic pollutants (PCBs, DDE, TCDD, PFOA,..) and abnormal sperm quality, especially on motility.

 …while other effects (sperm count and morphology, or testicular function) are less convinced.

Clinical Observation

- Exposure to ED, during fetal life, may contribute to the increased in male reproductive health problems.

- Decrease in anogenital distance among male infants with prenatal phthalates exposure.
The distribution in the concentration of 1,2,3,4,7,8-HCDD in maternal milk is completely different (Denmark or Finland), maybe related with different incidence of male reproductive disorders.

Shen et al., (2008), Human Reprod 23(1): 201-10
Krysiak-Baltyn et al., Int J Androl 2009.

Clinical Observation

Exposure scenario in ED

- Multiple exposure
- “Low doses”
- During large periods of time
- Delay of effects against time of exposure
- Health problems cause by multiple factors

Exposure scenario in ED

- **The association remains elusive**

 - The hypothesis cannot be tested on the basis of individual compounds

 - A comprehensive study of all possible EDs --metabolites, isomers and congeners would be an ideal approach
Exposure scenario in ED

Synergetic, additive, and/or antagonistic interactions between chemicals and hormones should be considered

Different methods have been proposed by Soto and coworkers, Kortenkamp and coworkers, and others to overcome the unpredictability of xenoestrogen interactions.

Challenge for epidemiology

Take account of specific exposure scenario relevant to adverse health effects

Low level exposure to large numbers of chemicals

Total Effective Xenoestrogen Burden (TEXB)

Biomarker of exposure to mixtures of xenoestrogens

- Goes beyond the quantification of environmental estrogens
- Measures the biological activity resulting from xenoestrogens
- Biomarkers in a continuum of disease development
Higher TEXB-alpha: a risk factor for genital tract malformations

Objective: To determine whether the combined effect of environmental estrogens measured as the total effective xenoestrogen burden is a risk factor for cryptorchidism and hypospadias

Prospective cohort study with 668 boys recruited at the time of delivery between October 2000 to June 2002.
- A nested case-control study was selected.
- 50 cases and 114 controls.

OR = 2.82 (95% CI = 1.10-7.24)
For values above detection limit (DL= 0.5 pM Ee/g placenta) compared with values below DL
Mean values were not statistically significant different: 3.92 ± 9.12 and 2.08 ± 7.19 pM Ee/g plac, for cases and controls

Research questions

- What are the chemical classes and their potencies?
- What are the dose-response characteristics in the low-dose region?
- Are testing guidelines adequate?
- What extrapolation tools are needed?
Research questions

• How does exposure take place?
• What are the major sources and fates?
• What are the cumulative effects of exposure?
• What effects are occurring in populations?
• How can unreasonable risks be managed?

Thank you
Secular trends in Timing Puberty and Role for Environmental Exposures
Anders Juul

Genetic influence on menarcheal age

Pubertal timing depends on:
• Genetic factors (no single "puberty" gene)
• Environmental/lifestyle factors
 • Fat mass?
 • Insulin resistance?
 • Dietary factors?
 • Physical fitness?
 • Psychological factors?

Definition of Precocious Puberty
Development of secondary sexual characteristics < 8 years

Etiology
Central (CPP)
 Idiopathic (ICPP)
Peripheral (PPP)
 Organic (OCPP)
Premature thelarche
Premature adrenarche
Hypothyroidism
Incidence and prevalence of precocious puberty in Denmark

![Graph showing incidence and prevalence of precocious puberty in Denmark.](image)

Prevalence: 20-23 per 10,000 girls

Increasing incidence of Precocious Puberty in Denmark

<table>
<thead>
<tr>
<th>Studies</th>
<th>Year</th>
<th>DK population</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thamdrup</td>
<td>1961</td>
<td>4.5 mio</td>
<td>3-4 per year</td>
</tr>
<tr>
<td>Teilmann</td>
<td>2002</td>
<td>5.3 mio</td>
<td>50-70 per year*</td>
</tr>
</tbody>
</table>

Methods and materials

Registry from Department of Growth and Reproduction in the period 1993-2009 on the following patient categories (ICD10 codes):
- Precocious Puberty (DE228A)
- Premature thelarche (DE308A)
- Premature adrenarche (DE270B)
- Early pubertal variant (DE301)
Epidemiological studies of menarche

Timing of pubertal growth spurt

- 149,992 girls born between 1930 and 1969 included
- Annual health examinations including height in Copenhagen Municipality were computerized.
- 135,223 girls fulfilled criteria for determination of OGS and PHV.

