

Vrije Universiteit Brussel

Aneuploidy screening of gametes and embryos Does it have any role in ART for male infertility?

Staessen Catherine

CENTRE FOR MEDICAL GENETICS CENTRE FOR REPRODUCTIVE MEDICINE

Vir intervent based

- Introduction
- · Sperm aneuploidy rate in infertile males
- Sperm parameters and ART outcome
- Chromosomal abnormalities in embryos from couples with male infertility
- Benefit of PGD-AS in male infertility

Introduction

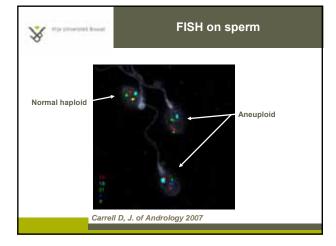
Outline of the presentation

- The contribution of sperm to normal fertilization and embryogenesis include
 - The centrosome

and have

- Oocyte activation factors
- Epigenetic gene modifications
- Possibly RNA regulation mechanisms
- (Boerke et al., 2007; Carrell et al., 2007; Chatzimeletiou et al., 2007; Emery and Carrell, 2006; Haaf, 2006)
- Transmission of <u>a haploid chromosome complement</u> is the most fundamental and essential contribution

Introduction

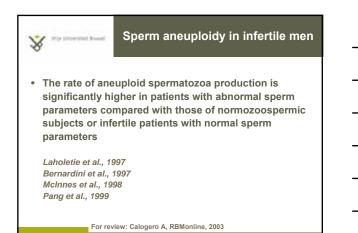

- ICSI has facilitated fertilization in cases of extreme spermatogenesis defects
 - Beneficial to infertility patients
 - The cause of heightened concern about the possibility of increased genetic risk, including the potential of an elevated risk of embryo aneuploidies

All and the second party.

A sub-free-last press.

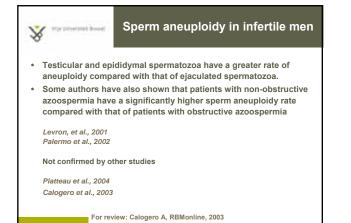
Outline of the presentation

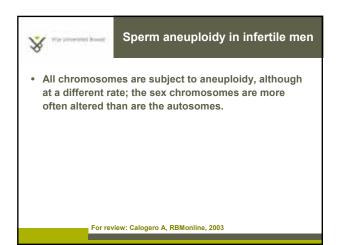
- Introduction
- Sperm aneuploidy rate in infertile males
- Sperm parameters and ART outcome
- Chromosomal abnormalities in embryos from couples with male infertility
- Benefit of PGD-AS in male infertility



Sperm aneuploidy in infertile men Infertile male patients with a <u>normal somatic</u>

<u>karyotype</u> produce abnormal spermatozoa as a result of an altered intra-testicular environment that affects negatively the mechanisms controlling chromosome segregation


Mroz et al., 1998


For review: Calogero A, RBMonline, 2003

Sperm aneuploidy in infertile men • A negative correlation has been reported to exist between aneuploidy and the main sperm parameters Vegetti et al., 2000 Ushijima et al., 2000 Calogero et al., 2001

For review: Calogero A, RBMonline, 2003

Frequency of aneuploidy in sperm FISH analysis: XY,13,15,16,17,18,21,22

 5 normospermic samples: 1117 sperm cells 98.5% normal haploid (98%-99%)

 • 27 OAT samples: 3749 sperm cells 88% normal haploid (73%-98%)

X

11 testicular samples: 893 sperm cells
 84% normal haploid (71%-94%)

