

1 ESHRE recommendations on Good 2 Practice in the IVF laboratory

3 Authors

4 The ESHRE Good practice in the IVF lab working group, Gemma Arroyo¹, Amy Barrie²,
5 Giovanni Coticchio³, Thomas Ebner⁴, Jackson Kirkman-Brown⁵, Nathalie Le Clef⁶, Kersti
6 Lundin⁷, Cristina Magli⁸, Marina Quesada Martinez⁹, Maria José de los Santos Molina¹⁰, Kelly
7 Tilleman¹¹, Ioannis Sfontouris^{12,13}.

8

9 Affiliations

10 ¹ Department of Gynecology, Obstetrics and Reproduction. Dexeus University Hospital, Barcelona,
11 Spain.

12 ² FutureLife, Prague, CZ.

13 ³ IVIRMA, Rome, Italy.

14 ⁴ Department of Gynecology, Obstetrics, and Gynecological Endocrinology, Kepler University, Linz,
15 Austria.

16 ⁵ Centre for Human Reproductive Science, School of Medical Sciences, College of Medicine & Health,
17 University of Birmingham, Birmingham, UK.

18 ⁶ European Society of Human Reproduction and Embryology, Belgium.

19 ⁷ Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg,
20 Göteborg, Sweden.

21 ⁸ SISMER Reproductive medicine unit, Bologna, Italy.

22 ⁹ Next Fertility, Murcia, Spain.

23 ¹⁰ IVF laboratory, IVIRMA, Valencia, Spain.

24 ¹¹ Department of reproductive medicine, Ghent University Hospital, Ghent, Belgium.

25 ¹² Hygeia IVF – Embryogenesis, Athens, Greece.

26 ¹³ Medical School, University of Nicosia UNIC Athens, Greece.

28

29 **Abstract**

30 **STUDY QUESTION:** What is the currently good practice in the IVF laboratory, based on the best
31 available evidence in the literature if available, and the expertise of the working group?

32 **SUMMARY ANSWER:** The updated ESHRE Recommendations on Good Practice for the IVF
33 laboratory provides recommendations on all activities in the IVF laboratory.

34 **WHAT IS KNOWN ALREADY?** The previous version of this document was published in 2015.
35 After more than a decade, a thorough review and update was needed.

36 **STUDY DESIGN, SIZE, DURATION:** This document was developed according to a predefined
37 methodology for ESHRE good practice recommendations. The working group reviewed the
38 document of 2015, and based on this assessment, each group member updated one or more
39 sections. Recommendations are supported by data from the literature, if available, and the
40 expertise of the working group and discussed until consensus was reached within the working
41 group.

42 **PARTICIPANTS/MATERIALS, SETTING, METHODS:** The working group included 10 members
43 representing the ESHRE Special Interest Groups for Embryology, Safety and Quality, and
44 Andrology, with different areas of expertise and representing different European countries and
45 settings. Based on the available evidence and the expertise of the working group,
46 recommendations were formulated.

47 **MAIN RESULTS AND THE ROLE OF CHANCE:** The ESHRE IVF labs working group updated the
48 recommendations on the general organization of an IVF laboratory (staffing and direction,
49 quality management, laboratory safety), and on the specific aspects of the procedures
50 performed in IVF laboratories (Identification of patients and traceability of their reproductive
51 cells, consumables, handling of biological material, oocyte retrieval, sperm preparation,
52 insemination of oocytes, scoring for fertilisation, embryo culture and transfer, cryopreservation
53 and emergency procedures). The section on embryo culture and transfer was split up, the
54 section on sperm preparation was expanded to cover all general andrological procedures and
55 a new section on biopsy procedure was introduced.

56 **LIMITATIONS, REASONS FOR CAUTION:** Not all recommendations are supported by evidence.
57 Other recommendations published in legal documents and relevant and recent documents,
58 manuals and consensus papers were taken into account when formulating the
59 recommendations.

60 **WIDER IMPLICATIONS OF THE FINDINGS:** The guideline group is confident that this document
61 will be helpful to directors and managers involved in the management and organisation of IVF
62 laboratories, but also to embryologists and laboratory technicians performing daily tasks.

63 **STUDY FUNDING/COMPETING INTEREST(S):** The guideline was developed by ESHRE, who
64 funded the guideline meetings, literature searches and dissemination of the guideline. The

65 guideline group members did not receive any financial incentives; all work was provided
66 voluntarily. GC is a full time employee of IVIRMA Italia. TE reports consulting fees from Nexpring
67 Health and Esco Medical and speaker's fees from Nexpring Health and Esco Medical. JKB
68 reports research grants from Bayer Consumer Health and Evotec, Consulting fees from Bayer,
69 Evotec and Balance Fertility, Speakers fees from Merck, Theramex, IBSA, Ferring and Cooper
70 Surgical, and salary or position funding from Gates Foundation and NIHR. KL reports consulting
71 and speaker's fees from Merck. KT reports speaker's fees from Vitrolife group (eFertility),
72 FujiFilm and Cooper Surgical. IS reports speakers fees from Vitrolife and Cooper Surgical. The
73 other authors disclosed no conflicts of interest.

74 **Introduction**

75 The ESHRE Recommendations on Good Practice in IVF Laboratories serve as a comprehensive
76 guide to all procedures performed within the IVF laboratory, aiming to promote the highest
77 standards of safety, quality, and effectiveness in medically assisted reproduction (MAR).
78 Originally published in 2008 and subsequently updated in 2015, these guidelines have evolved
79 in response to ongoing scientific advancements, technological innovations, and the changing
80 regulatory landscape.

81 Since their inception, the recommendations have been developed through extensive literature
82 review and expert consensus, establishing themselves as a valuable resource for MAR
83 laboratory professionals. The adoption of new procedures and technologies has led to
84 significant improvements in laboratory outcomes, while the introduction of updated European
85 legislation has necessitated further revision of IVF laboratory procedures to ensure compliance
86 and best practice.

87 This latest edition brings together the expertise of the ESHRE working group, integrating the
88 most recent scientific evidence, stakeholder feedback, and regulatory developments. The
89 document systematically lists and describes all relevant laboratory procedures, supporting
90 harmonisation of practices across different settings and fostering continuous improvement in
91 patient care.

92 By providing clear, evidence-based recommendations, these guidelines are intended to assist
93 laboratory directors, embryologists, technicians, and all members of the IVF team in delivering
94 high-quality, patient-centred care. The present updated recommendations aim to promote
95 excellence, safety, and accountability, ensuring that IVF laboratories remain at the forefront of
96 innovation and best practice in MAR.

97 This Good Practice Recommendations paper was published before the 6th edition of the EDQM
98 guidance was published. However, the working group tried to take changes in the EDQM
99 guideline into account based on the stakeholder version of the 6th edition. The 6th Edition will

100 be aligned with the new regulation and that compliance with this guide will equal compliance
101 with the regulation.

102 **Methodology**

103 The current document was developed according to the manual for development of ESHRE
104 Good Practice Recommendations (Vermeulen et al., 2019).

105 A working group was composed of members of the ESHRE Special Interest Group (SIG)
106 Embryology, Safety and Quality, and Andrology, ensuring representation of different
107 laboratory expertise, and geographical balance, supported by a methodological expert (NLC).
108 In the first meetings, the working group reviewed the topics that were covered in the 2015
109 version of the guideline and missing topics were identified. A literature search of
110 PUBMED/MEDLINE and Cochrane library was performed. Papers published up to 13 January
111 2026 were included. All titles and abstracts were screened to identify relevant papers, for
112 which full text papers were collected and summarized. At working group meetings, the
113 evidence and draft recommendations were presented by the assigned working group member
114 and discussed until consensus was reached within the group.

115 Abbreviations used throughout this article are listed in [Supplementary Table S1](#).

116 **Results**

117 **1. Staffing and direction**

118 Personnel are one of the most important parts of an IVF laboratory. An IVF laboratory is both a
119 diagnostic and therapeutic laboratory service unit, and an integral part of the process of
120 assisted reproduction. Appropriate human and logistic resources should provide an adequate
121 climate to perform all laboratory tasks in a timely and safe manner, to ensure patient safety and
122 quality care. The number of laboratory staff should reflect the number and complexity of tasks
123 assigned to the embryologists at the specific clinic (see more in 1.4), including duties such as
124 administration, training, education, quality management, witnessing and communication.
125 Leave after weekend rotas, parental leave, illness etc. also needs consideration in the number
126 of staff. A minimum of two qualified clinical embryologists is always recommended in every
127 laboratory, irrespective of the size and workload.

128 The hierarchical laboratory organisation depends on staff size. Larger facilities can delegate
129 responsibilities to different staff levels, e.g. supervisors, clinical embryologists, laboratory
130 technicians and administrative personnel (2015).

131 **1.1 Laboratory director**

132 The laboratory should be directed by a person with officially recognised qualifications and
133 expertise in clinical embryology and biological/medical sciences. In accordance with the ESHRE
134 certification programme, this would include a higher academic degree (MD, MSc, PhD) with a

135 minimum of 6 years of documented human embryology experience, and preferably attainment
 136 of the ESHRE senior clinical embryologist certification (ESHRE Working Group on Embryologist
 137 Training Analysis et al., 2023, Kovačić et al., 2020) or similar. The laboratory director should also
 138 participate in CPD (Continuing Professional Development) programs.

139 Laboratory directors should be able to evaluate and interpret the significance of medical and
 140 laboratory findings, and communicate them to laboratory staff members, clinical colleagues,
 141 patients and the public. They should proactively seek clinical and scientific updates, promote
 142 science and participate in clinical studies and research, where possible.

Laboratory director responsibilities include ensuring:

- Selection and implementation of the most adequate materials and procedures to reach the highest standards in clinical IVF.
- Maintenance of, and safe and appropriate laboratory facilities and equipment according to European and/or national regulations.
- Implementation of a quality management system (QMS), including trouble-shooting.
- Implementation of a laboratory risk management and prevention policy.
- Sufficient laboratory staff members with the appropriate skills.
- A comprehensive orientation and introduction programme for all new staff members.
- Management of laboratory staff training and continual scientific and biomedical education.
- Implementation and review of key performance indicators (KPIs) for all laboratory procedures for quality control and quality assurance purposes.
- Involvement in inspections from authorities and internal/external audits.
- Reporting of clinical data and adverse events (biovigilance) according to European and/or national regulations.
- Where relevant, participating in authorisation and application of substances of Human origin (SoHO) preparation processes.
- Where relevant, participating in approval of research projects by competent authorities.

143

144 **1.2 Laboratory supervisors/manager**

145 Some laboratories may require additional managerial positions, working in close collaboration
 146 with the laboratory director. These require specific qualifications, e.g. at least a BSc in
 147 biomedical sciences, 3 years of documented human embryology experience and preferably
 148 attainment of the ESHRE clinical embryologist certification or similar.

Laboratory manager/supervisor responsibilities could include ensuring:

- Efficient organisation of daily work of their areas of responsibility.
- Effective communication with laboratory staff and clinical colleagues.
- Continuous improvement work.
- Structured training of staff members and students.

149

150 1.3 Clinical embryologists

151 Clinical embryologists represent the first line of participation in daily clinical practice. These
 152 positions require at least a BSc in biomedical sciences. New staff should follow a structured
 153 training programme supervised by experienced clinical embryologists.

154 Clinical embryologists with 3 years of experience should endeavour to apply for the ESHRE
 155 clinical embryologist certification, whereas those with higher degrees and 6 years of experience
 156 should endeavour to apply for the ESHRE senior clinical embryologist certification.

Clinical embryologist responsibilities include:

- Adherence to and execution of standard operating procedures (SOPs).
- Documentation of all relevant clinical and laboratory data (database management).
- Participation in organisation of daily practice.
- Communication with both patients and other healthcare professionals.
- Contribution to laboratory clinical decisions.
- Training of staff members and students.

157

158 All procedure should be performed by experienced practitioners who are skilled in general
 159 embryology and micromanipulation, after appropriate training and following SOPs.

160 Detailed recommendations on embryo biopsy training are outlined in the ESHRE
 161 recommendation paper (ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group
 162 et al., 2020).

163 1.4 Number of staff

164 Performance and safety of the IVF laboratory is dependent upon the number and competence
 165 of staff. Some IVF laboratories may be handling only routine *in vitro*
 166 fertilisation/intracytoplasmic sperm injection (IVF/ICSI) cycles, others all complex treatment
 167 cycles such as embryo biopsies, gamete donation or fertility preservation. It is also different
 168 between clinics and countries whether the andrology lab is included in the IVF lab and handled
 169 by the embryologists, or separate and run by other staff (technologists) (Shirasawa and Terada,
 170 2025).

171 The time needed for embryologists to perform standard tasks was calculated in a study from
172 Spain by Veiga *et al.* (Veiga *et al.*, 2022), with Spanish working conditions as the example and
173 based on the calculation that a full-time person works 214 days per year. In the study, a full-
174 time clinical embryologist (8 hours/day) was recommended for every 119 IVF/ICSI cycles with
175 time-lapse (TL) culture per year, although always with a minimum of two persons for back-up
176 reasons. For the andrology laboratory a full-time person was needed for every 549 annual
177 semen samples (diagnostic or therapeutic). On top of this comes the laboratory director
178 (+possibly a coordinator/manager). (For a complete overview of the numbers, please see
179 (Veiga, *et al.*, 2022)). In the review by Shirasawa and Terada 2025, it was found that the most
180 common standards for minimum staffing for embryologists was 2-3 for up to 150 cycles, 3-4
181 for up to 300 cycles, 4-5 for up to 600 cycles, and then one additional embryologist for each
182 150-200 additional cycle (Shirasawa and Terada, 2025).

183 However, it is important to take into account the fact that all laboratories have different set-
184 ups of staff, and different logistics and workflow. It is therefore recommended that
185 laboratories perform their own calculations of the number of staff needed to run a safe,
186 efficient and high performing laboratory, based on their actual organisation and day-to-day
187 processes. These calculations should be documented for quality and inspection purposes.
188 There are several published tools to aid in these calculations (for example (Alikani *et al.*, 2014)
189 and https://asebir.com/cassandra-calculadora-de-rrhh/?idioma_cassandra=en).