Mathematical modelling of pubertal growth
Timing of pubertal growth spurt

Secular trend in timing of pubertal growth spurt

Obesity and secular trend in puberty timing
The COPENHAGEN Puberty Study - GIRLS

Age (years)
Probability of B2

2006-08 (9.88 yrs)
1991-93 (10.88 yrs)

P<0.0001

The COPENHAGEN Puberty Study - GIRLS

Age (years)
Probability of menarche

2006-08 (13.13 yrs)
1991-93 (13.42 yrs)

P=0.023

CONCLUSION

1. GIRLS
 Marked earlier breast development (1 year) in Danish girls from 1991 to 2006
 - effect of BMI

2. BOYS
 Slightly earlier testicular growth (0.35 years) in Danish boys from 1991 to 2006.
 + effect of BMI

3. Secular changes must be attributed to environmental factors (i.e. non-genetic)
Lifestyle Factors as Indicators of Male Reproductive Function

Sally Perreault Darney, Ph.D.
Basic course on environment and human male reproduction
ESHRE, June 27, 2010, Rome

Are Lifestyle factors associated with semen quality?

- Factors (amount of evidence)
 - Smoking (+++)
 - Alcohol (++)
 - Caffeine (+)
 - Obesity (+)
 - Drugs* (who me?)
 - Mobile phones (+)
 - Stress (+)

- Endpoints (amount of evidence)
 - Sperm count/conc (+++)
 - Sperm motility (++)
 - Quality of motion (+)
 - Sperm morphology (++)
 - Sperm DNA damage (+)
 - Sperm chromosome abnormalities (+)

Smoking & Semen Quality

Is smoking an independent risk factor for poor semen quality or fertility?
- If so, then doctors can advise patients accordingly and with confidence ("Quit smoking and your sperm count will improve.")
- Evidence is extensive for lower sperm numbers and plentiful for morphology and motility, but inconsistent in findings, with some studies showing associations and some not (Collodel et al. 2010; Vine et al., 1994)

Impact may depend on both amount of exposure (# cigarettes/day) and duration (pack years)

Lifestyle factors may co-occur. Additive or synergistic?
- Smoking and drinking? ("Pub" lifestyle, Rubes et al., 1998)
- Abuse of alcohol and drugs? Unhealthy lifestyles, poor nutrition.
- Smoking and vitamin C (protective?)
Context: Environmental Exposures

Does smoking change the relationship between an exposure and an outcome?
- If so, then it needs to be considered a confounder in environmental or occupational studies
 • E.g. Air pollution + cigarette smoke share physical/chemical properties
- Challenge: Impact likely small in both cases and hard to distinguish

Biological Plausibility

• Cigarette smoke contains:
 – Poly-cyclic aromatic hydrocarbons that can be metabolized to carcinogenic intermediates
 – Cadmium
 – Particles resulting from combustion (not unlike air pollution)
 – Nicotine
• Creates hypoxia (CO)
• Could have acute or chronic effects on testis/sperm

Are men with inherently poor semen quality more susceptible to effects of smoking?

• Collodel et al., 2010, evaluated effects of smoking in men with idiopathic infertility but without other risk factors (screened for genetics, alcohol & drug abuse, occupational exposures or health factors).
• And were either smokers or never smoked.
• Smokers classified: Cigs/day: 1-10 (mild), 11-20 (moderate) or >20 (heavy).
• Ultrastructure, and routine semen measures
• Infertile men differed from a control group, i.e., men with normal semen quality (WHO), but within the infertile group, smokers did not differ from non-smokers except for sperm concentration and a Fertility Index which were reduced in the heavy smokers only.
Are fertile men less susceptible to smoking and other lifestyle exposures?

The “Healthy Men Study” (HMS)
- Partners of pregnant women in a pregnancy outcome study
- Exposure of interest: Disinfection byproducts (DBPs) in drinking water
- Men lived in community with low DBPs, or high chlorinated DBPs or high brominated DBPs.
- Exposure carefully characterized
- Semen: Count/conc., morphology, and DNA damage (SCSA-%DFI) and immaturity (SCSA-%HDS)
- No differences were found based on DBP exposures (Luben et al, 2007), adjusting for other factors.