Gianaroli et al., Hum. Reprod., 20, 2140-52, 2005

Syndrome	Aneuploidy (%)	Reference
Severe Morphology Defects (Multifagellar, macrocephalic, Tail Agenesis) 1997)	15-100	(Beazacken et al., 2001) (Devillard et al., 2002) (Carrell et al., 2004; In't Veld et al. (Carrell et al., 2004)
Rouad Head Only Syndrome	15-60	(Carrell et al., 2001) (Carrell et al., 1999)
Nonobstructive Azoospermia	1-51	(Burrello at al., 2005)
Unexplained Recurrent Pregnancy Loss	1-34	(Bernardini et al., 2004) (Carrell et al., 2003)
Repeated IVF Failure	2.7	(Petit et al., 2005)

- 1 000 to 10 000 sperm cells
- 2 3 rounds of varying probe mixtures
 => expensive and time-consuming analysis
- Automated testing has been described, although hardware and software expensive
- Cost/benefit of the assay will depend on the outcome
 of large scale studies to validate the benefit of testing

Outline of the presentation

• Introduction

X

- Sperm aneuploidy rate in infertile males
- Sperm parameters and ART outcome
- Chromosomal abnormalities in embryos from couples with male infertility
- Benefit of PGD-AS in male infertility

A sub-statement proved

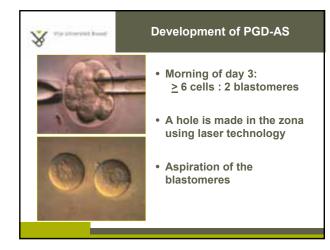
duction Vol.17, No.10 pp. 2600-2614, 2002

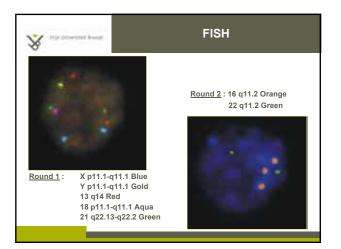
Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters

Maryse Bonduelle^{1,3}, Elvire Van Assehe¹, Hubert Joris², Kathelijn Keymolen¹, Paul Devroey², André Van Steirteghem² and Inge Liebaers¹ ¹Cente fe Makia Gennic and Zente for Reproductive Malcine, Datch-speaking Brussels Free University Universitet Broseth, Broseb, Belgiun

¹To whom correspondence should be addressed at: Centre for Medical Genetics, Academisch Zackenhnis (AZ-VUB), Laarbeeklaan 101, B+ 1090 Brussels, Belgium, E-mail: maryse bonduelle@uz.vub.ac.be

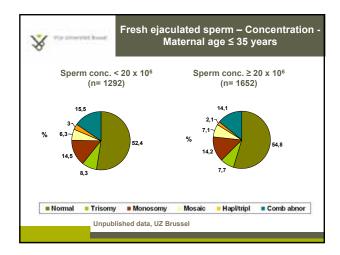
De-novo aberrations were found in 1.6% of the tested ICSI children


Table V. Sperm parar	neters in relation to non-inh	erited karyotype anomalies	
Karyotype result	Sperm concentration	Sperm concentration Sperm morphology ^a	
	<20×10 ⁶ ≥20×10 ⁶	Abnormal Normal	Abnormal Normal <50% ≥50%
Normal Abnormal Normal + abnormal % Fisher's exact test	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1267 272 25 1.9% 0 1292 272 82.61 17.39
	rphology and motility, miss	ing values were considered as aba	ormal.
*In the analysis of mo NS = not significant.	phology and motility, miss	ing values were considered as aba-	ormal.

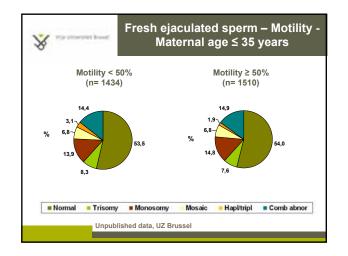

Outline of the presentation

• Introduction

Vir street and a second


- Sperm aneuploidy rate in infertile males
- Sperm parameters and ART outcome
- Chromosomal abnormalities in embryos from couples with male infertility
- Benefit of PGD-AS in male infertility