190 **1.5 Continuing education**

191 Over four decades after the first IVF cycles, the procedures and timelines involved in completing
192 a cycle have become dramatically more complex. Techniques such as ICSI, extended embryo
193 culture, TL imaging, vitrification, testicular and embryo biopsies, as well as comprehensive
194 quality management and witnessing systems, have all been incorporated into routine practice.
195 At the same time, regulatory requirements, technological and informatics competencies, and
196 the volume of necessary documentation and reporting have increased substantially.

197 It is vital that an embryologist learn not only the practical “how’s” but also the theoretical
198 “why’s” of the processes being performed. Some countries have formalized structured training
199 including theoretical parts, while many others rely on in-house training (Nijs *et al.*, 2025).
200 Additional and continuous training is of great importance, such as workshops.

201 One of the drawbacks of clinical embryology is the lack of regulation concerning the criteria
202 required to be a specialist in the field in many countries. In fact, clinical embryology is practiced
203 by a wide variety of professionals who have trained in very different disciplines, including
204 biology, medicine, pharmacy, veterinary science, etc. (Kovačić *et al.*, 2015). Trainees should
205 begin with a solid academic background in biological or biomedical sciences, followed by a
206 formal, written training plan that includes observation, supervised performance, and
207 progressive responsibility. Training activities should be logged in detailed records (logbooks)
208 documenting the number and type of procedures performed and reviewed by a senior
209 embryologist or laboratory director. Competence validation is mandatory before independent

210 work—this involves parallel assessments, direct observation, and demonstration of consistent
 211 technical proficiency across a minimum number of procedures (typically 30–60 supervised ART
 212 cycles, depending on the skill). Mentorship and structured feedback throughout this process,
 213 ensuring that each step from observation to autonomy is evidence-based and recorded is
 214 considered good practice. Periodic evaluations are required to confirm readiness for
 215 independent practice, and laboratories should maintain defined experience thresholds for
 216 different professional levels (trainee, junior, senior, supervisor). ESHRE provides a CPD
 217 program via campus courses and an e-learning platform (<https://www.eshre.eu/Education>).

218 **2. Quality management**

219 According to the SoHO regulation (European Parliament, 2024, European Committee on Organ
 220 Transplantation), establishing, maintaining and updating a quality management system (QMS)
 221 is mandatory. IVF laboratories should designate one or more persons to design, implement and
 222 revise a QMS, so called quality managers.

223 The requirements of the QMS cover personnel and organisation, premises, equipment and
 224 materials, documentation, change control, complaints, recall, quality review, and so on. The
 225 QMS should be documented and designed to assure quality safety and effectiveness of our
 226 processes. It should incorporate risk management principles and written procedures of all
 227 critical processes which need to be reviewed systematically in light of new knowledge and
 228 significant changes to processes should be identified and verified or validated. Good
 229 documentation is an essential part of the QMS and hence a document control system should
 230 be established to ensure that documentation is complete, current, accurate and easily available
 231 to all staff.

232

The QMS should include at least the following:

2.1 The provision for unique identification of patients and their reproductive cells and tissues.

Traceability records, whether maintained electronically or in handwritten form, should be clearly readable, permanent, securely stored, and readily accessible. Data should be electronically captured and validated; manual transcription should be double-checked.

In absence of regulation stating otherwise, these records should be maintained securely for 30 years; critical materials and equipment data should be retained for at least 10 years.

2.2 A documentation system for dealing with non-conformities, emergencies, incidents, adverse events or reactions and complaints.

Non-compliances should be analysed, and appropriate corrective and/or preventive actions (CAPA) should be identified. Non-conformities should be discussed with the teams regularly to highlight learning points and reviewed at least annually with the laboratory management.

2.3 Procedures to address the withdrawal of release or (temporary) restriction of reproductive material in case of a recall or serious adverse events/reactions. Monitoring of performance indicators (PIs) which are objective and relevant, regularly checked and discussed, and communicated to all staff. PIs can be based on a reference patient group with good prognosis, as well as on the whole patient population. Appropriate statistics can be used to account for patient variation, and the number of previous treatment cycles patients may have already undertaken. Critical performance levels should be defined for each PI with reference to national data and European registry data collected by the European IVF-monitoring programme for ESHRE. If necessary, appropriate action should be taken.

In addition to laboratory and clinical performance, operator performance should be checked regularly to ensure competence, compliance and consistency, via direct observation of procedural skills (DOPS) and/or individual PIs. Retraining should be implemented after a longer period of absence (e.g. a longer parental or sick leave).

2.4 Participation to Internal Quality Control (IQC) and External Quality Assurance (EQA) programmes, either commercial or in collaboration with other laboratories, at least for diagnostic semen laboratories. These records should be maintained and reviewed, including documentation of results and any corrective action.

2.5 A risk-based change-control system to describe steps to be taken to plan, record, analyse and implement changes in the IVF-laboratory.

2.6 An audit system, both internal and external, to verify compliance of all procedures with SOPs and requirements. And any findings, corrective actions and their effectiveness should be documented.

2.7 A documented validation of all critical processes and the qualification of all critical equipment used in these processes.

2.8 A documented risk assessment strategy to identify, evaluate and mitigate risks to ensure the protection of donor, recipients and children born from MAR. Several risk management tools are available such as hazard analysis and critical control points analysis (HACCP), Root cause analysis (RCA), Failure mode and (critical) effects analysis (FME(c)A), EuroGTII tool, and the EDQM microbiological risk of contamination assessment tool (MiRCA). Since there is no obligation to use a specific tool and since each tool has its specificities and possibilities to assess risks, it is recommended to document which tools are used in which scenarios in your IVF-laboratory.

QMS reviews should be performed periodically with the aim of having an overall review of the whole system ideally every three years to verify the

consistency and appropriateness of the QMS. This so-called quality management system review will consider the review of all critical QMS items, define trends and identify risks for the QMS.

233

234 3. Laboratory safety

235 3.1 Laboratory design

236 Laboratory design should ensure optimal workflow over minimal distances while handling
237 reproductive cells during all treatment phases.

238 The IVF laboratory should have adequate functionalities to minimise any damaging effects upon
239 reproductive cells and tissues. At any time, laboratory design should ensure aseptic and optimal
240 handling of reproductive cells and tissues (Council of Europe, 2022).

241 Ideally, the laboratory should be adjacent to the operating room where clinical procedures are
242 performed in order to ensure optimal workflow over short distances. Technical facilities as well
243 as staff and storage rooms should be physically separated from the laboratory reserved for the
244 procurement, processing and release of human cells and tissues. A separate laboratory with a
245 safety fume hood should be provided for analyses using fixatives and other toxic reagents.
246 Cryopreservation storage facilities need special precautionary measures and should be safely
247 located outside but close to the laboratory.

248 In a scenario of newly constructed or renovated laboratories sufficient time should be
249 scheduled for off-gassing of construction materials (Cairo Consensus Group, 2020). In any case,
250 critical equipment should be qualified, appropriate in number and fit for its purpose (European
251 Commission, 2022).

252 Special attention should be given to workplace ergonomics and operator comfort to provide an
253 effective and safe working environment that minimises the risk of distraction, fatigue and
254 thereby making a mistake due to human error (Rienzi et al., 2015). Taking into account local,
255 national and European occupational health and safety requirements, such considerations
256 should include adequate work space per person, bench height, adjustable chairs, microscope
257 eye height, efficient use of space and surfaces. Sufficient environmental lighting and air-
258 conditioning with controlled humidity and temperature are advised.

More specifically:

- 3.1.1 Materials used in laboratory construction, painting, flooring and furniture should be appropriate for clean room standards, thus, minimising Volatile Organic Compounds (VOC) release and embryo toxicity.
- 3.1.2 Laboratory access should be restricted to authorised personnel. Entry of non-specialist staff should be documented.
- 3.1.3 A double door system for clean access of personnel and materials to the laboratory is recommended.

3.1.4 Staff should be provided with a dedicated space for changing into laboratory clothing and washing hands before entering the laboratory.

3.1.5 The area for cleaning and sterilisation of materials should be separate from the laboratory.

3.1.6 If possible, systems connected to main water and drainage should be outside of the laboratory due to potential infection risks associated with standing water.

3.1.7 Separate office space for administrative work should be available outside the laboratory. (Barrese et al., 2014)

3.1.8 Potential distractors, such as private cell phones should be removed from the laboratory. (de los Santos and Ruiz, 2013)

259

260

3.2 Laboratory air quality

3.2.1 To optimise environmental conditions, laboratory air should be subjected to high-efficiency particulate air (HEPA) and VOC control.

3.2.2 Positive pressure is recommended to minimise air contamination. Air conditioning should ensure a sufficient number of fresh air changes. (Cairo Consensus Group, 2020)

3.2.3 Procedures involving gamete or embryo manipulation should be performed in a controlled environment. Background and processing air quality should comply with national and European guidelines and should be regularly monitored.

3.2.4 The level of air cleanliness in the IVF laboratory should be risk-based and regularly assessed in “at rest” and “in operation” states.

3.2.5 The microbial contamination level of the laboratory should be regularly determined. Frequency of controls and number of sampling locations should be based on a documented risk assessment.

261

262

3.3 Laboratory equipment

3.3.1 The laboratory should contain all essential items required for IVF and ICSI, in a number appropriate to the workload. Critical items of equipment should be in duplicate.

3.3.2 The incubator number is critical and should be based on the number of cycles and embryo culture duration. Gametes and embryos should be conveniently distributed across incubators to minimise door openings.

3.3.3 Equipment should be adequate for optimal laboratory work, easy to disinfect and kept clean to avoid contamination.

3.3.4 Critical equipment should be validated to meet quality requirements and to guarantee quality assurance. This process usually is composed of design,

installation, operational and performance qualification. Measured parameters should be verified by calibrated probes and instruments.

3.3.5 Equipment should preferably be CE-marked for the intended use.

3.3.6 Gas cylinders should be located outside the laboratory. There should be an automatic change-over system and sufficient cylinders stocked for immediate replacement. High-purity/medical grade gas and inline HEPA and VOC filters are highly recommended.

3.3.7 Regular maintenance should be scheduled and documented for all critical equipment, at least according to suppliers' recommendations.

3.3.8 Heating devices, such as tube warmers or heated stages, should be in place to maintain the optimal temperature of media as well as reproductive cells and tissues during handling.

3.3.9 Accepted ranges of use for all measured parameters should be determined and monitored. If measurements are out of range, corrections should be made, documented and their effectiveness verified.

3.3.10 For every item of equipment, the instruction manual, and simplified instructions where needed, should be easily available.

3.3.11 Malfunctioning equipment should be labelled as "out-of-use" to avoid its use by mistake.

3.3.12 Critical items of equipment, including incubators and cryostorage tanks, should be continuously monitored and equipped with external alarm systems.

3.3.13 A backup power system should be in place for critical equipment.

263

264

3.4 Cryopreservation facilities and material

3.4.1 For safety reasons cryopreservation facilities should allow visible access to the interior (e.g. via a window, camera).

3.4.2 Adequate ventilation and low oxygen alarms should be installed. Personal low oxygen alarms can be used, as an additional security measure.

3.4.3 Cryostorage tanks should be continuously monitored and equipped with alarm systems, detecting and logging any out of range temperature and/or levels of liquid nitrogen (LN2).

3.4.4 Protection devices (e.g. glasses, face shield, cryogloves, apron, footwear) should be used during LN2 handling.

3.4.5 All staff dealing with LN2 should be trained in safety aspects of its use.

3.4.6 All liquid nitrogen would preferably be clinical grade.

265

266

3.5 Infectious agents

267 All MAR technologies involve handling of biological material, and pose a potential hazard of
 268 transmitting diseases to personnel and to other patients' biological material (cross-
 269 contamination).

3.5.1 Procedures to ensure personnel safety and prevent cross-contamination should be established, taking national and European safety regulations into consideration. Therefore:

- Vaccination of all personnel against hepatitis B or other viral diseases, for which a vaccine is available, is strongly recommended. (The guideline on viral infection/disease, et al., 2021) ESHRE group
- Patients should be screened for infectious diseases according to national and European regulations. (The guideline on viral infection/disease, et al., 2021) ESHRE group
- Staff should be informed when a viral-positive patient is to be treated and be aware of the risks of handling infected biological material, as well as the correct procedures of disposal. However, crude samples (such as follicular fluid and semen) and patients without serology at the time of donation (oncological patients who come for sperm freezing e.g.) should always be treated as potentially infectious.
- SOPs should be in place to manage eventualities where infection might take place, e.g. needlestick injuries.

3.5.2 To ensure adequate safety measures, the treatment of viral-positive patients should be only performed in IVF laboratories with dedicated areas and equipment. Alternatively, such patient treatments could be allocated to specific time slots provided processing of their biological materials is followed by a thorough disinfection of the allocated areas and equipment. Procedures to handle gametes from viral-positive patients are covered in the ESHRE Viral infection/disease guideline.

3.5.3 Whenever biological material is imported into the IVF laboratory from another clinic, full screening results should be obtained in advance. If any transported material is viral-positive, a dedicated dry shipper may be needed, depending on European and national regulations.

270

271 **3.6 Protective measures**

272 All body fluids (blood, follicular fluid, semen, etc.) should be treated as potentially
 273 contaminated.

Protective measures for laboratory staff to ensure aseptic conditions for gametes, embryos and tissue include:

- Strict adherence to staff hygiene regulations and aseptic techniques.
- Use of protective laboratory clothing, preferably with low particle-shedding.
- Use of hairnets and non-toxic, non-powdered gloves and masks where appropriate.
- Use of appropriate vertical laminar flow benches for handling biological material.
- Disposal of single-use consumables immediately into proper waste containers. Potentially infectious materials should be disposed of in a manner that protects staff from exposure.
- Needles, glassware and other sharps should be handled with extreme caution and discarded into sharps containers.
- Non-alcoholic disinfectants with proven compatibility and efficacy for an IVF laboratory should be used.
- Food, gum, drinks and tobacco are strictly forbidden.
- Use of cosmetics should be minimised and perfumes should be avoided.

274

275 4. Identification for patients and traceability of their reproductive cells

276 The new EU Regulation on standards of quality and safety for substances of Human origin
 277 (SoHO), published on 17 July 2024, reinforced measures to enhance traceability throughout
 278 the lifecycle of SoHO, from donation to clinical application. This means that MAR centres
 279 should fulfil, among others, with one of the key traceability provisions that consists in having
 280 systems to enable the tracking of SoHO from the donor to the recipient and vice versa, ensuring
 281 full traceability across the supply chain.