Analysis of Lifestyle Exposure factors in HMS

Smoking: current, former or never: 0, 1-10, or >10 cigarettes/day, and # years smoked (0, 1-5, 6-10 and >10). Pack years: #/day /20 x #years.

Alcohol: calculated based on average # drinks [beers (12 oz), wine (4 oz) and hard liquor (1oz)] and categorized by # drinks/week: 0-7, 8-15 and >15.

Caffeine: Based on Coffee (and other caffeinated drinks), mg caffeine/day was calculated and categorized: none, >0 to 150 (low), >150-300 (moderate) and >300 (high = 3 cups coffee).

Statistical Analysis in HMS

Lifestyle exposure factors were examined (controlling for study site, age, income, education, abstinence interval, history of chronic or serious illness, body mass index (BMI), with other study exposures (smoking, alcohol, caffeine) as potential confounders.

Multiple linear regression was used to estimate associations of each lifestyle exposure factor and each outcome. Full model (with all covariates) was evaluated for each covariate and only those that changed the parameter estimate of the exposure variable by at least 10% were retained. Age, sexual abstinence, income and study site were retained as obligate, along with any factor that met the criteria for confounding.

Semen outcomes were also dichotomized when possible for logistic regression: percent normal forms at <15%; and, SCSA %DFI at >30% according to the literature.
HMS: Characteristics

- 229 men from 3 study sites
 - Young: 25-34 years of age (70%)
 - White, non-hispanic (84%)
 - Most college educated with income >$40K
 - Overweight or obese by BMI (73%)
 - Smokers: 16% (vs. 23.4% nationally)
 - Former smokers: 16%
 - Only 2 men smoked >1 pack/day
 - Non-drinkers (29%) or <1 drink/day (55%) with only 6% heavy drinkers (>14 drinks/week)
 - Caffeine consumers (83%) with 26% ingesting >300mg/day

HMS semen quality: Better than most published cohorts

- Mean concentration: 110 mil/ml
- Mean count: 348 mil
- Mean % normal forms: 14
- Mean % DFI: 19
- Mean % HDS: 8

HMS examined independent effects of lifestyle exposures

- **Current smoking** was not associated with semen decrements, even SCSA %DFI. Previous smoking (>30 days ago) was associated with improved semen quality (unexplained).
- **Drinking** was not associated with semen decrements; on the contrary light to moderate drinking appeared to be protective for some outcomes.
- **Caffeine intake** was weakly associated with fewer normal forms
BMI and semen quality in the HMS

- **Excess body fat** is thought to alter the endocrine balance which could impact sperm production and function but very few studies have examined the impact of BMI on semen quality.
- A few studies found BMI associated with decrements in semen measures (e.g. Kort et al., 2006; Hammoud et al., 2008) while others did not (e.g. Aggerholm et al., 2007)
- Among HMS volunteers, nearly half were overweight (BMI 25-29.9) and 25% were obese (BMI >30)

Obesity was not a risk factor in HMS

- After controlling for confounders and other factors, BMI was not associated with semen decrements; rather obese men had higher sperm concentrations.
- HMS participants, in general, appear to have healthy lifestyles with fewer smokers than the general population and few heavy drinkers in this cohort.
- Perhaps this combination of healthy living contributes to their above average semen quality even though, as a group, they are overweight.
- The literature on obesity is limited and more studies, including those that evaluate both semen quality and hormone profiles, will be needed to explain discrepant findings across existing studies.

Are some men more susceptible than others? What about susceptibility genes?

- A negative association between air pollution and DNA damage (SCSA DFI) was more significant when men were stratified by GSTm1 genotype.
- Men with GSTm1 null genotype were more susceptible than those with the normal gene (and enzyme) to air pollution-induced DNA damage. (Rubes et al., 2007).
- Other semen outcomes were not significantly associated with air pollution or genotype. Results were comparable with or without smoking in the model.
Conclusions

• A number of lifestyle exposure and metabolic factors may impact male reproduction, either singly or together.
• It is difficult to detect significant impacts of any one factor against a backdrop of exposures from other factors and from exogenous environmental exposures to man made chemicals.
• New exposure factors such as cell phones also have the potential to disrupt male reproduction.
• Very little is currently known about the mechanisms behind observed associations, how lifestyle factors may interact, and whether some men are inherently more vulnerable than others.
• The HMS findings show that, on average, men in this fertile cohort have above average semen quality and below average consumption of cigarettes and alcohol.