	infertility	
N patients Age mean ± SD	N embryos analyzed (Chromosomes tested)	% abnormal embryos
Mesa/TESE: 39 31.8 ± 2.4	169 (XY,13,14,15,16,18,21,22)	70.0%
Macro (23): 31.2 ± 4.6 Zero N (14): 34.1± 4.3	82 47 (XY,13,16,18,21,22)	46.4% 37.5%
Meiotic abn: 27 31.5 (24-39)	183 (XY,13,16,18,21,22)	42.5%
NOA: 30.6 ± 4.6 OA: 33.5 ± 3.9	203 121 (XY,13,16,18,21,22)	52.5% 60.0%
	N patients Age mean ± SD Mesa/TESE: 39 31.8 ± 2.4 Macro (23): 31.2 ± 4.6 Zero N (14): 34.1 ± 4.3 Meiotic abn: 27 31.5 (24-39) NOA: 30.6 ± 4.6	Age mean ± SD (Chromosomes tested) Mesa/TESE: 39 169 31.8 ± 2.4 (XY,13,14,15,16,18,21,22) Macro (23): 31.2 ± 4.6 82 Zero N (14): 34.1 ± 4.3 47 (XY,13,16,18,21,22) 183 31.5 (24.39) (XY,13,16,18,21,22) NOA: 30.6 ± 4.6 203 OA: 33.5 ± 3.9 121



	Sperm conc. < 20 x 10 ⁶	Sperm conc. ≥ 20 x 10 ⁶
No. of cycles with PGD-AS	216	281
Age ± mean SD	31.2 ± 3.1	31.9 ± 2.7
Embryo/biopsy ± mean SD	6.4 ± 3.9	6.2 ± 4.3
No. of transfers	179	225
Embryo/transfer ± mean SD	1.7 ± 0.8	1.6 ± 0.7
No. of + HCG	78	101
+ HCG/transfer	43.6%	44.9%

The internet press.	Fresh ejaculated Maternal ag	sperm – Motility je ≤ 35 years
	Mot. < 50 %	Mot. ≥ 50 %
No. of cycles with PGD-AS	244	253
Age ± mean SD	31.5 ± 3.0	31.7 ± 2.8
Embryo/biopsy ± mean SD	6.2 ± 3.9	6.3 ± 4.4
No. of transfers	205	199
Embryo/transfer ± mean SI	0 1.7 ± 0.8	1.6 ± 0.7
No. of + HCG	95	84
+ HCG/transfer	46.3%	42.2%

Chromosomal constitution of embryos obtained after ICSI with testicular sperm of OA and NOA men

- Azoospermic couples: 2 semen samples including a centrifugation step at high speed
- Both partners: genetic work-up
 - Karyotype analysis
 - Assessment for Yq deletion
- NOA: histological confirmation of spermatogenesis failure (maturation arrest, germ-cell aplasia, tubular sclerosis and atrophy) → n= 39 cycles
- OA: histological confirmation of normal spermatogenesis → n= 23 cycles

Platteau et al., 19, 1570-74, 2004

Chromosomal constitution of embryos obtained after ICSI with testicular sperm of OA and NOA men

- Control population of 14 couples (14 treatment cycles) who underwent PGD to determine fetal gender with regard to sex-linked disease
- Female age : 33.6 ± 5.4

Platteau et al., 19, 1570-74, 2004

The proventies present	obtained after ICSI with testicular s of OA and NOA men		
	NOA	OA	Sexing
No. of cycles	39	23	14
Age (years)	30.6	33.5	33.6
No. of COC	12.6	13.6	11.9
No. of MII	11.1	11.0	10.1
% 2PN	59.1	69.8	76.7
No. of emb. biopsied	203	121	85
Diagnosis			
% normal	42.1	34.8	56.4
% abnormal	52.5	60.0 *	40.5
% no diagnosis	5.2	2.0	2.9