282 Traceability is defined as the ability to trace every tissue or cell from donor to recipient or
 283 offspring, and to identify all associated entities and processes—procurement, testing,
 284 processing, storage, distribution, and application.

285 A proper identification and traceability system should therefore ensure that the main
 286 characteristics of patients (or donors) and their tissues and cells, together with relevant data
 287 regarding products and materials coming into contact with them, are available at all times.
 288 With traceability, risks related to mix-ups or donor-transmitted genetic conditions can be
 289 mitigated. Moreover, reporting exercise and communication of severe adverse reaction and
 290 events between SoHo entities and/or regulatory bodies are facilitated.

291 Regular traceability audits ensure compliance and facilitate biovigilance and quality
 292 improvement. Traceability enables long-term biovigilance, including recipient follow-up and
 293 health monitoring of children born through ART treatments. All stakeholders - tissue
 294 establishments, ORHAs, MAR centers, and families - should collaborate to preserve the

295 traceability chain. The core components of an effective traceability system are the following
 296 ones:

297 **4.1. Unique Identification code**

298 Before commencing any procedure, each patient, sample, and product should be uniquely
 299 labelled throughout the process to prevent duplication across organizations. The laboratory
 300 should be provided with each patient's unique identification code which has to clearly and
 301 easily refer to the patient's documentation. Each treatment cycle should be assigned a unique
 302 code. When samples are to be distributed beyond the clinic, SoHO entities should implement
 303 a coding system that uniquely identifies each donation within the EU. Importantly this code
 304 should be machine-readable and should not reveal the identity of the donor. This is also
 305 relevant in the context of cross-border exchanges, where the complexity of maintaining
 306 traceability increases, highlighting the need for standardised global identification. Despite the
 307 existence of some gaps and challenges of using the Single European Code (SEC) (Alteri et al.,
 308 2020) its use can be very helpful in the context of surveillance and safety purposes across EU
 309 member states. Gametes and embryos from within-relationship use as well as reproductive
 310 cells and tissues of third party donation can be excluded from the SEC as long as they remain
 311 in the centre of origin.

Rules concerning the correct identification and processing of reproductive cells should be established in the laboratory by a system of codes and checks including:

- Direct verification of patient identity and correspondence with their assigned unique identification code is required at every critical step. Patients should be directly asked to give their own identifying information (at least full name and date of birth) before procurement or artificial insemination/embryo transfer.
- All devices containing biological material should be clearly and permanently labelled with the unique patient identification code.
- Biological material from different patients should not be processed in the same working area at the same time.
- Incubators and cryostorage systems should be organised to ensure easy access and identification of the biological materials therein.
- During critical steps (such as first identification of cells and tissues, each time biological material is moved from one container to another and at final destination e.g. embryo transfer, cryocontainer), double-checks by a second person (witness) and/or an electronic identification system is strongly advised.
- Products and materials used with biological materials should be traceable.
- The date and time of each manipulation and identity of all operators and witnesses should be documented throughout the treatment.

These records should be kept for a specified period of time according to European and/or national legislation.

- Steps considered to be critical should be identified and documented.

312

313 4.2. Witnessing Protocols

314 Incidents may occur for a variety of reasons (de los Santos and Ruiz, 2013). Mix-ups such as
 315 incorrect embryo, sperm, or egg transfers are extremely rare but serious when they occur and
 316 translates to approximately 0.001% to 0.002% of cases (Sterckx et al., 2023).

317 To control for human errors, manual or electronic witnessing protocols are considered a best
 318 practice in assisted reproductive technology (ART) because it introduces a layer of verification
 319 that helps prevent critical errors involving patient samples management. Each laboratory
 320 should identify critical steps to be witnessed and document them. Examples can be found in
 321 (Cimadomo et al., 2016, de los Santos and Ruiz, 2013, Rienzi et al., 2017a, Rienzi, et al., 2015).

Each ART laboratory should:

- Encourage use of **standardized witnessing protocols** across all procedures and personnel to minimize variability.
- Encourage a **blame-free culture** for reporting witnessing mismatches or electronic witnessing systems (EWS) anomalies.
- Use reported cases and near misses as **training material** for continuous improvement.
- **When using EWS** take into consideration:
 - The importance of staff training to maintain **critical thinking and manual verification** skills, even with EWS in place. (Alteri et al., 2025, Gupta et al., 2020, Intra et al., 2016)
 - The creation of indicators to minimize mismatch tolerance and clear user alerts to prevent overlooked errors. (Holmes et al., 2021, Intra, et al., 2016)
 - The reiteration among team members about the **complementary role of EWS** as it does not replace human vigilance.
 - To emphasize the importance of **proper data entry and accurate sample labelling**.
 - The implementation EWS audits for **design flaws, unclear alerts, or normalization of deviation** (e.g., ignored warnings). (Rienzi, et al., 2017a, Rienzi, et al., 2015, Vujisic et al., 2024)

322

323 5. Consumables

324 5.1. Critical reagents and materials

325 Specifications of critical reagents and materials should be in compliance with European and/or
 326 national regulations and intended for IVF use. SoHO entities are mandated to mitigate risks
 327 associated with consumables that may be transferred to recipients and potentially harm their
 328 health.

- All medical devices used in the collection, processing, storage, and application of SoHO materials should comply with the stringent safety and quality standards established by the CE/Medical Device Regulation (MDR) ((EU) 2017/745).
- In-house manufactured medical devices may be used by IVF laboratories; however, under the MDR ((EU) 2017/745), health institutions may only manufacture and apply such devices internally if a comprehensive set of regulatory conditions is met.
- It is strongly recommended that consumables lacking CE/MDR are tested with an appropriate MEA/HSSA bioassay before using the materials in the clinical setting.
- It is advisable to confirm that the pH of new batches of all culture media fall within the laboratory's established acceptable range before use.

(Chronopoulou and Harper, 2015, Delaroche et al., 2024, Delaroche et al., 2020, Nijs et al., 2009, Togola et al., 2021)

329

330 IVF culture media, cryopreservation media, polyvinylpyrrolidone (PVP), sperm separation
 331 media are generally classified as a medical device Class IIa (low to medium risk), whereas
 332 mineral oil and other consumables used in IVF procedures, such as culture dishes, denudation
 333 capillaries, etc, are typically classified as Class I (low risk) medical devices as they do not include
 334 any active therapeutic or diagnostic elements. However, the specific classification can vary
 335 depending on the intended purpose and risk profile of the consumable.

336 **5.2. Consumable delivery entry control**

337 Laboratories should define criteria to accept delivered consumables. Upon receipt, the
 338 integrity of product packaging should be thoroughly inspected to ensure no compromise
 339 during shipping. Proper delivery conditions, including temperature check upon arrival are
 340 needed to assure that the cold chain has not been broken. Documentation demonstrating
 341 quality control testing should accompany all commercially supplied media and should
 342 specifically correspond to the delivered batch.

343 **5.3. Use of Sterile, Single-Use Disposables**

344 To reduce the risk of contamination and ensure consistent performance, only sterile, single-
 345 use disposable consumables should be used in ART procedures. These disposables should meet

346 regulatory sterility standards and be handled in a controlled environment. This practice
 347 minimizes the potential for introducing reprotoxic substances that could adversely affect
 348 gametes and embryos. In-house-made or sterilised devices for handling human gametes and
 349 embryos should be avoided. Tips or capillaries for pipetting devices (for handling or denudation
 350 pipettes) should be used for one procedure only.

351 **5.4. Expiry Dates and Shelf Life Management**

- All reagents, culture media, and consumables should be used within the manufacturer's stated expiry date to guarantee their efficacy and safety.
- Using products beyond their validated shelf life may compromise the viability of gametes and embryos.
- Regular inventory checks and a robust stock management system can aid in ensuring that expired products are promptly removed from use.

(2022, Malhotra et al., 2021, Vujisic, et al., 2024)

352

353 **5.5. Appropriate Packaging Size**

- Using appropriately sized containers reduces the risk of contamination and degradation by limiting exposure to air and temperature fluctuations between first and last use. This practice helps maintain the integrity of the products throughout their usage period.
- Consumables and media should be supplied in packaging that minimizes the need for repeated openings.

(Chronopoulou and Harper, 2015, Delaroche, et al., 2020, Vujisic, et al., 2024)

354

355 **5.6. Storage conditions**

- Temperature of storage rooms should comply with the manufacturer's specifications of the products.
- Refrigeration units that meet the specified temperature requirements should be available and monitored for the storage of media and reagents.
- Repeated exposure to temperature fluctuations during handling and storage should be avoided to preserve product integrity, as suboptimal storage conditions can lead to the degradation of media components, potentially impacting embryo development.

(Cairo Consensus Group, 2020, Vujisic, et al., 2024)

356

357 **5.7. Stock Management System**

358 Effective stock management contributes to the overall quality control within the laboratory as
 359 it prevents use of expired, compromised, or inappropriate materials, help to link each product
 360 batch to specific procedures, patients, or dates, support audits and compliance, optimize
 361 inventory turnover and avoid overstocking or expiration, minimizing waste and also ensure
 362 availability of critical items without delays (2022, Vujisic, et al., 2024).

363 A robust stock management system should be in place to track all media, oil, and consumables
 364 and is essential for ensuring the traceability, safety, efficiency, and regulatory compliance of
 365 all consumables, media, and reagents used in the handling of gametes and embryos.
 366 Laboratories should:

- Record key data such as the batch number (lot number), date of entry into inventory, and expiration date to ensure traceability and prevent the use of expired materials.
- Implement standardized labelling and identification protocols to further enhance the safety and efficiency of laboratory operations. (Vujisic, et al., 2024)
- Conduct regular risk assessments to ensure that all consumables and media are clearly labelled and easily identifiable. This minimizes the possibility of misuse and supports traceability and accountability in laboratory procedures.

367

368 6. Handling of biological material

6.1 Handling of biological material should be easy, simple and effective and should preferably be performed in laminar flow hoods equipped with heating stages and pre-warmed heating blocks, using aseptic techniques at all times.

6.2 Measures should be taken to ensure that oocytes and embryos are always maintained at the appropriate temperature, pH and osmolality during culture and handling. Exposure to light, toxic substances or harmful radiation should be minimised.

6.3 Buffered media (HEPES, MOPS or similar) should be kept in atmospheric air, whereas bicarbonate-buffered media should be kept in 5-7% CO₂.

6.4 Traceability should be confirmed at all times (see chapter 4).

6.5 MOPS/HEPES are preferably not used for oocyte or embryo culture. Where observations will take longer than two minutes, MOPS or HEPES (or similarly buffered solution) should be used (e.g. denudation or ICSI). Appropriately buffered medium (bicarbonate, HEPES or MOPS) should be selected based on the expected time taken for manipulation or culture as well as gas availability. (Mendola et al., 2024, Morgia et al., 2006)

6.6 Efforts should be made to reduce mechanical and shear stress on oocytes and embryos as far as possible through use of appropriately sized pipettes and minimising handling.

6.7 Oil overlay should be used for dishes whenever deemed appropriate ensuring appropriate volume and viscosity to reduce fluctuations in pH, temperature and osmolality.

6.8 Warming of pipettes and catheters for gamete or embryo handling is ineffective as the temperature loss is rapid when these consumables are removed from the source of heat. Warming of these consumables could increase the risk of release of VOCs.

6.9 Reduce blue light exposure as much as possible.

6.10 Pipetting should be undertaken using standard hand pipettes. Mouth pipetting is not recommended.

(Cairo Consensus Group, 2020)

369

370 7. General andrology procedures

371 Before starting a treatment cycle, diagnostic semen analysis should be performed according to
 372 the protocols described in the World Health Organization (WHO) laboratory manual for the
 373 examination and processing of human semen, 6th ed. (World Health Organization, 2021). The
 374 WHO Guideline for the prevention, diagnosis and treatment of infertility suggests that a single
 375 semen analysis result is sufficient, unless one or more parameters lie outside the WHO
 376 reference ranges, in which case a second should be performed after a minimum of 11 weeks
 377 (Mburu et al., 2025). In practice, sperm count and motility are the parameters vulnerable for
 378 febrile illness. Therefore, a repeat semen analysis is only necessary when sperm count or
 379 motility parameters are out of WHO reference ranges in case of febrile illness.

380 In addition, where assisted conception is planned, a test sperm preparation may also be
 381 advisable in order to confirm the most adequate insemination technique (IVF/ICSI), or method
 382 of sperm selection. Patients should be given clear instructions regarding the collection of the
 383 sperm sample (hygiene, sexual abstinence, timing, etc.). A frozen back-up sample should be
 384 requested if sperm collection difficulty on the day of oocyte retrieval is anticipated.

385 The abstinence suggested for diagnostic analysis is for sample standardisation, but increasing
 386 evidence indicates that regular ejaculation and short abstinence (<2 days) leads to sperm being
 387 exposed to lower oxidative stress and being of improved quality. Shorter abstinences may
 388 therefore have potential to improve outcomes and should be considered for most patients.
 389 Some emerging studies even suggest that consecutive ejaculates (i.e. <3h apart) may yield
 390 better sperm (Kulkarni et al., 2022), but there is currently insufficient high quality evidence to
 391 support an effect on outcome and therefore this as routine practice. Consecutive ejaculates
 392 also impact laboratory workflow, patient anxiety and comfort so outside well organised studies
 393 may be impractical. A second sample may be requested on the day of oocyte pick-up when

394 unexpected parameters are observed in the first sample.

395 Sperm preparation aims to:

- 396 - eliminate seminal plasma, debris and contaminants;
- 397 - concentrate progressively motile sperm;
- 398 - select against morphologically abnormal sperm.

399 Sperm selection is usually an additional step within, or after the preparation process, that aims
 400 to further identify and isolate sperm which are more likely to lead to fertilisation and healthy
 401 live birth. Many such suggested techniques exist, though evidence for them is limited. These
 402 are currently discussed within the ESHRE Good Practice Recommendations on Add-Ons paper
 403 (ESHRE Add-ons working group et al., 2023). Where selection procedures are utilised then the
 404 traditional concept of 'yield' of sperm is inappropriate in assessing their utility (Gallagher et al.,
 405 2023) (see also 7.9).

7.1 Temperature of heated stages and incubators should be regularly checked, even slight changes (+/- a degree Celsius) can have a considerable effect upon any observed or measured sperm motility parameters.

7.2 Semen samples should be collected into sterile, plastic containers (at least sperm-toxicity tested). The use of spermicidal condoms, creams or lubricants should be avoided.

