

Ejaculate analysis

Semen volume

Sperm motility

Sperm vitality

Sperm concentration

Sperm morphology

Reference values

Ejaculate analysis

Semen volume

Sperm motility

Sperm vitality

Sperm concentration

Sperm morphology

Reference values

Semen volume: WHO5-recommended methods

Indirect volume measurement from weight, assuming semen density of 1 g/ml (it is 1.014 g/ml)

 Weigh the vessel (with label) (g)

 Direct volume measurement in collection vessel
 Weigh the vessel (with label) (g)

 Calculate the weight difference (g = ml)

Ejaculate analysis
Semen volume
Sperm motility
Sperm vitality
Sperm concentration
Sperm morphology

Reference values

Ejaculate analysis Semen volume Sperm motility Sperm vitality Sperm concentration Sperm morphology Reference values

WHO5 sperm vitality: one-step method

If <40% PR, detection of intact sperm head membranes

Intact sperm head membrane: impermeant dyes excluded

e.g. Eosin-Nigrosin Eosin = impermeant dye Nigrosin = background

Red head= Dead (D1)Pink head= Dead (D2)White head= Alive (L)Pink neck= Alive (L)

Ejaculate analysis
Semen volume
Sperm motility
Sperm vitality
Sperm concentration
Sperm morphology

Reference values

WHO5: sperm counting chambers

Not recommended:

shallow, small volume chambers: too few sperm capillary-filled chambers: uneven filling unfixed samples: motile sperm

Recommended: haemocytometer (100 µm deep) fixed, diluted samples

observed depends on the area of the microscop th of the chamber	ic field
Volume> ⑦ r from ocular diameter and objective Mrea (π^2) magnification	

The volume = area x depth = 196,375 μm^2 x 20 μm = 4,064,962 μm^3 = 4 nl

Sperm concentration: semen dilutions

With 50 sperm per HPF (4 nl) there are 12.5 per nl = 12,500 per µl = 12,500,000 per ml

Dilute 1:20 as recommended in WHO4 = 625,000 per ml

The central grid of the Neubauer chamber holds 100 nl i.e. there are 63 sperm per grid

- not enough for an acceptable count (<200)

Dilute 1:5 as recommended in WHO5 = 2,500,000 per ml

The central grid of the Neubauer chamber holds 100 nl i.e. there are 250 sperm per grid - more than enough for an acceptable count (>200)

Ejaculate analysis
Semen volume
Sperm motility
Sperm vitality
Sperm concentration
Sperm morphology
Reference values

Pull the semen droplet behind the slide
Do not push it in front of it

Semen smear thickness depends on:

aliquot volume (10 μl)
angle of dragging slide (45°)
speed of smear (~1 sec)

smaller → separated sperm greater → thinner smear higher → thicker smear

Disadvantages of fixing air-dried semen smears: • dehydration smaller than in smaller than in wet preparations

- shearing forces
 osmotic insults

expansion of immature sperm heads loss of cytoplasmic droplet retention of excess residual cytoplasm

	Sperm	Head	Other head	Midpiece	Principal	Overall	Comment
		Shape	comments		piece		
Plate 7	37	normal				normal	if PP OK
	38	abnormal	round			abnormal	
	39	normal				normal	
	40	normal				normal	
	41	normal				normal	
	42	normal		thick		abnormal	
	43	normal	<40 % acr			abnormal	
	44		out of focus				
	45	abnormal	round			abnormal	
	46	abnormal	round			abnormal	
	47	normal				normal	
	48	normal				normal	If PP OK

- **Ejaculate analysis**
- Semen volume
- Sperm motility
- Sperm vitality
- **Sperm concentration**
- Sperm morphology
- **Reference values**

WHO5: Reference values for human semen

 Reference
 Population

 Fathers (Partners with time to pregnancy of ≤12 months)

 ______N > 1600
 3 continents
 5 centres______

Samples Only 2-7 days of abstinence one sample per man complete samples

Methods

Collection, preparation, analysis with WHO methodology IQC + EQC-controlled labs. only haemocytometer (not CASA, Makler chambers) Tygerberg morphology

who	2	3		5
WHO	1987		4	<u></u>
	normal	normal	reference	LRL (5 PC
Semen Vol. (ml)	2.0	2.0	2.0	1.5
Total number (M)	40	40	40	<u>39</u>
Sperm concn. (M/ml)	20	20	20	15
Progr. Motility (%)	<u>50</u>	50	50	<u>28</u>
Vitality (%)	<u>50</u>	75	75	<u>59</u>
Normal Forms (%)	<u>50</u>	30	(15)	3

Summary

Changes to the WHO laboratory manual for the examination of human semen are aimed at:

increasing the accuracy of analytical results

providing more experimental details of common methods

giving hints and details of what to do when QC results are poor

These should help improve:

standardisation between labs

the diagnostic value of semen analysis results

follow up of therapeutic treatments

Low sperm numbers: no accurate assessment required Rough estimation:

if <4 sperm per x400 HPF (<16 per x200 HPF) state "< 2x10⁶ sperm /ml"

Are any sperm present? Centrifuge 1 ml semen at 3000g for 15 min Leave ~50µl supernatant Place 2x10 µl pellet under 22mm x 22 mm coverslips (20 µm deep) Examine both coverslips entirely (~2x480 fields) If sperm found, state "cryptozoospermia"

Are any motile sperm present? Place 40 μl semen under 24mm x 50mm coverslip (33 μm deep) Examine coverslip entirely (~1200 fields) If motile sperm found, state how many

> N.B. All these procedures are inaccurate Few sperm = large counting error No sperm seen ≠ no sperm present The 95% upper CI for 0 = 3.7