Vie constant house	Gianaro	li., J. End 711-	Irocrinc 16, 2000		st., 23,
		Pro	bes:XY,1	3,14,15,10	5,18,21 2
Table 3 - Chromosomal abnormalities in	NF and ICSI embryos ge	enerated by patients		ryotype. ICSI	
	141	Group 1	Group 2	Group 3	Group 4
No. cycles	29	22	9	24	13
Mean age (mean±SD)	32.0±2.4	31.7±1.8	32.5±2.4	31.4±2.8	31.2±2.8
No. diagnosed embryos FISH abnormal (%)	155 98 (63)	131 78 (59)	45 28 (62)	127 76 (60)	53 38 (72)
Monosomies and trisomies (%) Gonosomal aneuploidies (%)	27 (27)*	21 (27)*	9 (32)	29 (38) 4 (5.3)	18 (47)*
*p<0.05. FISH: fluorescence in situ hybridizat		erm injection; IVF: in vitr	o fertilization.		
Group 1 : normospe	rmic				
Group 2 : oligoasthe	enoteratosperm	nic with ≥ 0.5	x 10 ⁶ tota	al motile o	count
Crown 2 + < 0 E × 106	total motile co	unt			
Group 5 . < 0.5 X 10°					

Chromosome abnormalities in ICSI and TESE embryos.				
Group	ICSI-oligospermia, n (%)	JCSI-TESE, n (%)		
Normal	347(41.8)*	22 (22)*		
Polypioid	39 (4.7)	5 (5)		
Haploid	25 (3.0)	4 (4)		
Aneuploid	199 (23.9)	16(16)		
Aneuploid and mosaic	19 (0.2)	1(0)		
Mosaic	201 (24.2)	52 (52)		
Total annuploid	218 (26.2)	17 (17)		
Total mosaic	220 (26.5)*	53 (53) ^h		
Total	830	100		

¥ marine

Outline of the presentation

- Introduction
- Sperm aneuploidy rate in infertile males
- Sperm parameters and ART outcome
- Chromosomal abnormalities in embryos from couples with male infertility
- Benefit of PGD-AS in male infertility

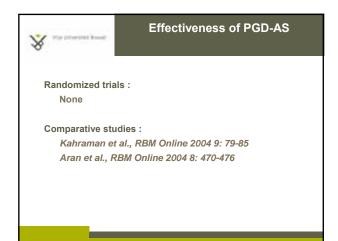
Does PGD -AS change the selection ¥

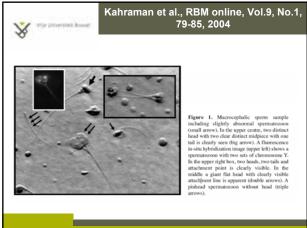
of embryos in NOA and OA men?

• Study :

to retrospectievely review all the embryology data available from azoospermic patients undergoing ICSI with PGD and to examine whether the embryo selection on day 5, based only on the developmental and morphological criteria, would have been different from the selection based on PGD-AS results

Donoso et al., Hum Reproduction, 2006


¥ ***	the second data and the second second data and the second data and	PGD -AS chang bryos in NOA	•
	NOA	(37 cycles)	
	Correct choice	Incorrect choice	False-Hope
SET	64.8% (n=24)	10.8% (n=4)	24.3% (n=9)
DET	72.9% (n=27)*	2.7% (n=1)	24.3% (n=9)
TET	72.9% (n=27)*	2.7% (n=1)	24.3% (n=9)
	OA	(22 cycles)	1
	Correct choice	Incorrect choice	False-Hope
SET	54.5% (n=12)	36.3% (n=8)	9.1% (n=2)
DET	86.5% (n=19)**	4.5% (n=1)	9.1% (n=2)
TET	86.5% (n=19)**	4.5% (n=1)	9.1% (n=2)
		Donoso et al., Hum Re	production, 2006


Aim of PGD-AS

• IVF benefit :

¥

- to improve implantation
- to improve pregnancy rate
- to reduce spontaneous abortion
- to prevent multiple pregnancies
- Genetic benefit :
 - to prevent viable trisomic offspring (XY, 13, 18, 21)