Where men request a lubricant for masturbation, the provision of a small amount of the same oil as used for embryo-culture oil overlay in the embryology laboratory is suggested (as this will have known testing and not introduce an unknown parameter, it is also not miscible with semen so does not complicate handling procedures).

7.3 All containers used throughout the process to hold sperm or semen should be clearly labelled with the patient's identifiers. Records should also be kept of the type of container used and batch. The use of medication, fever during the previous months and completeness of the ejaculate collection should be documented.

7.4 Collection should be preferably performed in a room near the laboratory. After collection, the sample should be delivered to the laboratory as soon as possible, avoiding extreme temperatures (<20°C and >37°C).

7.5 **An identity check should always be performed upon receiving a sample from a patient.** Each laboratory should have in place a protocol to ensure the patient's identification. The patient should verbally confirm their name and date of birth with the person receiving the sample from them and sign or electronically confirm that the sample is theirs.

7.6 All semen or sperm handling steps should include appropriate laboratory witnessing and label checks, this is mandatory for the chain of custody. The time and place of collection and the time interval between collection and

analysis/preparation should be noted for semen, as should times for each subsequent processing step.

7.7 Sperm analysis and preparation should start as soon as possible when therapeutic use is intended (within 30 min if possible to perform a "wet check") as prolonged sperm exposure to seminal plasma may affect subsequent sperm quality. The seminal plasma osmolality also changes over time making sperm more prone to osmotic shock when being moved to media. (Holmes et al., 2020)

7.8 The following data on sperm preparation should be documented:

- sample origin (ejaculate/epididymal/testicular, donor/partner, fresh/frozen)
- preparation method and media used
- pre- and post-preparation sperm parameters

7.9 An appropriate sperm preparation method should be chosen according to the characteristics and origin of individual samples. The swim-up technique and discontinuous density-gradient centrifugation are historically the most frequently used and widely accepted. Any preparation method including alternative methods should be validated by the clinic to determine the optimum sperm parameters required. This will include for achieving fertilisation but later monitoring should also be in place to ensure any method selected also does not negatively impact the later pregnancy, miscarriage or live birth rates (as these are also known to be independently influenced by sperm factors). (West et al., 2022)

7.10 In case of azoospermia on the day of oocyte retrieval and in the absence of a back-up sample, alternative sperm retrieval procedures or oocyte cryopreservation should be considered.

7.11 Where the ejaculate is beneath 1.4 ml, or totally absent when 'dry orgasm' occurs then (partial) retrograde ejaculation may be suspected. If more sperm are required than available or in case of complete retrograde ejaculation, a method of sperm retrieval with bicarbonate can be used (see Supplementary Data 3). (World Health Organization, 2021) (Crich and Jequier, 1978)

NOTE: Potential treatments are available to reverse the retrograde ejaculation phenotype but are beyond the scope of this guideline (e.g.; *EAU Guidelines. Edn. presented at the EAU Annual Congress, Madrid 2025. ISBN 978-94-92671-29-5.*).

NOTE: More complex methods of maintaining urine osmolality as well as pH for improved sperm handling have been suggested but these have not as yet entered routine use or been widely tested. Older techniques involving (Okada et al., 1998, European Association of Urology, 2025) (Aust et al., 2008, Hotchkiss et al., 1954, Jefferys et al., 2012)

catheterisation of the bladder also lack robust evidence of additional benefit and require more invasive care so are not recommended for routine use.

406

407 8. Oocyte retrieval and processing

408 Oocyte are very sensitive cells, requiring rapid handling and strict control of culture conditions.
 409 Special attention should be given to keeping the appropriate physical parameters during the
 410 oocyte retrieval.

Temperature of heated stages and incubators, CO₂ and O₂ concentration of incubators should be regularly checked.

Before starting the procedure, the embryologist should verify that the patients have signed the corresponding informed consent and that the virological tests are valid.

- 8.1 An identity check before the oocyte retrieval is mandatory. Each laboratory should have in place a protocol to ensure patient's identification. The embryologist in charge of the procedure should check the patient's name and date of birth in the presence of a witness. The identity check should include the labelling of dishes and tubes in contact with the collected specimens and should be documented. The identity check should also be verified by a witness (double witnessing).
- 8.2 Appropriate equipment should be in place to maintain oocytes close to 37°C. Flushing medium, collection tubes and dishes for identifying oocytes should be pre-warmed. Media buffered to keep an appropriate pH in air should be used under strict temperature control as temperature changes in buffered media can make pH conditions unstable, with negative consequences on oocytes. Alternatively, the procedure should be performed using a gassed chamber or in media overlaid with oil. (Agarwal et al., 2022, Gatimel et al., 2020, Sciorio and Rinaudo, 2023)
- 8.3 Follicular aspirates should be checked for the presence of oocytes using a stereomicroscope and heated stage, usually at 8-60x magnification. Exposure of oocytes to light should be minimised. (Bódis et al., 2020)
- 8.4 The time between oocyte retrieval and start of culture should be minimal.
- 8.5 Timing of retrieval, number of collected oocytes, operator and witness should be documented. A record should also be kept of the lot and type of disposables and media used.
- 8.6 The oocyte retrieval rate is the ratio between the number of oocytes recovered over the number of ovarian follicles seen at ultrasound or aspirated. The expected range is 80–95% of follicles measured or aspirated in stimulated cycles. Values outside the expected range could be important to evaluate (ovarian stimulation protocol, follicle assessment, oocyte pick-up technique). (ESHRE Working Group on Ultrasound in ART et al., 2019, ESHRE Special Interest Group of Embryology and Alpha Scientists in

411

412 **9. Insemination of oocytes**

413 Oocytes can be inseminated by conventional IVF or by ICSI. The insemination/injection time
 414 should be decided based on the number of hours elapsed from ovulation trigger and/or oocyte
 415 retrieval, also keeping in mind that fertilisation will need to be checked 16-17h later (Working
 416 Group on the update of the ESHRE/ALPHA Istanbul Consensus et al., 2025).

417 There is no evidence regarding the advantages of ICSI for non-male factor infertility in terms
 418 of pregnancy outcomes, live birth rates (LBRs), and cumulative LBRs. In addition, ICSI is
 419 associated with higher costs compared to conventional IVF treatment. There may be specific
 420 treatments where ICSI is indicated, such as for thawed oocytes in pre-implantation genetic
 421 testing (PGT) cycles (ESHRE Add-ons working group, et al., 2023).

422 **9.1. Conventional IVF**

9.1.1 The number of progressively motile sperm used for insemination should be sufficient to optimise the chance of normal fertilisation. Traditionally, a progressively motile sperm concentration ranging between 0.1 and 0.5×10^6 /mL is used. Novel preparation methods such as microfluidic separation, may result in reduced concentration but superior sperm quality. Novel methods should be validated by the clinic to determine the optimum sperm parameters required for fertilisation. (ESHRE Add-ons working group, et al., 2023)

9.1.2 **An identity check before the oocyte retrieval is mandatory.** Each laboratory should have in place a protocol to ensure the identification of gametes at the time of insemination procedure. This step should also be verified by a witness (double witnessing).

9.1.3 Records should be kept of the time of insemination, the operator and the concentration of progressively motile sperm used.

9.1.4 Co-incubation of cumulus oocyte complexes and sperm is usually performed overnight, although a short co-incubation (2-4h) can be considered following internal validation. (Fan et al., 2023).

423

424 **9.2. ICSI procedure**

9.2.1 Preparation of oocytes for ICSI.

- When removing cumulus cells from oocytes, hyaluronidase concentration and exposure should be kept to a minimum.
- In order to prevent oocyte damage, pipettes with appropriate lumen size should be used and vigorous pipetting avoided.

- After denudation, oocytes should be thoroughly washed to remove traces of hyaluronidase.
- The maturation stage of the oocytes should be recorded.
- Current evidence does not suggest that denudation should be performed at a specific time between oocyte recovery and ICSI.

9.2.2 Preparation of oocytes for ICSI.

- An **identity check before the oocyte retrieval is mandatory**. Each laboratory should have in place a protocol to ensure the identification of gametes at the time of insemination procedure. This step should also be verified by a witness (double witnessing).
- Records should be kept of the injection time (start and end of the procedure) and the performing operator.
- The duration of sperm identification and immobilisation followed by injection should be minimised.
- The number of oocytes transferred to the injection dish should relate to operator's skills and sperm quality.
- During ICSI, the following points are important:
 - Only mature oocytes should be injected.
 - Oocyte morphology should be recorded. Oocyte dysmorphisms such as large perivitelline space, localised granularity and smooth endoplasmic reticulum aggregates are associated with diminished clinical success. Giant oocytes should not be injected. (Working Group on the update of the ESHRE/ALPHA Istanbul Consensus, et al., 2025)
 - Morphologically normal, motile sperm should be selected.
 - Tail membrane breakage should be posterior to the midpiece, and performed immediately before the injection of each individual oocyte.
 - Polar body should be away from the injection site.
 - Oolemma rupture should be assured prior to sperm injection.
- Appropriate temperature and pH should be maintained during injection. Viscous substances such as PVP can be used to facilitate sperm manipulation. In case of only immotile sperm cells, a non-invasive vitality test can be used to select viable sperm for injection.
- After injection, oocytes should be washed prior to culture.

9.2.3 Artificial oocyte activation is currently not recommended for routine clinical use. It is however recommended for complete activation failure (0% 2 pronuclei (PN)), very low fertilization (<30%), or globozoospermia

(ESHRE Add-ons working group, et al., 2023)

10. Scoring for fertilisation

10.1 Fertilisation assessment should be performed under high magnification (at least 200x), using an inverted microscope equipped with Hoffman or equivalent optics (or a suitable time-lapse microscopy device), in order to verify pronucleus (PN) number and morphology.

10.2 All inseminated or injected oocytes should be examined for the presence of PN and polar bodies at 16-17h post insemination (time suggested in case of static observation) in both conventional IVF and ICSI cases. For conventional IVF, cumulus cells should be removed and fertilised oocytes transferred into new dishes containing pre-equilibrated culture medium. The use of 2PN zygotes is the standard of practice. However, as reported below (10.3 and 10.4) from the Istanbul consensus Update, the use of specific categories of atypically fertilised zygotes may be considered.

10.3 By static observation, pronuclei may not be seen at fertilisation check, and yet normal embryo development can occur. This may be explained by time-lapse technology data, which show that a significant proportion of 2PN zygotes undergo PN breakdown at earlier times than the above-recommended fertilization check interval. In such cases, the presence of the second polar body should accompany 2PN fertilisation and therefore be used as a scoring criterion. While these zygotes may be incorrectly categorized as OPN, if cultured, they may produce normal laboratory and clinical outcomes. Therefore, the term unfertilized or 'OPN' should not be used in these cases. Instead, 'PN not observed' may be a more suitable alternative for zygotes undergoing normal development without confirmation of fertilisation.

10.4 Preliminary PGT-A data suggest that a significant proportion of 1PN zygotes may be biparental diploid. In addition, a growing number of studies have reported normal live births from 1PN zygotes derived from both ICSI and IVF cycles. Collectively, this evidence supports cautious clinical use of 1PN zygotes, combining blastocyst culture and, if available, PGT-A technology appropriate for biparental diploidy assessment. 2PN zygotes with one extra micropronucleus (2.1PN) are relatively rare. However, they also may have a diploid genotype and lead to apparently normal live births. Their clinical use may be considered, especially if associated with PGT-A technology. In general, the possible clinical use of 1PN and 2.1PN zygotes should be discussed with the clinical team and the patient and governed by an internally approved policy.

(Working Group on the update of the ESHRE/ALPHA Istanbul Consensus, et al., 2025)

(Working Group on the update of the ESHRE/ALPHA Istanbul Consensus, et al., 2025)

(Working Group on the update of the ESHRE/ALPHA Istanbul Capalbo et al., 2024, Consensus, et al., 2025)

Pronuclear pattern	Laboratory recommendations	Clinical use without PGT-A technology appropriate for biparental diploidy assessment
--------------------	----------------------------	--

PN not observed but presence of a second polar body (often incorrectly defined as "OPN")	Culture to blastocyst stage to discriminate from rare non-fertilized oocytes undergoing early abortive cleavage (Coticchio et al., 2025).	Yes
1PN	Culture to blastocyst stage and, if available, PGT-A technology appropriate for biparental diploidy assessment	Yes, with caution, after discussion with the clinical team and the patients and governed by an internally approved policy.
2.1PN (2PN with a small micropronucleus)	Culture to blastocyst stage AND PGT-A technology appropriate for biparental diploidy assessment (Girardi et al., 2024).	Yes, with caution, after discussion with the clinical team and the patients and governed by an internally approved policy.
3PN	Culture to blastocyst stage AND PGT-A technology appropriate for biparental diploidy assessment	Not recommended as a routine practice, but admissible in pilot clinical studies

428

429 **11. Embryo culture**

430 In order to optimise embryo development, fluctuations of culture conditions should be
 431 minimised. Precautions should be taken to maintain adequate conditions of temperature, pH
 432 and osmolality during culture dish preparation to protect embryo homeostasis during culture
 433 and handling (Korakaki et al., 2020, Sciorio and Rinaudo, 2023, Wale and Gardner, 2016). Owing
 434 to our current inability to assess the *in vivo* reproductive tract environment in real time, the
 435 ideal levels of these variables have been arbitrarily set (Ng et al., 2018). Nevertheless,
 436 monitoring of adequate culture circumstances such as temperature, gas concentrations in the
 437 incubator during embryo culture is good practice and should be systematically performed
 438 (Gatimel, et al., 2020, Mestres et al., 2022).

439 **11.1 Different approaches or culture systems can be used in order to optimise embryo
 440 development.**

11.1.1 A culture medium designed for embryo development should be used. There is currently insufficient evidence to recommend either sequential or single-step media as being superior for the culture of embryos to the blastocyst stage, both in terms of ongoing pregnancy rate, live birth rate and neonatal outcome. (Diament et al., 2017, Sacha et al., 2022, Sfontouris et al., 2016, Sonigo et al., 2024)

11.1.2 Oil overlay minimises changes to temperature, pH and osmolality. Its use reduces, but not eliminates, evaporation and consequent changes in osmolality, or fluctuations in temperature and pH. These changes depend on several factors, including microdrop size, type of culture dishes, incubator atmosphere and intrinsic oil properties. There are no data confirming that the use of a high-viscosity oil confers better protection against evaporation than light oil, even when the rate of blastocyst formation is evaluated. (Bossi et al., 2023, Korakaki, et al., 2020, Mestres et al., 2021, Scarica et al., 2022) (Murray et al., 2025, Watanabe et al., 2025)

11.1.3 The type and number of incubators should be appropriate to the workload.

11.1.4 For traceability purposes, single embryo culture is advisable. If group culture is used, the size of the droplet and the number of embryos per droplet should be considered and validated.