References cited:

• Rubes J, Selevan SG, Sram RJ, Everson DP and Perreault SD GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res. 2007; 625:20-28.
Disclosures

• I have received lecture honoraria from Eli Lilly, Merck-Serono, Novo Nordisk Pharma, and Pfizer during the past year
• The studies have been supported by grants from
 – EU, Envir. Reprod. Health, Expored, Eden, DEER
 – Academy of Finland
 – Pediatric Research Foundation
 – Sigrid Juselius Foundation
 – Turku University Hospital

Cryptorchidism: classification
Incidence of cryptorchidism

• Congenital cryptorchidism
 – Increasing trends in some countries
 – Diagnostic controversies
• Acquired cryptorchidism (ascending testis)
• Orchiopexy rate

Material (Cohort study)

• All newborn boys of volunteer mothers (born 1997-1999 in Turku, n=1455, 1997-2001 in Copenhagen, n=1046)
 – Questionnaire during pregnancy
 – Clinical examinations
 • All boys: At birth and at 3 months of age
 • Cases and controls: Also at 18 months of age
 – Biological samples
 • Blood sample around 10 - 15 gestational weeks
 • Placenta
 • Breast milk (4-8 weeks after birth)
 • Blood sample at 3 months of age
Case-control study

- All boys with genital malformations and healthy control boys of volunteer mothers (born in TUCH 1.1.1997 - 28.2.2002)
 - Questionnaire after birth
 - Clinical examinations
 - At birth, at 3 months of age and at 18 months of age
 - Biological samples
 - Blood sample around 10 - 15 gestational weeks
 - Placenta
 - Breast milk (4-8 weeks after birth)
 - Blood sample at 3 months of age

Prevalence of cryptorchidism

Risks related to cryptorchidism

- Testicular cancer
 - 4-5 fold risk; 5-7 % of testis cancer patients
 - Age at treatment may or may not modify risk
- Infertility
 - 35-50 % of bilateral, 10-20 % of unilateral
 - Lower age at treatment decreases the risk
Incidence of cryptorchidism (%) and testicular cancer (n/100 000) in Finland and Denmark

Prevalence and risk of cryptorchidism at expected date of delivery

<table>
<thead>
<tr>
<th></th>
<th>No cryptorchid/ no examined</th>
<th>Prevalence %</th>
<th>Odds Ratio (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Denmark</td>
<td>Finland</td>
<td>Denmark</td>
</tr>
<tr>
<td>BW < 2500g</td>
<td>9/40</td>
<td>5/29</td>
<td>22.5</td>
</tr>
<tr>
<td>BW ≥ 2500g</td>
<td>8/106</td>
<td>30/1425</td>
<td>8.4</td>
</tr>
<tr>
<td>GA < 37 wk</td>
<td>13/60</td>
<td>4/61</td>
<td>21.7</td>
</tr>
<tr>
<td>GA ≥ 37 wk</td>
<td>8/188</td>
<td>10/1394</td>
<td>2.2</td>
</tr>
<tr>
<td>WGA < -2SD</td>
<td>6/39</td>
<td>2/26</td>
<td>15.4</td>
</tr>
<tr>
<td>WGA ≥ -2SD</td>
<td>8/180</td>
<td>33/1425</td>
<td>8.7</td>
</tr>
</tbody>
</table>

BW = birth weight, GA = gestational age, and WGA = weight for gestational age

SGA and risk of cryptorchidism

- Finland: total hospital cohort
 - Relative risk of cryptorchidism in boys being SGA:
 3.0 (95% CI 1.7-5.5), p=0.002
 (at the expected date of delivery)
Trends in cryptorchidism

In 1964, Scorer CG. Arch Dis Child.