Table 1. Cycle characteristics and or for macrocephalic sperm samples.	atcome in PGD and	non-PGD cycles
Parameter	PGD ^a	Non-PGD ^a
Number of patients	21	52
Number of cycles	23 31.2 ± 4.6	60 30.5 ± 5.0
Female age (years) Male age (years)	31.2 ± 4.0 33.7 ± 5.1	30.5 ± 5.0 34.0 ± 5.2
Duration of infertility (years)	7.8 ± 4.4	9.2 ± 6.0
Sperm concentration (×10 ⁶ /ml)	6.7 ± 13.8	11.9 ± 14.9
Motility (%)	14.1 ± 13.9	17.0 ± 14.6
Oestradiol on HCG day (pg/ml)	2580 ± 998	2259 ± 989
Average oocytes/patient (n)	16.3 ± 5.5	14.5 ± 7.7
Average MII oocytes/patient (n)	12.5 ± 5.0	10.8 ± 5.8
Fertilization rate (%)	43.9	46.5
^a There were no significant differences between	the two groups (P>04	5).

Kahraman	егаї., КЫМ 79-85,	
Table 4. Embryo transfer outcome in PG macrocephalic sperm samples.	iD and non-PGD o	ases for
Parameter	PGD	Non-PGD
Embryo transfer cycles (n) Embryo transfer cycles cancelled (n) Embryos transferred (mean ± SD) Pregnancy rate (%) Implantation rate (%) Abortion rate (%)	21 2 ⁸ 2.3 ± 1.3 33.3 (7/21) 25.0 14.3 (1)	54 6 ^b 3.4 ± 1.5 ^c 27.8 (15/54) 12.3 ^c 46.7 (7)
Values in parentheses are numbers. ^a Due to lack of chromosomally normal embryos. ^b Due to ferrilization fnihure ($n = 2$) and cleavage-sta ^c Significant ($P \le 0.01$).	ge urrest (n = 4).	

wije internet bound	79-85,	2004
Table 2. Cycle characteristics and c for patients having spermatozoa with		
Parameter	PGD ^a	Non-PGD ²
Number of patients	14	57
Number of cycles	14	66
Female age (years)	34.1 ± 4.3	30.8 ± 5.0
Male age (years)	38.1 ± 5.4	36.1 ± 6.3
Duration of infertility (years)	10.2 ± 8.3	8.8 ± 5.1
Sperm concentration (×106/ml)	5.7 ± 15.8	8.8 ± 23.7
Motility (%)	22.7 ± 14.6	15.7 ± 17.4
Oestradiol on HCG day (pg/ml)	2347 ± 979	2410 ± 1439
Average oocytes/patient (n)	12.4 ± 7.9	14.3 ± 6.8
Average MII oocytes/patient (n)	9.1 ± 5.0	11.7 ± 15.7
Fertilization rate (%)	66.4	70.4
^a There were no significant differences betwee	en the two groups (P>0.0	15).

Kahraman	79-85	
Table 5. Embryo transfer outcome in PC having spermatozoa with zero normal m		cases for patients
Parameter	PGD	Non-PGD
Embryo transfer cycles (n) Embryo transfer cycles cancelled (n) Embryos transferred (mean ± SD) Pregnancy rate (%) Implantation rate (%) Abortions (%)	13 1 ^a 2.5 ± 1.8 46.1 (6/13) 17.5 16.7 (1)	$\begin{array}{c} 63\\ 3^{b}\\ 3.8\pm2.1^{c}\\ 53.9\ (34/63)^{d}\\ 20.5^{d}\\ 23.5\ (8)\end{array}$
Values in purentheses are numbers. ^a Due to luck of chromosomally normal embryos. ^b Due to fertilization faihtre ($n = 1$) and cleavage-sta ^c Significant ($P \approx 0.01$). ^b Not significant ($P \approx 0.05$).	ge arrest ($n = 2$).	