11.1.5 To limit the damage caused by oxidative stress, low oxygen concentration should be used. (Gardner, 2016, Herbemont et al., 2021, Slatinšek et al., 2025)

441

442 **11.2 Embryo quality assessment**

443 Embryo quality assessment records should include the operator(s), date and time of
 444 assessment and embryo morphological characteristics. (For more detailed information, please
 445 see (Working Group on the update of the ESHRE/ALPHA Istanbul Consensus, et al., 2025)).

446

447 **12. Biopsy procedure**

448 PGT cycles currently represent 6.9% of initiated IVF + ICSI and frozen embryo transfer (FET)
 449 cycles (EIM for ESHRE et al., 2023) translating in a progressively increasing workload involving
 450 embryo biopsy in the embryology laboratory. Embryo biopsy is a technically demanding
 451 procedure, requiring a high degree of operator skill and laboratory organisation.

452 Technical recommendations for embryo biopsy and tubing are covered in detail in the ESHRE
 453 PGT Consortium and SIG Embryology Good Practice Recommendations for polar body and
 454 embryo biopsy for PGT (ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group, et
 455 al., 2020).

456

457 **12.1. Method of fertilisation**

458 ICSI is the preferred method for PGT, as it reduces the risk of contamination from both
 459 maternal and paternal sources—specifically, residual cumulus cells and excess sperm adhering
 460 to the zona pellucida (ZP). To minimize maternal contamination in biopsy samples, it is essential
 461 to thoroughly remove cumulus cells during denudation and rinse oocytes before ICSI.

462 **12.2. Embryo culture**

463 Usual embryo culture principles apply, while paying extra attention to avoid inadvertent
 464 exogenous contamination during embryo handling. Culture in a time-lapse incubator will limit
 465 the embryo exposure to sub-optimal conditions and will facilitate the decision on the optimal
 466 time of biopsy for each embryo.

467 Following biopsy, embryos should be placed individually in multiple-well dishes or droplets in
 468 separate dishes, to prevent mixing of embryos due to accidental movement during handling
 469 (ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group, et al., 2020).

470 **12.3. Embryonic stage of biopsy**

471 The blastocyst biopsy is the current standard practice. The blastocyst represents a more
472 efficient stage for biopsy because it provides more cells for genetic analysis, it is less sensitive
473 to possible damage as the inner cell mass (ICM) is unaffected, and extended culture excludes
474 through deselection embryos of low viability unable to form a blastocyst. It is recommended
475 that approximately 5-10 trophectoderm (TE) cells are biopsied, according to the stage of
476 expansion and number of cells of the TE layer (ESHRE PGT Consortium and SIG-Embryology
477 Biopsy Working Group, et al., 2020). A retrospective study comparing the size of TE biopsies
478 from the PGT program with the size of TE biopsies from donated embryos whose cells were
479 fixed to count them, showed that removal of approximately 10 TE cells is associated with lower
480 implantation rates compared to removal of 2-6 TE cells (Guzman et al., 2019).

481 **12.4. Method of zona opening**

482 The use of a guided non-contact laser beam is the preferred method of ZP opening, compared
483 to mechanical and chemical zona drilling methods. The laser can be adjusted to accurately
484 create a ZP opening of the desired size, avoiding the damage of embryonic cells.
485 Blastocyst biopsy strategies entail ZP opening either on Day 3/Day 4, artificial hatching at the
486 blastocyst stage, or simultaneous ZP opening and TE biopsy (ESHRE PGT Consortium and SIG-
487 Embryology Biopsy Working Group, 2020).

488 Simultaneous ZP opening and TE biopsy was associated with higher live birth rates per euploid
489 single embryo transfer (SET) compared to Day 3 hatching, while miscarriage rates were similar
490 (Cimadomo et al., 2023).

491 **12.5. Technique of cell removal**

492 For trophectoderm biopsy, aspiration and excision with a laser can be used, or aspiration in
493 combination with mechanical detachment of the TE cells (aka flicking) (ESHRE PGT Consortium
494 and SIG-Embryology Biopsy Working Group, et al., 2020).

495 **12.6. Tubing**

496 Tubing should be performed in a separate area within the embryology laboratory or in a
497 different tubing laboratory, with strict measures to minimise contamination and sample loss.
498 Personnel should wear protective clothing, including a clean surgical gown, a hair cover or hat,
499 a face mask covering both nose and mouth, and preferably shoe covers or dedicated footwear.
500 Gloves should be worn at all times and replaced frequently.

501 Detailed recommendations on tubing are outlined in the ESHRE Good Practice
502 Recommendation paper (ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group,
503 et al., 2020).

504 **12.7. Rebiopsy and refreeze**

505 Inconclusive diagnosis due to DNA amplification failure or low-quality results may occur in 2-
506 6% of TE biopsies. In these cases, an additional round of warming, biopsy, and cryopreservation
507 is required to obtain a genetic diagnosis (Li Piani et al., 2025). Double cryopreservation with

508 single biopsy and double biopsy with double cryopreservation were both associated with lower
 509 live birth rates, lower clinical pregnancy rates and higher miscarriage rates compared to single
 510 biopsy and single cryopreservation (Bartolacci et al., 2025, Guarneri et al., 2024, Li Piani, et al.,
 511 2025, Vireque et al., 2025, Yang et al., 2025). However, despite the reported detrimental
 512 effect, double biopsy and double cryopreservation when necessary may increase the total
 513 number of euploid blastocysts available for transfer. In addition, neonatal outcomes and the
 514 health of babies born so far, albeit in small numbers, did not indicate any adverse effects (Li
 515 Piani, et al., 2025).

516 **13. Embryo transfer**

517 Based on the ESHRE Guideline on the Number of Embryos to Transfer, single embryo transfer
 518 is recommended to avoid multiple pregnancies. The decision on the number of embryos to
 519 transfer should be based on embryo quality and stage of development, female age, ovarian
 520 response and rank of treatment. Single embryo transfer is recommended in most cases.
 521 However, it is advisable not to transfer more than two embryos (ESHRE Guideline Group on
 522 the Number of Embryos to Transfer et al., 2024).

13.1 For the transfer procedure, the patient records should include:

- Date and time of embryo transfer.
- Name of the operator.
- Name of the practitioner performing the transfer.
- Number, developmental stage and quality of embryo(s) at the time of transfer.
- Type of catheter used.
- Fate of supernumerary embryos.
- Details about the procedure, e.g. presence of blood, retained embryo(s).

13.2 It is recommended that the room in which the embryo transfer is performed, is in close proximity to the laboratory. If the laboratory is some distance from the embryo transfer room, arrangements should be made to maintain temperature and pH whilst transporting embryos.

(Gurner et al., 2024, Macklon et al., 2021)

13.3 A double identity check of the patient, the patient file and the culture dish(es) is mandatory immediately before the transfer. This patient identity check should be documented.

13.4 Catheter loading and technical aspects of the ET are described in D'Angelo et al., 2022. In summary:

There is insufficient evidence to suggest that flushing the loading catheter before transfer eliminates potential toxic agents benefiting clinical outcomes.

(Maldonado Rosas et al., 2022)

	There are few references in favour to perform an afterload (double step) versus direct (single step) catheter techniques.	(Cirillo et al., 2023)
	There are few references in favour to the softness as well as in relation to the material of the catheter used.	(2017, Ebner et al., 2001)
	There is insufficient evidence to suggest the superiority of the air-fluid or fluid-only methods during embryo loading, and echogenic catheters available nowadays are easily visible by echography.	(Abou-Setta et al., 2007, D'Angelo, et al., 2022, Ebner, et al., 2001)
	Loading the catheter directly from the culture media under oil versus loading from a transfer dish without oil presents no differences in pregnancy rates.	(Halvaei et al., 2013)
	The use of specific transfer media enriched with adherence compound as hyaluronic acid has demonstrated to be beneficial to the LBR in fresh transfers, despite no effect has been demonstrated in frozen embryo transfer (FET). Due to the high variability of the studies and the increased multiple PR analysed, the Good Practice Recommendations on add-ons in reproductive medicine recommends their use and the need of further studies.	(ESHRE Add-ons working group, et al., 2023, Heymann et al., 2020, Yung et al., 2021)
	The use of small volume of medium (10-20 µl) is recommended despite other studies increased the transfer volume (up to 35-45 µl) with controversial results in clinical outcomes.	(Ebner, et al., 2001, Montag et al., 2002, Omidi et al., 2015, Sigalos et al., 2018)
13.5	When ET is completed, the catheter has to be checked for possible retained embryo(s). The embryo should be reinjected immediately, preferably with a new catheter, after embryo retention.	(2017, D'Angelo, et al., 2022)
523		
524	14. Cryopreservation	
525	Cryopreservation can be performed for gametes, embryos and tissues.	
14.1	Different cryopreservation approaches, including slow freezing and vitrification, can be used according to the type of biological material.	
14.1.1	For sperm, slow freezing (passive or controlled) is still the method of choice.	
14.1.2	For oocytes, pronuclear and cleavage-stage embryos and blastocysts vitrification is the more effective method and is recommended.	(Golakov et al., 2018, Hajek et al., 2021, Rienzi et al., 2017b)

14.1.3	For ovarian tissues, slow freezing and vitrification have shown similar results.	(Antonouli et al., 2023, Cariati et al., 2023, Hončová, 2023, Kong et al., 2025, Sugishita et al., 2021)
14.1.4	For testicular tissue, not expected to contain sperm, slow freezing is recommended (passive or controlled). Where tissue potentially may contain sperm, it is recommended to analyse the testicular sample to determine if sperm is present. If sperm are identified, a protocol for sperm cryopreservation should be favoured over testicular tissue cryopreservation. If there are no sperm present, testicular tissue cryopreservation should be favoured. Alternatively, part of the tissue could be cryopreserved using a protocol aimed at preserving spermatogonia and the other part to preserve sperm.	(ESHRE FP for Boys Working Group et al., 2025)
14.1.5	(Semi-)Automated vitrification has been shown to have similar survival, embryo development and pregnancy results as manual vitrification, but yet needs to be further evaluated in (large) randomised studies.	(Gatimel et al., 2021, Hajek, et al., 2021, Miwa et al., 2020)
14.1.6	Supernumerary embryos may be cryopreserved individually, donated to research or discarded, according to their quality, patient wishes and national legislation.	
14.2	In order to minimise any risk of transmission of infection via LN2:	
14.2.1	Contamination of the external surface of cryo-devices should be avoided when loading them with samples.	
14.2.2	Safety issues have been raised regarding direct contact of the biological material with the LN2; however, the risk of contamination from LN2 or from other biological samples is considered to be negligible. Closed devices have shown to have similar cryosurvival, embryo utilization and pregnancy rates as open devices. Laboratories should make decisions based upon-risk analysis and regulations in place.	(Cai et al., 2018) (De Munck et al., 2016, Porcu et al., 2021, Sugishita, et al., 2021)
14.2.3	Specimens from sero-positive patients should be stored in high-security closed devices. Dedicated vapour phase tanks are recommended.	
14.3	At cryopreservation, documentation on biological material should include:	(European Committee on Organ Transplantation, 2026)
	• Patient consent form;	

	<ul style="list-style-type: none"> • Labelling of devices; • Cryopreservation method; • Date and time of cryopreservation; • Operator; • Sperm quality; • Embryo quality and stage of development; • Number of oocytes or embryos per device; • Number of devices stored per patient; • Location of stored samples (tank, canister); • Unique code, or SEC codes when applicable. 	
14.4	Cryo-devices should be clearly and permanently labelled with reference to patient details, treatment number and/or a unique identification code.	
14.5	A periodic inventory of the contents of the cryobank is recommended, including cross-referencing contents with storage records. In some EU countries, national laws regulate a maximum legal storage period for gametes and/or embryos.	
14.6	At thawing (warming), documentation on biological material should include: <ul style="list-style-type: none"> • Thawing method; • Date and time of thawing; • Operator; • Post-thawing sample survival and quality. 	
14.7	A double-check of patient identity and embryo number is recommended in the following steps: transfer of samples into labelled cryo-dish, loading of the labelled device, deposition in the cryobank, removal from the cryobank. This patient identity check should be documented.	
14.8	During storage, handling and transport of cryopreserved material, care should be taken to maintain adequate and safe conditions. Temperatures should never rise above -140°C. During storage and transport, temperature loggers or indicators should be used.	(European Committee on Organ Transplantation, 2026)
14.9	In case of transport of cryopreserved SoHO materials, it needs to be clearly documented which centre is responsible from release to receipt. The distribution to another establishment should be authorised by a responsible person and restricted to authorised entities. Written agreements should be in place.	(European Committee on Organ Transplantation, 2026)
	Reports should be established, and include: <ul style="list-style-type: none"> • Name and identification of distributing and receiving parties; • Name and identification of transporting party; • Type of sample and packaging; • Time and date of distribution and delivery; • Patient identification codes; 	

- Any possible incidents occurring during the transport.

526

527 15. Contingency and Emergency plan

528 As a part of the clinic's general backup plan, all IVF laboratories should develop and implement
 529 a contingency (Cairo Consensus and Alpha Scientists In Reproductive, 2025) and emergency
 530 plan (2021, Goldman et al., 2022) with specific procedures in order to safeguard patients'
 531 reproductive material as well as the laboratory staff in case of unexpected events. Contingency
 532 planning is a proactive strategy to ensure continuity of IVF procedures when unforeseen and
 533 abrupt circumstances occur. It will establish alternative ways to maintain service quality.
 534 Emergency planning on the other hand is a reactive protocol for immediate response to high
 535 risk treats and real disasters. Periodic revision of these plans is necessary together with
 536 emergency preparedness drills for the staff.

537 Collaboration with neighbouring clinics should be sought in both contingency and emergency
 538 planning. Plans are therefore discussed and protocols written down in service level agreements
 539 with these back-up centers.