Incidence of acquired cryptorchidism

- 1.1 – 2.2 % between 6-13 years; Hack et al. Arch Dis Child 2007; Sijstermans et al. Int J Androl 2008
- 0.3 – 0.6 % between ½ - 3 years; Wohlfahrt Veje et al. Int J Androl 2009
- Cumulative 7 % at 2 years; Acerini et al. Arch Dis Child 2009

Phases of testicular descent

Toppuri et al. Mol Cell Endo 2006
Regulation of InsI3

- expression in fetal and adult Leydig cells
- indirect regulation by LH (Leydig cell effect)

Inhibin and FSH

Suomi et al. JCEM 2006
LH

- Severe cryptorchidism
- Control

Testosterone

- Severe cryptorchidism
- Control

Androgen bioactivity

Raivio et al., JCEM 2003
Hormone levels in cryptorchidism

- At 3 months, boys with severe cryptorchidism have:
 - Elevated LH and FSH levels
 - Low inhibin B levels
 - Unmeasurable testosterone bioactivity
 - Normal testosterone levels
 - Decreased INSL-3 levels
- These findings point to primary testicular failure associated with cryptorchidism.

Risk factors

- Small for gestational age
- Prematurity
- Impaired glucose tolerance during gestation
- Alcohol with no lower limit
- Exposure to estrogenic and anti-androgenic compounds

Abnormal maternal glucose metabolism and cryptorchidism

- 1,163 singleton newborn Finnish boys with normal testicular descent
- 125 newborn singleton Finnish boys with cryptorchidism
- Information about abnormality of maternal glucose metabolism during pregnancy was obtained from hospital records after delivery.
Prevalence of diet-treated gestational diabetes

Diet-treated GDM cryptorchid boys vs. controls

OR=3.98* (95% CI 1.97 – 8.05)
*adjusted for maternal age >39 years at delivery, maternal smoking during pregnancy, prematurity, weight for gestational age

Virtanen et al. JCEM 2006

Alcohol and risk of cryptorchidism

Drinks per week

Damgaard et al., Environ. Health Perspect. 2007

Chemical signatures in Danish and Finnish breast milk samples
Typical dioxin profiles in Danish and Finnish breast milk samples

Pesticides in Human Breast Milk

Results

<table>
<thead>
<tr>
<th>Pesticides</th>
<th>Cryptorchidism (n=62)</th>
<th>Normal (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p,p'-DDE</td>
<td>p,p'-DDT</td>
</tr>
<tr>
<td></td>
<td>97.3 (51.6-152.4)</td>
<td>4.6 (3.3-6.6)</td>
</tr>
<tr>
<td></td>
<td>13.6 (10.2-19.3)</td>
<td>10.6 (7.9-13.5)</td>
</tr>
<tr>
<td></td>
<td>6.9 (4.1-10.8)</td>
<td>4.1 (2.4-5.6)</td>
</tr>
<tr>
<td></td>
<td>4.5 (3.3-6.6)</td>
<td>2.5 (1.9-3.2)</td>
</tr>
<tr>
<td></td>
<td>2.5 (1.9-3.2)</td>
<td>2.2 (1.6-3.0)</td>
</tr>
</tbody>
</table>

Medians (25-75 percentiles)
p = 0.03
Polybrominated flame retardants

Main et al., EHP 2007

LH / free testosterone ratio and mEP μg/L

Main et al, EHP 2006

Change in serum hormone levels with 10-fold increase of phthalate

- mEP, mBP: +15, +8 % SHBG
- mBP: -15% free testosterone
- mMP, mEP, mBP: +26, +19, +18 % LH /free testosterone ratio
- miNP: +97% LH

Main et al, EHP 2006
Pesticides and cryptorchidism

- Cryptorchid boys in Denmark and Finland show a higher exposure to the sum of 8 most prevalent pesticides than the normal boys (Damgaard et al., Environ. Health Perspect. 2006)

Phthalates and cryptorchidism

- Fetal exposure of rats to high doses of dibutyl phthalate causes cryptorchidism (Mahood et al., Int. J. Androl. 2006)
- In human, high exposure to phthalates is associated with a decreased anogenital distance (Swan et al. Environ. Health Perspect. 2005) and a high LH/testosterone ratio (Main et al., Environ. Health Perspect. 2006)

Polybrominated diphenyl ethers

- Concentration of PBDEs is higher in breast milk of cryptorchid boys than in controls
- This difference is not present in placenta samples that have also much lower PBDE levels

Main et al., Environ. Health Perspect. 2007
Rate of hypospadias

Toppari et al., 2001 (based on ICBDMS 1991; Paulozzi et al., 1997)