is relations pression			/9-8	5, 2004	
				Probes:X	,Y,13,
Table 3. Fluorescence in- results from blastomeres a		zation result	s, Values	relate to	
		cephalic atozoa	Zero i morpi		
	(n)	96	в	56	
Analysed	82		47		
Diagnosed	69	84.1	40	85.1	
Normal	37	53.6	25	62.5	
Abnormal	32	46.4	15	37.5	
Aneuploidy	27	84,4	14	93.3	
Monosomy	2	7.4	3	21.4	
Trisomy	10	37.0	10	71,4	
Tetrasomy	14	3.7 51.9	-	-	
Complex aneuploidy Haploidy	14	51.9		7.4	
Triploidy		12.5		6.6	
	1.1	3.1		0.0	
Tetraploidy	1	3.1	-	17.0	

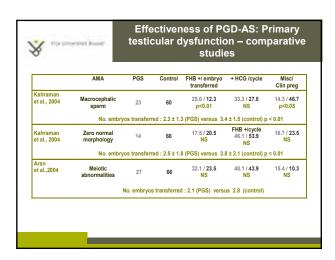


Table 1. General characteristics and clinical ICSI cycles with and without PGD. There we		
-	Meiotic abnormalities with PGD	Meiotic abnormalities without PGD
No. couples	25	44
No. cycles	27	66
Mean age male (years) Mean age female (years)	34.6 (28-51) 31.5 (24-39)	34.9 (21-59) 33.1 (20-41)
Mean occytes recovered (no. oocytes)	19.2 (519)	13.9 (916)
Mean occytes microinjected (no. oocytes)	14.6 (393)	11.1 (735)
Mean 2PN oocytes (no. oocytes 2PN; %)	10.9 (293: 74.5)	7.5 (496: 67.5)
No. replacements	25	66
Mean no, embryos/transfer	2.1	2.8
No. pregnancies	13	29
Pregnancy rate/cycle (%)	48.1	43.9
Pregnancy rate/transfer (%)	52.0 32.1	43.9 23.5
Implantation rate (%) Miscarriage rate (%)	15.4	10.3
stocarrage rate (%)	12.4	10.5

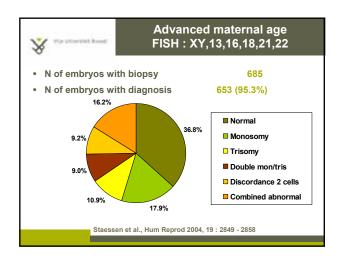
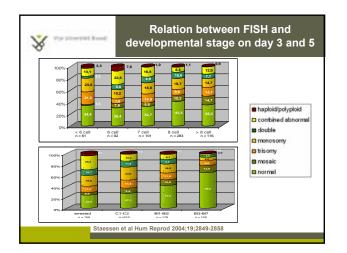
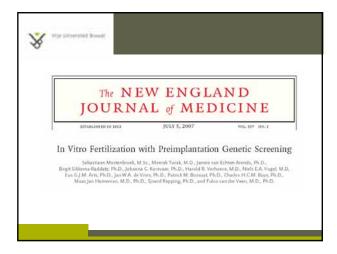


Table 2. Embryo analysis results.	
No. cycles	27
No. biopsied embryos	250
No. analysed embryos (%)	183 (73.2)
No. diagnosed embryos (%)	160 (87.4)
No. normal embryos (%)	92 (57.5)
No. abnormal embryos (%)	68 (42.5)
No. undiagnosed embryos (%)	23 (12.6)



A mile internet press	RCT: Advanced	i maternal age
	Included Studies	
Study	Stevens et al., 2004	Staessen et al., 2004
N patients randomized	39 (21 PGS/18 con)	400 (148 PGS/141 con)
Inclusion criteria	≥ 35 with ≥ 5 good quality embryos on day 3	≥ 37 ICSI
Outcome	Pregnancy rate/ET Implantation rate Ongoing pregnancy rate/woman	Positive hCG/cycle Implantation rate Abortion rate Women reaching ET N embryos/ET