540 15.1 Contingency plan

541 A contingency plan or continuity plan is essentially a plan 'B' and it entails a predefined set of
 542 actions to take when unexpected event disrupts normal operations. This plan's purpose is to
 543 minimize damage and restore laboratory processes quickly. Events that would trigger the
 544 contingency plan could be technological failures in the laboratory (short time power outage,
 545 sudden tank failure, ..), supply chain disruptions, IT disruption or even sudden absence of
 546 critical staff.

A contingency plan for the IVF laboratory contains at least the following items (please find a comprehensive list in the Cairo Consensus):

(Cairo
 Consensus and
 Alpha Scientists
 In Reproductive,
 2025)

15.1.1 Alarm system

The laboratory should have an alarm system to notify staff of malfunctioning or failure of critical equipment or occurrence of adverse environmental conditions in the laboratory.

15.1.2 Facilities

- Electricity: loss of electrical power should be compensated by generators or uninterrupted power supply (UPS) systems. It could be useful to have a separate UPS unit specifically for the lab in case the hospital system fails or needs this power to keep operating theatres running and live support for patients.
- LN2: in case of failure of automatic supply lines, tanks should be filled manually. A reserve LN2 tank should be available and knowledge on how low tanks can keep their temperature without being filled.

- Gasses: have a strategy to minimize disruption in gas supply and have if it happens, a backup plan.

15.1.3 Equipment

- In case of power failure, critical equipment should be prioritised.
- A second item of critical equipment should be available if the first item fails. All reserve equipment should be fully validated and ready for use.
- Freezer (-20°C) and refrigerator: back-up cooled freezers and refrigerators should be available.

15.1.4 Contingency culture / freezing protocols

(Sharma et al., 2024)

Based on the remaining facilities in the laboratory, it could be necessary to prioritize vitrification of material to safeguard all the reproductive material.

15.1.5 Medical records:

Records to identify the ownership of human tissue should be kept on a secure web server.

15.1.6 Staff

Have sufficient and well-trained staff and have backups for key personnel.

15.1.7 Consumables

Assess the amount of consumables needed to be able to execute contingency and emergency laboratory protocols. Evaluate the possibility to reach out to other suppliers if necessary.

547

548 Aside from several technical and laboratory specific items, the contingency plan describes the
 549 strategy of the critical asset protection of reproductive material, it contains a communication
 550 protocol and staff roles in case of unexpected events. The resumption of laboratory operation
 551 is part of the plan and several examples of scenarios can make the theoretical aspects better
 552 understandable. Flowcharts showing 'event-> response-> recovery' steps can be insightful.

553 **15.2 Emergency plan**

554 In light of global climate change, natural disasters like flood or earthquakes can happen in more
 555 geographic regions in the world than was the case before. Aside from these, other non-natural
 556 disasters, like fire caused by electrical faults, chemical reactions of gas leaks – which can also
 557 be a result of natural disasters- can have a huge impact on the general contingency plan, as
 558 compliance to fire safety protocols will require a complete shutdown of power. Such Emergency
 559 Power Off (EPO) is specifically designed to shut down electrical equipment, including UPS
 560 systems during a fire. This is a safety measure to prevent electrical shock risks when a fire
 561 suppression system, like sprinklers, or use of fire extinguishers by fire men, are activated. In
 562 such a scenario, all electrical circuits, equipment and backup generators will cease to operate
 563 until the fire is under control. In such scenario, there is very little time to act and safeguard
 564 embryos. It is important to know how long incubators can last without any power whatsoever
 565 and how to prioritise moving or freezing samples if there is time to do this and if it is safe

566 considering the safety of the staff. Not only a complete loss of all electricity but also the
 567 toxicities of burning material in proximity of an IVF laboratory will have an impact on the
 568 environment in which embryos reside and staff operates (Kornfield et al., 2024). An immediate
 569 reaction to such a crisis is the well-being of staff in the IVF laboratory and to evacuate the lab
 570 immediately. In a scenario where the laboratory is still reachable and provided that your
 571 emergency crisis manager gives green light to enter the lab, an emergency move of embryos
 572 in culture or emergency vitrification of reproductive material could be the only remaining
 573 option (Song et al., 2023).

An emergency plan for the IVF laboratory contains at least:

- Guidance on evacuation procedures.
- Communication channels and clarity of chain of command.
- Emergency contact information.
- Decision making on treatment continuation or cessation of patients and/or off-site treatments of patients in neighbouring centers.
- Critical actions for the lab if entering is deemed safe by chain of command including moving embryos in culture to other incubators on a secure location and/or emergency vitrification protocol with details on the labelling of straws / vials and record keeping of them.
- Critical actions for the cryostorage if entering is deemed safe by chain of command including evacuation of tanks or temporary on-site retaining for a pre-defined period.
- What to do the day after.
- What to communicate the day after.
- Strategy for startup of the IVF laboratory (partial or complete).

574

575 In the likelihood of a temporary shutdown of the lab, it is necessary to have an agreement with
 576 other laboratories in the area to transfer reproductive material and medical records if
 577 necessary.

578 **Discussion**

579 The updated ESHRE Recommendations on Good Practice in IVF laboratory serve as a
 580 comprehensive guide to all procedures performed within the IVF laboratory, aiming to promote
 581 the highest standards of safety, quality, and effectiveness in MAR. The recommendations in this
 582 Good Practice Recommendations paper are supported by data from the literature, if available,
 583 and the expertise of the working group. Since the 2015 version of the Good Practice in the IVF
 584 labs guideline was published, ESHRE has developed a standardised methodology for the
 585 development of Recommendations for Good Practice document (Vermeulen, et al., 2019). This
 586 updated Recommendations on Good Practice in IVF Laboratories document was therefore
 587 developed using this methodology, rather than adhering to the evidence-based guideline
 588 format, which is less suited.

589 The working group reviewed the 2015 version of the Good Practice in the IVF labs guideline,
 590 identifying knowledge gaps and chapters in need of a more elaborate guidance. Hereto, the
 591 section on embryo culture and transfer was split into two separate chapters, the section on
 592 sperm preparation was expanded to cover all general andrological procedures and a new
 593 section on biopsy procedure was introduced.

594 Even though the 6th edition of the EDQM guidance was not published yet at the time of
 595 publication of this Good Practice Recommendations document, the working group tried to take
 596 expected changes in EDQM guidance into account, based on the stakeholder version of the 6th
 597 edition. The new SoHO regulation, recently published, describes a required QMS. Personnel,
 598 organisation, materials and documentation are defined within an accurate control system.
 599 Moreover, measures to enhance traceability throughout the lifecycle of SoHO are reinforced.
 600 MAR centres must comply with traceability requirements of SoHO from the donor to the
 601 recipient and vice versa.

602 Important amendments were made to the staffing section of the guidance document. The
 603 working group wanted to convey the message that the work load of an embryologist
 604 encompasses more than handling embryos and that it is important that these other tasks are
 605 taken into account when determining the number of staff needed in the IVF laboratory. It is
 606 however not possible to define an ideal number of staff, as this is highly dependent on the set-
 607 up of staff and different logistics and workflow of the laboratory. Still, the working group
 608 highlighted some attention points and published calculation tools.

609 The most significant innovation in this document can probably be found in the chapter on
 610 scoring for fertilisation, based on the newly released updated Istanbul Consensus (Working
 611 group on the update of the ESHRE/ALPHA Istanbul Consensus, et al., 2025).

612 In conclusion, the ESHRE IVF labs working group updated the recommendations on the general
 613 organisation of an IVF laboratory (staffing and direction, quality management, laboratory
 614 safety), and on the specific aspects of the procedures performed in IVF laboratories
 615 (Identification of patients and traceability of their reproductive cells, consumables, handling of
 616 biological material, oocyte retrieval, sperm preparation, insemination of oocytes, scoring for
 617 fertilisation, embryo culture and transfer, cryopreservation and emergency procedures), based
 618 on the best evidence available. It is anticipated that the recommendations will undergo further
 619 revisions as more evidence becomes available or any other approaches are established.

620 **References**

621 The Alpha Consensus Meeting on the professional status of the clinical embryologist: proceedings of
 622 an expert meeting. *Reprod Biomed Online* 2015;30: 451-461.
 623 Performing the embryo transfer: a guideline. *Fertil Steril* 2017;107: 882-896.
 624 Development of an emergency plan for in vitro fertilization programs: a committee opinion. *Fertil*
 625 *Steril* 2021;115: 870-873.
 626 Comprehensive guidance for human embryology, andrology, and endocrinology laboratories:
 627 management and operations: a committee opinion. *Fertil Steril* 2022;117: 1183-1202.

628 Abou-Setta AM, Mansour RT, Al-Inany HG, Aboulghar MM, Aboulghar MA, Serour GI. Among women
 629 undergoing embryo transfer, is the probability of pregnancy and live birth improved with ultrasound
 630 guidance over clinical touch alone? A systematic review and meta-analysis of prospective randomized
 631 trials. *Fertil Steril* 2007;88: 333-341.

632 Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R,
 633 Durairajyanayagam D, Henkel R, Saleh R. Oxidative Stress and Assisted Reproduction: A Comprehensive
 634 Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment.
 635 *Antioxidants (Basel)* 2022;11.

636 Alikani M, Go KJ, McCaffrey C, McCulloh DH. Comprehensive evaluation of contemporary assisted
 637 reproduction technology laboratory operations to determine staffing levels that promote patient
 638 safety and quality care. *Fertil Steril* 2014;102: 1350-1356.

639 Alteri A, Borghi L, Fava S, Canosa S, Casciani V, Dal Canto M, Scarica C, Tesoriere G, Zacà C, Cimadomo
 640 D et al. Expert-based recommendations for human witnessing in assisted reproductive technology: an
 641 Italian perspective. *Reprod Biomed Online* 2025;51: 104981.

642 Alteri A, Vermeulen N, Rugescu IA, Nogueira D, Veleva Z, D'Angelo A, Tilleman K. Coding in medically
 643 assisted reproduction: the status of the implementation of the Single European Code for reproductive
 644 cells and tissues. *Hum Reprod Open* 2020;2020: hoaa027.

645 Analysis EWGoET, Scarica C, Woodward BJ, De Santis L, Kovačič B. Training and competency
 646 assessment of Clinical Embryologists and licensing of the profession in European countries. *Hum*
 647 *Reprod Open* 2023;2023: hoad001.

648 Antonouli S, Di Nisio V, Messini C, Daponte A, Rajender S, Anifandis G. A comprehensive review and
 649 update on human fertility cryopreservation methods and tools. *Front Vet Sci* 2023;10: 1151254.

650 ART EWGoUi, D'Angelo A, Panayotidis C, Amso N, Marci R, Matorras R, Onofriescu M, Turp AB,
 651 Vandekerckhove F, Veleva Z et al. Recommendations for good practice in ultrasound: oocyte pick
 652 up(+). *Hum Reprod Open* 2019;2019: hoz025.

653 Aust TR, Brookes S, Troup SA, Fraser WD, Lewis-Jones DI. Development and in vitro testing of a new
 654 method of urine preparation for retrograde ejaculation; the Liverpool solution. *Fertil Steril* 2008;89:
 655 885-891.

656 Barrese E, Gioffrè A, Scarpelli M, Turbante D, Trovato R, Iavicoli S. Indoor Pollution in Work Office:
 657 VOCs, Formaldehyde and Ozone by Printer. *Occupational Diseases and Environmental Medicine*
 658 2014;2: 49-55.

659 Bartolacci A, Vitiello C, de Girolamo S, Papaleo E, Pagliardini L. Does double cryopreservation as well
 660 as double biopsy affect embryo viability and clinical outcomes? Evidence from a systematic review of
 661 the literature. *J Assist Reprod Genet* 2025;42: 1053-1066.

662 Bódis J, Gödöny K, Várnagy Á, Kovács K, Koppán M, Nagy B, Erostyák J, Herczeg R, Szekeres-Barthó J,
 663 Gjenesei A, Kovács GL. How to Reduce the Potential Harmful Effects of Light on Blastocyst
 664 Development during IVF. *Med Princ Pract* 2020;29: 558-564.

665 Bossi RL, Pinto BCV, Sampaio MAC, Geber S. How to optimize culture media osmolality during Assisted
 666 Reproductive Technologies treatments. *JBRA Assist Reprod* 2023;27: 35-40.

667 Cai H, Niringiyumukiza JD, Li Y, Lai Q, Jia Y, Su P, Xiang W. Open versus closed vitrification system of
 668 human oocytes and embryos: a systematic review and meta-analysis of embryologic and clinical
 669 outcomes. *Reprod Biol Endocrinol* 2018;16: 123.

670 Cairo Consensus G, Alpha Scientists In Reproductive M. Cairo Consensus on Accreditation as the Basis
 671 for Future-Proofing the ART Laboratory. *Reprod Biomed Online* 2025;50: 104106.

672 Capalbo A, Cimadomo D, Coticchio G, Ottolini CS. An expert opinion on rescuing atypically
 673 pronucleated human zygotes by molecular genetic fertilization checks in IVF. *Hum Reprod* 2024;39:
 674 1869-1878.

675 Cariati F, Carbone L, Iorio GG, Conforti A, Capasso A, Bagnulo F, Peluso SR, Giuliano R, Strina I, Alviggi
 676 C. Cryopreservation of ovarian tissue: the biggest challenge of oncofertility. *Minerva Obstet Gynecol*
 677 2023;75: 371-378.

678 Chronopoulou E, Harper JC. IVF culture media: past, present and future. *Hum Reprod Update* 2015;21: 39-55.

680 Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A *et al.* Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. *Hum Reprod Update* 2023;29: 570-633.

683 Cimadomo D, Ubaldi FM, Capalbo A, Maggiulli R, Scarica C, Romano S, Poggiana C, Zuccarello D, Giancani A, Vaiarelli A, Rienzi L. Failure mode and effects analysis of witnessing protocols for ensuring traceability during PGD/PGS cycles. *Reprod Biomed Online* 2016;33: 360-369.

686 Cirillo F, Immediata V, Ronchetti C, Carletti T, Morenghi E, Albani E, Baggiani A, Levi-Setti PE. Steps forward in embryo transfer technique: a retrospective study comparing direct versus afterload catheters at different time frames. *J Assist Reprod Genet* 2023;40: 2895-2902.

689 Commission E. Guidelines for Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use. 2022.

691 Consensus WGOTUOTEA, Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos MJ, Ebner T, Gardner DK, Kovačič B *et al.* The Istanbul consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment†,‡. *Hum Reprod* 2025;40: 989-1035.

