

Summary

- Poor sperm function is a clinical problem -where are we now?
- •
- Poor sperm function is a clinical problem –where are we now? Semen analysis has limitations. Tools do exist but generally are not robust or not rigorously tested [too much hype and no joined up writing]. High quality [repeatable and reliable] clinical data missing or in it's infancy [old]. Objective [for ART]– at least clinically to determine significant chances of failure [>10% of norm] in addition to semen assessment. New tools [simple, cheap, reliable, repeatable, effective] combined with more robust assessments urgently required.
- .

WHO new guidelines [possible, unpublished and confidential] ntile fertile men (conception within 1 Remarkably similar to NEJM study CL n Value Progressive motility (%) 1599 33 29-37 Concentration (x10⁶/ml) 10-19 1679 14 Morphology (%) 564 2-4 3 •Semen analysis is a blunt instrument [lower end of scale] •No value when done under 'uncontrolled conditions'.

TABLE 2				1			
Comparison of fertilization and cleavage from sibling occytes subjected to two protocols of conventional insemination (I/P) and IGSI in 73 cycles.							
Parauter	IVF	3051	IVF	JCS2			
Docytes inseminated or injected							
	235	235	245	- 250			
Mens ± SD	6.7 ± 2.2	-6.7 ± 2.8	6.5 ± 2.1	6.0 ± 2.1			
Partilization:							
no. of two-propodal (%)*	38 (37.4)	153 (64.3)	148 (79.6)	169 (87.8)			
manuba heykehenekk sure (ge)	4.5	2.4	51	2.3			
Cyvins with an fertilization		10101					
mn. ("s of eysles)"	9 (25.7)	0.02.00	2 (5.3)	= (p/a)			
Cycars with installation	14,774.81	Art country	the state of the	THE OTHER			
manue festilization and (%).	40.4	44.0	41.7	60.0			
Tenvinge							
Average % embryos with \$20% frequentation	72.4	80.1	64.1	71.6			
Average % embryos with \$50% fingesentation	90.6	91.1	88.8	88.7			
Vene: Differences not significant sulass stated otherwise							
P<.0001 by y ² test.							
P<.0001 by x2 test fire protocol A.							
the cost has the latter of the set of the second of the							

Sub optimal sperm function is a clinical issue....

What are sperm function tests trying to achieve ?

- 1. Some subtle changes in function for a particular test/assay e.g. research or toxicology.
- 2. <u>But</u>: primary clinical to direct therapy : which treatment is most appropriate and what are the chances of failure?

Tools do exists to determine 'function of the cell'....

- Quantitative motility/power.
- Zona binding.
- Calcium influx. Acrosome reaction.
- Reactive oxygen assessments/detection.
- None are universal and come with 'challenges'

Use of zona binding/zona induced AR

70

60 50 40

DSZPB

DS298 D22

 σ_2 99(219)

Significant problem : 35% of 'normal' sub fertile men.

IN YORKS MINE DOUGLOSS

(97/273, P < 0.05)

Comparison of the frequency of defective sperm - nona pellucida (ZP) hinding and the ZP-induced nerosome reaction between subfertile men with normal and abnormal semen

out at M.V. Genter Rd

Uig0 (38/136, P < 0,001

(67.98, P < 0.0

15/207, P < 0.001)

Problems/challenges

- •

- Methodology a very significant problem. Must have repeatability and reliability (recombinant ZP a good/bad example] Relatively poor tools (how measure ROS??? (wbc. Vs. sperm, marker)). High quality clinical data. Is the old data relevant today? Currently no perceived need thus research [in last 15 years] has been minimal. (no one I contacted in UK uses sperm function prior to IU, IVF]

Howeveruseful to indicate chances of failure but not regularly performed prior to ART treatment.

- If no zona binding, failed calcium response, no 'power' or acrosome reaction significant chances of failure. •
- If we could perform these with good R&R and at minimal cost would they be used/useful?
- So...[worse case scenario –usual question] [ignoring IUI]:
 - Assume at IVF FF rate 1.5% (<10% FR in 3%) and test cost €30 to perform.
 Identify 3% patients = €3000 for 100 patients.
 If test pick out 2 in 100 (at €3000).
 Average IVF clinic in UK approx 450 cycles thus < €7000 pa (50 : 50 IVF/ICSI).

Is it worth doing?

So how can we develop new clinically useful tools?

Sperm are ideal for proteomic analysis - basis of sperm dysfunction

Three strategies :

- 1. Dynamic studies i.e. capacitation related changes.
- 2. The sperm proteome [or compartments].
- 3. Unbiased comprehensive [global] comparison of normal with pathology.

Lefievre et al., 2007 Reproduction 133, 675-84.

Case Study: 6 patients (A-F) who failed to fertilise at IVF normal man, normal female [2003-2007]

Pixton et al. 2004 Hum Reprod 19, 1438-1447. Conner et al. 2007 Soc Reprod. Fertil. Suppl. 63, 237-55.

Discussion of the second states of a second second states in the large	De duce d'in mettente D. O and F.
Phosphoprotein phosphatase 1-gamma catalytic chain	Reduced in patients B, C and F
Isocitrate Dehydrogenase (NAD) alpha chain precursor	Reduced in patients C, E and F
Glutathione-S-transferase Mu 3	educed in patients A, C, E and F
Secretory actin binding protein	Increased in patients A, B, E and F
Lysozyme-like acrosomal sperm-specific secretory protein	Reduced in patients D and E
Clusterin	Reduced in patients C, E and F
Lactate dehydrogenase (testis-specific)	Reduced in patients B,C,E and F
Voltage dependent anion channel 2	Reduced in patients D and F
Semenogelin I	Increased in patients C, D and E
Semenogelin II	Reduced in patients C and D

Proteins showing at least a four-fold change in expression levels, as determined by 2D-electrophoresis compared to control. But 1. methodology 2. select patients.

Any other [simple] gems??

Summary

- Poor sperm function is a clinical problem.
- Tools do exist but generally are not robust or not rigorously tested [too much hype and no joined up writing].
- High quality [repeatable and reliable] clinical data missing or in it's infancy [old].
- Objective [for ART]– at least clinically to determine significant chances of failure [>10% of norm] in addition to semen assessment.
- New tools [simple, cheap, reliable, repeatable, effective] combined with more robust assessments urgently required.

Non clinical lecturer in Reproductive/developmental/cell biology

- Collaborative post between IVF, Medical School and College of Life Sciences.
- CLS in Dundee houses the greatest concentration of the highest cited scientists in biological sciences/biochemistry in Europe [over last 10 years - Science magazine].