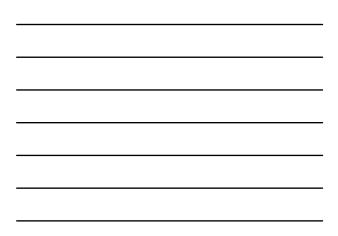


Outcome title	No. of studies	No. of participants	Statistical method	Effect size
01 live birth rate	1	389	Odds Ratio (Fixed) 95% CI (11% vs. 15%)	0.65 [0.36, 1.19]
02 ongoing pregnancy rate	2	428	Odds Ratio (Fixed) 95% CI (15% vs. 20%)	0.64 [0.37, 1.09]
03 proportion of women reaching embryo transfer	1	389	Odds Ratio (Fixed) 95% CI (41% vs. 64%)	0.39 [0.26, 0.59]
04 mean number of embryos transferred per transfer	1	202	Weighted Mean Difference (Fixed) 95% CI	-0.80 [-1.09, -0.51
05 clinical pregnancy rate per woman randomised	2	428	Odds Ratio (Fixed) 95% CI (15% vs. 22%)	0.56 [0.32, 0.96] 0.42 [0.12, 1.51]
06 multiple pregnancy rate per pregnancy	1	389	Odds Ratio (Fixed) 95% CI	0.41 [0.12, 1.36]
07 miscarriage rate per clinical pregnancy	2	428	Odds Ratio (Fixed) 95% CI	0.27 [0.04, 1.82]

Table 2. Outcomes in Woman Who Underwart Pro	in the state of the	in the states in		-
Outcome	Women Who Underwent Preimplantation Canetic Screening (N = 206)	Controls (N = 202)	Rate Ratio (93% CI)*	P Value
Women with an ongoing pregnancy - no. (%)	52 (25)	74 (37)	0.69 (0.51-0.93)	0.03
Women with a 1 biochemical pregnancy - no. (%)	81 (29)	106 (12)	0.75 (0.60-0.97)	0.008
Total no. of biochemical pregnancies	94	318		
Women with all clinical pregnancy - no. (%)	61 (30)	88 (44)	0.68 (0.53-0.88)	0.003
Total no. of clinical pregnancies	ø	92		
Women with a 1 miscarriage no. (%)	37 (18)	36 (18)	1.01 (0.67-1.53)	0.97
Total no. of missarriages	401	442		
Women with #1 live birth no. (%)	49 (24)	71 (11)	0.68 (0.50-0.92)	0.01
Total no. of live births	59]	859		

Aim of PGS

• IVF benefit :


Vir internet base

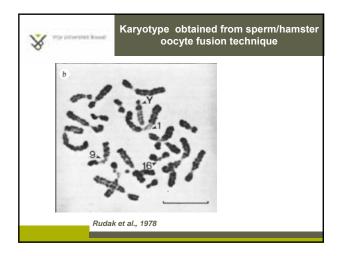
- to improve implantation
- to improve pregnancy rate
- to reduce spontaneous abortion
- to prevent multiple pregnancies
- Genetic benefit :
 - to prevent viable trisomic offspring (XY, 13, 18, 21)

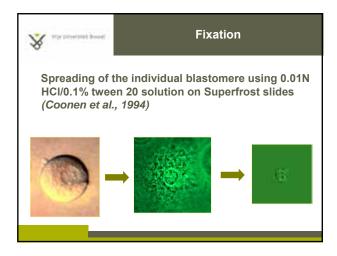
RCT :	RCT : Advanced maternal age (≥ 37 y)					
	PGS	Control				
No. of pregnancies with FHB (%)	22 (75.9)	30 (76.9)				
No. clinical miscarriage	1*	1				
No. singleton births	18	23**				
No. of twin births	2	6				
No. of triplet births	1	0				
Total live-born children	25	35				
Live-born / embryo transferred	15.2 %	10.4 %				
* Twin pregnancy expulsion at 20 weeks ** One child with trisomy 21	;					
Staessen et al. (2004) Hum	Reprod 19 2849-2	858				