695 Coticchio G, Taggi M, Asturi F, Stati A, Bordignon M, Innocenti F, Saturno G, Vaiarelli A, Rienzi L, Cimadomo D. Embryos not showing pronuclei by single static observation arise from atypical pronuclear dynamics or rare unfertilized oocytes with abortive cleavage behaviour. *Hum Reprod* 2025;40: 2286-2294.

699 Crich JP, Jequier AM. Infertility in men with retrograde ejaculation: the action of urine on sperm motility, and a simple method for achieving antegrade ejaculation. *Fertil Steril* 1978;30: 572-576.

701 D'Angelo A, Panayotidis C, Alteri A, McHeik S, Veleva Z. Evidence and consensus on technical aspects of embryo transfer. *Hum Reprod Open* 2022;2022: hoac038.

703 de los Santos MJ, Ruiz A. Protocols for tracking and witnessing samples and patients in assisted reproductive technology. *Fertil Steril* 2013;100: 1499-1502.

705 De Munck N, Santos-Ribeiro S, Stoop D, Van de Velde H, Verheyen G. Open versus closed oocyte vitrification in an oocyte donation programme: a prospective randomized sibling oocyte study. *Hum Reprod* 2016;31: 377-384.

708 Delaroche L, Besnard L, Ouary V, Bazin F, Cassuto G. Disposables used cumulatively in routine IVF procedures could display toxicity. *Hum Reprod* 2024;39: 936-954.

710 Delaroche L, Oger P, Genauzeau E, Meicler P, Lamazou F, Dupont C, Humaidan P. Embryotoxicity testing of IVF disposables: how do manufacturers test? *Hum Reprod* 2020;35: 283-292.

712 Dieamant F, Petersen CG, Mauri AL, Comar V, Mattila M, Vagnini LD, Renzi A, Petersen B, Ricci J, Oliveira JBA *et al.* Single versus sequential culture medium: which is better at improving ongoing pregnancy rates? A systematic review and meta-analysis. *JBRA Assist Reprod* 2017;21: 240-246.

715 Ebner T, Yaman C, Moser M, Sommergruber M, Pölz W, Tews G. The ineffective loading process of the embryo transfer catheter alters implantation and pregnancy rates. *Fertil Steril* 2001;76: 630-632.

717 ESHRE Ef, Smeenk J, Wyns C, De Geyter C, Kupka M, Bergh C, Cuevas Saiz I, De Neubourg D, Rezabek K, Tandler-Schneider A *et al.* ART in Europe, 2019: results generated from European registries by ESHRE†. *Hum Reprod* 2023;38: 2321-2338.

720 Europe Co. Guide to the quality and safety of tissues and cells for human application. *European Directorate for the Quality of Medicines and HealthCare* 2022;5th ed.

722 European Parliament CotEU. Regulation (EU) 2024/1938 of the European Parliament and of the Council of 13 June 2024 on standards of quality and safety for substances of human origin intended for human application and repealing Directives 2002/98/EC and 2004/23/EC. In Safety D-GfHaF (ed). 2024.

726 Fan Y, Wu Z, Peng F, Peng H, Liang X, Zhu S. Brief and long co-incubation of sperm and oocytes for in vitro fertilization: a meta-analysis of randomized controlled trials. *BMC Pregnancy Childbirth* 2023;23: 200.

729 Gallagher MT, Krasauskaite I, Kirkman-Brown JC. Only the Best of the Bunch-Sperm Preparation Is Not
 730 Just about Numbers. *Semin Reprod Med* 2023;41: 273-278.

731 Gardner DK. The impact of physiological oxygen during culture, and vitrification for cryopreservation,
 732 on the outcome of extended culture in human IVF. *Reprod Biomed Online* 2016;32: 137-141.

733 Gatimel N, Moreau J, Bettoli C, Parinaud J, Léandri RD. Semi-automated versus manual embryo
 734 vitrification: inter-operator variability, time-saving, and clinical outcomes. *J Assist Reprod Genet*
 735 2021;38: 3213-3222.

736 Gatimel N, Moreau J, Parinaud J, Léandri RD. Need for choosing the ideal pH value for IVF culture
 737 media. *J Assist Reprod Genet* 2020;37: 1019-1028.

738 Girardi L, Patassini C, Miravet Valenciano J, Sato Y, Fagundes Cagnin N, Castellón JA, Cogo F, Zambon
 739 P, Blesa D, Jimenez Almazan J *et al.* Incidence of haploidy and triploidy in trophectoderm biopsies of
 740 blastocysts derived from normally and abnormally fertilized oocytes. *J Assist Reprod Genet* 2024;41:
 741 3357-3370.

742 Golakov M, Depenbusch M, Schultze-Mosgau A, Schoepper B, Hajek J, Neumann K, Griesinger G.
 743 What is the net effect of introducing vitrification for cryopreservation of surplus 2PN oocytes in an IVF
 744 program? *Arch Gynecol Obstet* 2018;297: 529-537.

745 Goldman KN, McCaffrey C, Riley J, Jungheim E, Grifo JA. Disaster preparedness in assisted
 746 reproductive technology. *Fertil Steril* 2022;118: 230-238.

747 Group CC. 'There is only one thing that is truly important in an IVF laboratory: everything' Cairo
 748 Consensus Guidelines on IVF Culture Conditions. *Reprod Biomed Online* 2020;40: 33-60.

749 group EA-ow, Lundin K, Bentzen JG, Bozdag G, Ebner T, Harper J, Le Clef N, Moffett A, Norcross S,
 750 Polyzos NP *et al.* Good practice recommendations on add-ons in reproductive medicine†. *Hum Reprod*
 751 2023;38: 2062-2104.

752 Group ECPW, Vlaisavljevic V, Apter S, Capalbo A, D'Angelo A, Giarolli L, Griesinger G, Kolibianakis
 753 EM, Lainas G, Mardesic T *et al.* The Maribor consensus: report of an expert meeting on the
 754 development of performance indicators for clinical practice in ART. *Hum Reprod Open* 2021;2021:
 755 hoab022.

756 Group EFFBW, Mitchell RT, Eguizabal C, Goossens E, Grynberg M, Jahnukainen K, Le Clef N, Mulder CL,
 757 Neuhaus N, Rimmer MP *et al.* ESHRE good practice recommendations on fertility preservation
 758 involving testicular tissue cryopreservation in children receiving gonadotoxic therapies†. *Hum Reprod*
 759 2025;40: 1391-1431.

760 Group EPCas-EBW, Kokkali G, Coticchio G, Bronet F, Celebi C, Cimadomo D, Goossens V, Liss J, Nunes
 761 S, Sfontouris I *et al.* ESHRE PGT Consortium and SIG Embryology good practice recommendations for
 762 polar body and embryo biopsy for PGT. *Hum Reprod Open* 2020;2020: hoaa020.

763 Guarneri C, Reschini M, Pinna M, Perego L, Sanzani E, Somigliana E, Sorrentino U, Cassina M,
 764 Zuccarello D, Ciaffaglione M. The impact of a second embryo biopsy for preimplantation genetic
 765 testing for monogenic diseases (PGT-M) with inconclusive results on pregnancy potential: results from
 766 a matched case-control study. *J Assist Reprod Genet* 2024;41: 1173-1179.

767 Gupta S, Fauzdar A, Singh VJ, Srivastava A, Sharma K, Singh S. A Preliminary Experience of Integration
 768 of an Electronic Witness System, its Validation, Efficacy on Lab Performance, and Staff Satisfaction
 769 Assessment in a Busy Indian in vitro Fertilization Laboratory. *J Hum Reprod Sci* 2020;13: 333-339.

770 Gurner KH, Kelley RL, Lee LYS, Gardner DK. Temperature fluctuations during embryo transfer can be
 771 mitigated by optimizing transfer protocol. *Reprod Biomed Online* 2024;48: 103847.

772 Guzman L, Nuñez D, López R, Inoue N, Portella J, Vizcarra F, Noriega-Portella L, Noriega-Hoces L,
 773 Munné S. The number of biopsied trophectoderm cells may affect pregnancy outcomes. *J Assist
 774 Reprod Genet* 2019;36: 145-151.

775 Hajek J, Baron R, Sandi-Monroy N, Schansker S, Schoepper B, Depenbusch M, Schultze-Mosgau A,
 776 Neumann K, Gagsteiger F, von Otte S, Griesinger G. A randomised, multi-center, open trial comparing
 777 a semi-automated closed vitrification system with a manual open system in women undergoing IVF.
 778 *Hum Reprod* 2021;36: 2101-2110.

779 Halvaei I, Khalili MA, Razi MH, Agha-Rahimi A, Nottola SA. Impact of different embryo loading
 780 techniques on pregnancy rates in in vitro fertilization/embryo transfer cycles. *J Hum Reprod Sci*
 781 2013;6: 65-69.

782 Herbemont C, Labrosse J, Bennani-Smires B, Cedrin-Durnerin I, Peigne M, Sermondade N, Sarandi S,
 783 Vivot A, Vicaut E, Talib Z *et al.* Impact of oxygen tension according to embryo stage of development: a
 784 prospective randomized study. *Sci Rep* 2021;11: 22313.

785 Heymann D, Vidal L, Or Y, Shoham Z. Hyaluronic acid in embryo transfer media for assisted
 786 reproductive technologies. *Cochrane Database Syst Rev* 2020;9: Cd007421.

787 Holmes E, Björndahl L, Kvist U. Hypotonic challenge reduces human sperm motility through coiling
 788 and folding of the tail. *Andrologia* 2020;52: e13859.

789 Holmes R, Wirka KA, Catherino AB, Hayward B, Swain JE. Comparison of electronic versus manual
 790 witnessing of procedures within the in vitro fertilization laboratory: impact on timing and efficiency. *F
 791 S Rep* 2021;2: 181-188.

792 Hončová V. Cryopreservation of ovarian tissue as a method for fertility preservation in women. *Ceska
 793 Gynekol* 2023;88: 44-51.

794 Hotchkiss RS, Pinto AB, Kleegman S. Artificial insemination with semen recovered from the bladder.
 795 *Fertil Steril* 1954;6: 37-42.

796 infection/disease Eggov, Mocanu E, Drakeley A, Kupka MS, Lara-Molina EE, Le Clef N, Ombelet W,
 797 Patrat C, Pennings G, Semprini AE *et al.* ESHRE guideline: medically assisted reproduction in patients
 798 with a viral infection/disease. *Hum Reprod Open* 2021;2021: hoab037.

799 Intra G, Alteri A, Corti L, Rabellotti E, Papaleo E, Restelli L, Biondo S, Garancini MP, Candiani M, Viganò
 800 P. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.
 801 *Reprod Biomed Online* 2016;33: 132-139.

802 Jefferys A, Siassakos D, Wardle P. The management of retrograde ejaculation: a systematic review and
 803 update. *Fertil Steril* 2012;97: 306-312.

804 Kong Q, Pei C, Rahimi G, Mallmann P, Isachenko V. Comparison of the quality of ovarian tissue
 805 cryopreservation by conventional slow cryopreservation and vitrification-a systematic review and
 806 meta-analysis. *J Ovarian Res* 2025;18: 62.

807 Korakaki D, Mouroutsos S, Tripsianis G, Nikolettos N, Asimakopoulos B. Temperature Decline in
 808 Embryological Culture Dishes outside Incubator. *Int J Fertil Steril* 2020;14: 63-67.

809 Kornfield M, Rubin E, Parker P, Garg B, O'Leary T, Phillips S, Madding R, Baldwin M, Amato P, Lee D *et
 810 al.* Unhealthy air quality secondary to wildfires is associated with lower blastocyst yield. *Fertil Steril*
 811 2024;121: 842-852.

812 Kovačič B, Plas C, Woodward BJ, Verheyen G, Prados FJ, Hreinsson J, De los Santos MJ, Magli MC,
 813 Lundin K, Plancha CE. The educational and professional status of clinical embryology and clinical
 814 embryologists in Europe. *Hum Reprod* 2015;30: 1755-1762.

815 Kovačič B, Prados FJ, Plas C, Woodward BJ, Verheyen G, Ramos L, Mäkinen S, Apter SJ, Vidal F, Ziebe S
 816 *et al.* ESHRE Clinical Embryologist certification: the first 10 years. *Hum Reprod Open* 2020;2020:
 817 hoaa026.

818 Kulkarni V, Kaingade P, Kulkarni N, Bhalerao T, Nikam A. Assessment of semen parameters in
 819 consecutive ejaculates with short abstinence period in oligospermic males. *JBRA Assist Reprod*
 820 2022;26: 310-314.

821 Li Piani L, Petrone P, Brutto M, De Vos A, Van Der Kelen A, Vaiarelli A, Rienzi L, Conforti A, Cimadomo
 822 D, Verpoest W. A systematic review and meta-analysis of double trophectoderm biopsy and/or
 823 cryopreservation in PGT: balancing the need for a diagnosis against the risk of harm. *Hum Reprod
 824 Update* 2025;31: 102-115.

825 Macklon N, Delikari O, Lamanna G, Campbell A, Fishel S, Laiseca ZL, Serrano MF, Coat C, Svalander P.
 826 Embryos are exposed to a significant drop in temperature during the embryo transfer procedure: a
 827 pilot study. *Reprod Biomed Online* 2021;43: 193-195.