Hypospadias: Classification

Distal hypospadias

Proximal hypospadias
The birth rate of hypospadias in Turku
University Central Hospital 1997-1999

The birth rate of hypospadias:
Finland versus Denmark

Prevalence of hypospadias in
Finnish and Dutch cohorts
Testicular Dysgenesis Syndrome

Environmental factors

Testicular dysgenesis

Genetic defects

Disturbed Sertoli cell function

Impaired germ cell differentiation

Testicular cancer

↓ Semen quality

Decreased Leydig cell function

Cryptorchidism

Steroidogenic enzymes

Hypospadias

Androgen/Ins3 insufficiency

Altered gene activity after anti-androgen exposure

Summary

- Prevalence of cryptorchidism and hypospadias shows large regional and temporal variation, suggesting environmental connection
- Both disorders can be found in some cases of TDS
- Risk of cryptorchidism is associated with the levels of several endocrine disrupters in breast milk
Acknowledgments

• University of Turku
 – Helena Virtanen
 – Saku Pakarinen
 – Anne-Maarit Suomi
 – Marko Kaleva

• Supported by
 – EU, Envir. Reprod. Health, Expored, Eden, DEER
 – Academy of Finland
 – Pediatric Research Foundation
 – Sigrid Juselius Foundation
 – Turku University Hospital

• Rigshospitalet, Copenhagen
 – Niels E. Skakkebæk
 – Katharina M. Main
 – Kirsten Boisen
 – Ida Norgil Damgaard

• Inst. Health and Welfare, Kuopio
 – Hannu Kiviranta
 – Terttu Vartiainen

• GSF, Munich
 – Heqinq Shen
 – Karl-Werner Schram

References

Mark your calendar for the upcoming ESHRE campus workshops!

- **Basic Genetics for ART Practitioners**
 organised by the SIG Reproductive Genetics
 16 April 2010 - Porto, Portugal

- **Array technologies to apprehend developmental competence and endometrial receptivity: limits and possibilities**
 organised by the Task Force Basic Science in Reproduction
 22 April 2010 - Brussels, Belgium

- **The management of infertility – training workshop for junior doctors, paramedics and embryologists**
 organised by the SIG Reproductive Endocrinology, SIG Embryology and the Paramedical Group
 26-27 May 2010 - Kiev, Ukraine

- **Preimplantation genetic diagnosis: a celebration of 20 years**
 organised by the SIG Reproductive Genetics
 1 July 2010 - Rome, Italy

- **EIM 10 years’ celebration meeting**
 organised by the European IVF Monitoring Consortium
 11 September 2010 - Munich, Germany

- **The determinants of a successful pregnancy**
 organised by the SIGS Reproductive Surgery, Early Pregnancy and Reproductive Endocrinology
 24-25 September 2010 - Dubrovnik, Croatia

- **Basic training workshop for paramedics working in reproductive health**
 organised by the Paramedical Group
 6-8 October 2010 - Valencia, Spain

- **Forgotten knowledge about gamete physiology and its impact on embryo quality**
 organised by the SIG Embryology
 9-10 October 2010 - Lisbon, Portugal
Keep an eye on our calendar section for more information on

Upcoming events

- **Female and male surgery in human reproductive medicine**
 8-9 October 2010 - Treviso, Italy

- **Promoting excellence in clinical research: from idea to publication**
 5-6 November 2010 - Thessaloniki, Greece

- “Update on pluripotent stem cells (hESC and iPS)” and hands on course on “Derivation and culture of pluripotent stem cells”
 8-12 November 2010 - Valencia, Spain

- **Women’s health aspects of PCOS (excluding infertility)**
 18 November 2010 - Amsterdam, The Netherlands

- **Endoscopy in reproductive medicine**
 24-26 November 2010 - Leuven, Belgium

- **Fertility and Cancer**
 25-26 November 2010 - Bologna, Italy

- **The maternal-embryonic interface**
 2-3 December 2010 - Valencia, Spain

- **GnHR agonist for triggering of final oocyte maturation – time for a paradigm shift**
 3 December 2010 - Madrid, Spain

- **Raising competence in psychosocial care**
 3-4 December 2010 - Amsterdam, The Netherlands

www.eshre.eu
(see “Calendar”)

Contact us at info@eshre.eu