-	8 "	e Liniterpinel	1 hr		maa	No.10, 2		. Reprod.,Vol. 14, 2002	,
Appe	alia 1. Kayoype	anonalies in presa	tal diagonals						
Paret	d characteristics				Transil pr	codue:			Ownerse
	Age month	Kayaya		\$7Fe	Sample 1	Reat 1	Sample 2	Reads 2	
	(jean)	1000	mat						
De-4+	te six dei meni MA	al actor	#3Y	33	C15	45,5346,30547,3028 (109717)	No	Long-term confirmed by FISH, material contamination excluded by DNA.	Territorio
	293 459 983 723 723 283 782 284 384	No. dan 46.XX 46.XX 46.XX 46.XX 46.XX 46.XX 46.XX 46.XX 46.XX	Not down 46, 337 46, 337 46, 337 46, 337 46, 337 46, 337 46, 337 46, 337		Amin CVS CVS CVS Amin CVS CVS Amin CVS Amin	46.333462.833467.833467.333 46.3334733333 (1026 46.333473333 (1026 46.333473333 (1026) 47.33344 47.33344 47.33344 47.33344 47.33344 47.33344 47.33444 47.33444 47.33444 47.33444 47.33444 47.33444 47.33444 47.33444 47.33444 47.334444 47.334444 47.334444444444	********	communities enclosed by IPA Enter many Stein 113 and Jung U14 Barri and Jungatem Uners and Jungatem 24 ereptanes in 2 Independent aufoant Stein and Jungatem Stein and Jungatem Stein and Jungatem For reach Eners and Jungatem	Den Schutz Den Den Den Den Den Den Den Den Den Den
De-44	27.6 31.4 40.7 41.3	attud BLXX Nor-dise 45,XX BLX BLXX	46.XV Nordone 46.XY 46.XY	1	CVS Amin CV3 CV5	46.XX.a48115q1 47.XX.+10466.XX.(11/1) 47.XX.+21 47.XY.+21	Annia Silbith Annia Annia	46,333,adm18a) 47,335, +18 m shin Hmblam 47,337, +21	Termination Solibiesk Termination Solaritor
A T H H	34.8 37.1 48.6 36.9	44.XX Not door 46.XX 46.XX	46, XY Not down 46, XY 46, XY	1	100	40 XY + 21 Theorem 21 47 XX + 10 47 XX + 10	2222	Termination Termination Termination	

.

¥ """


Summary


- High incidence of abnormal embryos (37 70%)
- PGD-AS seems to improve embryo selection in azoospermic men especially when undergoing SET
- More RCT studies are required to evaluate the value of PGD-AS in severe sperm morphological anomalies

Effect of PGD-AS less than expected ? The concept of PGD-AS is valid, although the effect is less than expected • Screening for too few chromosomes : aneuploidy involving unscreened chromosomes • Adverse impact of embryo biopsy • Mosaicism complicates the diagnostic abilities

Other causes of implantation failure

obtained aft	Chromosomal constitution of embr obtained after ICSI with testicular s of OA and NOA men				
	NOA	OA	Sexing		
I Sex chromosomal abnormalities No. of sex chromosome abnormalities / no. of embryos analysed (%)	11/194 (5.6)	2/117 (1.7)	0/82 (0.0)		
Il Autosomal abnormalities No. of autosomal abnormalities / no. of embryos analysed (%)	30/194 (15.4)	33/117 (28.2)	19/82 (23.2)		
III Ploidy status abnormalities No. of ploidy status abnormalities / no. of embryos analysed (%)	6/194 (3.0)	9/117 (1.2)	1/82 (7.7)		
IV Combined abnormalities No. of combined abnormalities / no. of embryos analysed (%)	71/194 (36.9)	25/117 (21.3)	16/82 (19.5)		