828 Maldonado Rosas I, Anagnostopoulou C, Singh N, Gugnani N, Singh K, Desai D, Darbandi M,
 829 Manoharan M, Darbandi S, Chockalingam A *et al.* Optimizing embryological aspects of oocyte
 830 retrieval, oocyte denudation, and embryo loading for transfer. *Panminerva Med* 2022;64: 156-170.
 831 Malhotra J, Malhotra K, Talwar P, Kannan P, Singh P, Kumar Y, Chimote N, Joshi C, Bawle S, Agarwal RB
 832 *et al.* ISAR Consensus Guidelines on Safety and Ethical Practices in In vitro Fertilization Clinics. *J Hum
 833 Reprod Sci* 2021;14: S48-s68.
 834 Mburu G, Santesso N, Brignardello-Petersen R, Kennedy R, Farquhar C, Boivin J, Pennings G, Giudice
 835 LC, Rebar RW, Gianaroli L *et al.* Recommendations from the WHO guideline for the prevention,
 836 diagnosis, and treatment of infertility†. *Hum Reprod* 2025.
 837 Medicine ESIGoEaASiR. The Vienna consensus: report of an expert meeting on the development of
 838 ART laboratory performance indicators. *Reprod Biomed Online* 2017;35: 494-510.
 839 Mendola RJ, Biswas L, Schindler K, Walmsley RH, Russell H, Angle M, Garrisi GJ. Influx of zwitterionic
 840 buffer after intracytoplasmic sperm injection (ICSI) membrane piercing alters the transcriptome of
 841 human oocytes. *J Assist Reprod Genet* 2024;41: 1341-1356.
 842 Mestres E, García-Jiménez M, Casals A, Cohen J, Acacio M, Villamar A, Matia-Algué Q, Calderón G,
 843 Costa-Borges N. Factors of the human embryo culture system that may affect media evaporation and
 844 osmolality. *Hum Reprod* 2021;36: 605-613.
 845 Mestres E, Matia-Algué Q, Villamar A, Casals A, Acacio M, García-Jiménez M, Martínez-Casado A,
 846 Castelló C, Calderón G, Costa-Borges N. Characterization and comparison of commercial oils used for
 847 human embryo culture. *Hum Reprod* 2022;37: 212-225.
 848 Miwa A, Noguchi Y, Hosoya K, Mori Y, Sato T, Kasahara Y, Hidaka M, Hayashi H. Equivalent clinical
 849 outcome after vitrified-thawed blastocyst transfer using semi-automated embryo vitrification system
 850 compared with manual vitrification method. *Reprod Med Biol* 2020;19: 164-170.
 851 Montag M, Kupka M, van der Ven K, van der Ven H. Embryo transfer on day 3 using low versus high
 852 fluid volume. *Eur J Obstet Gynecol Reprod Biol* 2002;102: 57-60.
 853 Morgia F, Torti M, Montigiani M, Piscitelli C, Giallonardo A, Schimberni M, Giannini P, Sbracia M. Use
 854 of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic
 855 sperm injection procedures is detrimental to the outcome of in vitro fertilization. *Fertil Steril* 2006;85:
 856 1415-1419.
 857 Murray L, Patel N, Ozkavukcu S, Lopes F. High-viscosity oil does not offer enhanced protection for
 858 osmolality changes in high-volume media drops during extended dry incubation. *J Assist Reprod Genet*
 859 2025;42: 3519-3533.
 860 Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in
 861 the female reproductive tract and their importance in human conception: a systematic review. *Hum
 862 Reprod Update* 2018;24: 15-34.
 863 Nijs M, Armstrong E, Fleming S. The importance of education, training and continuous performance
 864 monitoring to ART professionals, particularly embryologists. *Hum Fertil (Camb)* 2025;28: 2529372.
 865 Nijs M, Franssen K, Cox A, Wissmann D, Ruis H, Ombelet W. Reprotoxicity of intrauterine insemination
 866 and in vitro fertilization-embryo transfer disposables and products: a 4-year survey. *Fertil Steril*
 867 2009;92: 527-535.
 868 Okada H, Fujioka H, Tatsumi N, Kanzaki M, Inaba Y, Fujisawa M, Gohji K, Arakawa S, Kamidono S.
 869 Treatment of patients with retrograde ejaculation in the era of modern assisted reproduction
 870 technology. *J Urol* 1998;159: 848-850.
 871 Omidi M, Halvaei I, Mangoli E, Khalili MA, Razi MH. The effect of embryo catheter loading technique
 872 on the live birth rate. *Clin Exp Reprod Med* 2015;42: 175-180.
 873 Organization WH. WHO Laboratory Manual for the Examination and Processing of Human Semen.
 874 WHO Press 2021;6th ed.
 875 Porcu E, Tranquillo ML, Notarangelo L, Ciotti PM, Calza N, Zuffa S, Mori L, Nardi E, Dirodi M, Cipriani L
 876 *et al.* High-security closed devices are efficient and safe to protect human oocytes from potential risk
 877 of viral contamination during vitrification and storage especially in the COVID-19 pandemic. *J Assist
 878 Reprod Genet* 2021;38: 681-688.

879 Rienzi L, Bariani F, Dalla Zorza M, Albani E, Benini F, Chamayou S, Minasi MG, Parmegiani L, Restelli L,
 880 Vizziello G, Costa AN. Comprehensive protocol of traceability during IVF: the result of a multicentre
 881 failure mode and effect analysis. *Hum Reprod* 2017a;32: 1612-1620.

882 Rienzi L, Bariani F, Dalla Zorza M, Romano S, Scarica C, Maggiulli R, Nanni Costa A, Ubaldi FM. Failure
 883 mode and effects analysis of witnessing protocols for ensuring traceability during IVF. *Reprod Biomed
 884 Online* 2015;31: 516-522.

885 Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte,
 886 embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-
 887 freezing versus vitrification to produce evidence for the development of global guidance. *Hum Reprod
 888 Update* 2017b;23: 139-155.

889 Sacha CR, Gopal D, Liu CL, Cabral HR, Stern JE, Carusi DA, Racowsky C, Bormann CL. The impact of
 890 single-step and sequential embryo culture systems on obstetric and perinatal outcomes in singleton
 891 pregnancies: the Massachusetts Outcomes Study of Assisted Reproductive Technology. *Fertil Steril*
 892 2022;117: 1246-1254.

893 Scarica C, Monaco A, Borini A, Pontemezzo E, Bonanni V, De Santis L, Zacà C, Coticchio G. Use of
 894 mineral oil in IVF culture systems: physico-chemical aspects, management, and safety. *J Assist Reprod
 895 Genet* 2022;39: 883-892.

896 Sciorio R, Rinaudo P. Culture conditions in the IVF laboratory: state of the ART and possible new
 897 directions. *J Assist Reprod Genet* 2023;40: 2591-2607.

898 Sfontouris IA, Martins WP, Nastri CO, Viana IG, Navarro PA, Raine-Fenning N, van der Poel S, Rienzi L,
 899 Racowsky C. Blastocyst culture using single versus sequential media in clinical IVF: a systematic review
 900 and meta-analysis of randomized controlled trials. *J Assist Reprod Genet* 2016;33: 1261-1272.

901 Sharma K, Ammar OF, Fraire-Zamora JJ, Uraji J, Thomson A, Aydin B, Ezzati M, Alteri A, Liperis G.
 902 When disaster strikes: risk management and implementing emergency vitrification protocols in IVF
 903 laboratory crises. *Hum Reprod* 2024.

904 Shirasawa H, Terada Y. Embryologist staffing in assisted reproductive technology laboratories: An
 905 international comparative review. *Reprod Med Biol* 2025;24: e12628.

906 Sigalos G, Michalopoulos Y, Kastoras AG, Triantafyllidou O, Vlahos NF. Low versus high volume of
 907 culture medium during embryo transfer: a randomized clinical trial. *J Assist Reprod Genet* 2018;35:
 908 693-699.

909 Slatinšek P, Reljič M, Kovačič B. Effect of constant (5%) versus gradient (8%-2%) oxygen concentration
 910 on sibling human blastocyst development. *Reprod Biomed Online* 2025;52: 105207.

911 Song W, Zhang F, Wang Y, Shi H, Sun N, Jin H, Wang X, Guo Y, Hu L, Zhai J *et al.* Effective protection:
 912 the embryonic development and clinical outcomes of emergency vitrification of 1246 oocytes and Day
 913 0-Day 5 embryos in a natural disaster. *Hum Reprod* 2023;38: 2412-2421.

914 Sonigo C, Ahdad-Yata N, Pirtea P, Solignac C, Grynberg M, Sermondade N. Do IVF culture conditions
 915 have an impact on neonatal outcomes? A systematic review and meta-analysis. *J Assist Reprod Genet*
 916 2024;41: 563-580.

917 Sterckx J, Wouters K, Mateizel I, Segers I, De Vos A, Van Landuyt L, Van de Velde H, Tournaye H, De
 918 Munck N. Electronic witnessing in the medically assisted reproduction laboratory: insights and
 919 considerations after 10 years of use. *Hum Reprod* 2023;38: 1529-1537.

920 Sugishita Y, Taylan E, Kawahara T, Shahmurzada B, Suzuki N, Oktay K. Comparison of open and a novel
 921 closed vitrification system with slow freezing for human ovarian tissue cryopreservation. *J Assist
 922 Reprod Genet* 2021;38: 2723-2733.

923 Togola A, Desmarchais A, Téteau O, Vignault C, Maillard V, Buron C, Bristeau S, Guérif F, Binet A, Elis S.
 924 Bisphenol S is present in culture media used for ART and cell culture. *Hum Reprod* 2021;36: 1032-
 925 1042.

926 Transfer EGGotNoEt, Alteri A, Arroyo G, Baccino G, Craciunas L, De Geyter C, Ebner T, Koleva M,
 927 Kordic K, McHeik S *et al.* ESHRE guideline: number of embryos to transfer during IVF/ICSI†. *Hum
 928 Reprod* 2024;39: 647-657.

929 Transplantation ECoO. EDQM 6th ed. 2026.

930 Urology EAo. EAU guidelines. 2025.

931 Veiga E, Olmedo C, Sánchez L, Fernández M, Mauri A, Ferrer E, Ortiz N. Recalculating the staff
932 required to run a modern assisted reproductive technology laboratory. *Hum Reprod* 2022;37: 1774-
933 1785.

934 Vermeulen N, Le Clef N, Veleva Z, D'Angelo A, Tillemans K. European Recommendations for good
935 practice in addition to an evidence-based guidelines programme: rationale and method of
936 development. *BMJ Evid Based Med* 2019;24: 30-34.

937 Vireque AA, Stolakis V, Berteli TS, Bertero MC, Kofinas J. Double versus single blastocyst biopsy and
938 vitrification in preimplantation genetic testing (PGT) cycles: protocol for a systematic review and
939 meta-analysis of clinical and neonatal outcomes. *Syst Rev* 2025;14: 93.

940 Vujisic S, Poljak Panic K, Grcic T, Dmitrovic R. How can the failure mode and effect analysis improve
941 the working processes in the ART center? *Eur J Obstet Gynecol Reprod Biol* 2024;302: 43-55.

942 Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and
943 their importance for the practice of assisted human reproduction. *Hum Reprod Update* 2016;22: 2-22.

944 Watanabe H, Tokoro M, Kojima M, Kudo C, Ihara K, Fukunaga N, Asada Y. Mineral oil viscosity and
945 quantity impact osmotic pressure, not embryo development. *Zygote* 2025;33: 99-104.

946 West R, Coomarasamy A, Frew L, Hutton R, Kirkman-Brown J, Lawlor M, Lewis S, Partanen R, Payne-
947 Dwyer A, Román-Montañana C et al. Sperm selection with hyaluronic acid improved live birth
948 outcomes among older couples and was connected to sperm DNA quality, potentially affecting all
949 treatment outcomes. *Hum Reprod* 2022;37: 1106-1125.

950 Yang Y, Li D, Liu Y, Qi Y, Li H, Wang Z, Ma B. Systematic review and meta-analysis of the impact of the
951 refreezing and rebiopsy embryos on reproductive outcomes in patients undergoing freeze-thaw
952 embryo transfer. *Fertil Steril* 2025;123: 1051-1061.

953 Yung SSF, Lai SF, Lam MT, Lui EMW, Ko JKY, Li HWR, Wong JYY, Lau EYL, Yeung WSB, Ng EHY.
954 Hyaluronic acid-enriched transfer medium for frozen embryo transfer: a randomized, double-blind,
955 controlled trial. *Fertil Steril* 2021;116: 1001-1009.

956

957 **Supplementary information**

958 - S1: Abbreviations
 959 - S2: List of participants to the stakeholder review
 960 - S3: Sperm retrieval for retrograde ejaculation

961

962 **Supplementary Data 1: Abbreviations**

	Abbreviation
ART	Assisted Reproductive Technology
CAPA	Corrective and/or Preventive Actions
CPD	Continuing Professional Development
DOPS	Direct Observation, of Procedural Skills
EPO	Emergency Power Off
EQC	External Quality Control
EU	European Union
EWS	Electronic Witnessing System
FET	Frozen Embryo Transfer
HEPA	High Efficiency Particulate Air
ICM	Inner cell mass
ICSI	Intracytoplasmic sperm injection
IQC	Internal Quality Control
IVF	In Vitro Fertilisation
KPI	Key Performance Indicator
LBR	Live birth Rate
LN	Liquid Nitrogen
MAR	Medically assisted reproduction
MDR	Medical Device Regulation
PGT	Pre-implantation Genetic Testing
PI	Performance Indicator
PN	Pronucleus
PVP	Polyvinylpyrrolidone
QMS	Quality Management System
SEC	Single European Code
SET	Single Embryo Transfer
SoHO	Substances of Human Origin
SOP	Standard Operating Procedure
TE	Trophectoderm
TL	Time-Lapse
UPS	Uninterrupted Power Supply
VOC	Volatile Organic Compounds
ZP	Zona Pellucida

963

964

965 Supplementary Data 3: Sperm retrieval for retrograde ejaculation

966 Where the ejaculate is beneath 1.4 ml (World Health Organization, 2021), or totally absent
967 when 'dry orgasm' occurs then (partial) retrograde ejaculation may be suspected. If more
968 sperm are required than available or in case of retrograde ejaculation, a method of sperm
969 retrieval with bicarbonate can be used.

970 Hereto, the patient is asked to be well hydrated, so that their urine is almost colourless (i.e. not
971 a strong yellow colour – this may reduce osmolality of the urine sperm mix with but also
972 reduces other deleterious effects of urine). It would be aimed to achieve this approximately 1h
973 before orgasm / sample production. At this point (1h) the patient should take 4-5g sodium
974 bicarbonate in 1 litre of water and 10-30 min prior to planned ejaculation time can urinate
975 emptying bladder and test pH with the aim being to have alkalinised the urine to a more neutral
976 pH. The patient can then have further liquids to drink in ratio of 200 ml / 2g bicarbonate drink
977 if they so wish. There is some limited evidence that a full bladder may help increase any
978 antegrade ejaculate component, but presuming processing of a retrograde sample urine
979 neutralisation should be prioritised. The patient should be provided a minimum of two
980 containers, one for any semen ejaculated and a second to fill immediately after ejaculation with
981 20-30 ml first pass urine. Further urine can be collected in more pots, but dependent upon
982 intended treatment modality may not be required. The urine should be immediately processed
983 by the laboratory via mixing with an equal volume of gamete handling media (containing
984 serum) and centrifugation at 300 g for 10 min. Any semen can be processed by routine semen
985 methods.