Will my child be normal?

Children's follow-up after ART for male infertility

Maryse Bonduelle

Outline lecture

Introduction Prenatal diagnosis Perinatal outcome Malformations at birth Long-term follow-up studies Conclusion

FU children after male infertility

Introduction of ICSI and TESE

- 1991 introduction of ICSI at the UZ Brussel
 Palermo et al. Lancet. 1992 , 340, 17-8
- concerns re-emerged about the health and well-being of the children
- concerns were related to the invasiveness of the procedure
 - to the type of sperm used
- 1995 first child born after TESE (testicular sperm extraction) at the Free University of Brussels
 Silber et al. Hum Reprod. 1995, 10, 148-52

Follow-up study at the UZ Brussel

- AIM : Evaluate the risk of ICSI (and TESE) to the offspring
 - Overall risk
 - genetic constitution of the fetuses
 - perinatal problems
 - development of the children
 - Procedure-related risk – comparison ICSI / IVF
 - Sperm-related risk
 - sperm quality / sperm origin

Study design

- Informed consent to follow-up study including
 - assessment of genetic risks
 - chromosomal anomalies of parents
 - prenatal testing
 - follow-up of children
- Data on pregnancy and delivery collected
 - prenatal testing (CVS / amniocentesis, ultrasound)
 - written questionnaires on pregnancy and neonatal outcome
- · Physical examination of the children
 - at 2m, 1 and 2 years

Materials

- Prenatal diagnostic tests¹
 - 1586 karyotypes in ICSI (1991-2001)
- Prenatal + neonatal outcome after testicular sperm² 61 NOA ICSI children (1994-2000)
 196 OA ICSI children (1994-2000)

- Neonatal outcome¹
 - 2840 ICSI children (1991-1999) • 2955 IVF children (1983-1999)
- Developmental outcome (1995-2002)²
 - 439 ICSI children · 207 IVF children

¹ Fresh embryos, different sources of sperm no cryopreservation or PGD ² Fresh and cryopreserved embryos included, different sources of sperm

Prenatal diagnosis	in 1586 ICSI foetuses
	Randualla at al 2002

25						
20	1 .6% *	1.02 - 2.32 %	0.45 - 0.87%			
10	0.6%*	0.30 - 1.16 %	0.19 - 0.27%			
15	0.9%	0.53 - 1.56 %	0.26 - 0.60%			
8	0.5%	0.22 - 0.99 %	0.14 - 0.33%			
7	0.4%	0.18 - 0.91 %	0.11 - 0.22%			
22	1.4%*	0.87 - 2.09 %	0.47 - 0.37%			
47	3.0%	2.19 - 3.92 %	0.92%			
¹ Jacobs, 1992 on 34 910 newborns ² Ferguson-Smith, 1984 on 52 965 prenatal samples ³ Hook, 1981, 1984, 1987 on prenatal samples * significant						
	10 15 8 7 22 47 0 newbo 7 on pre	10 0.6%* 15 0.9% 8 0.5% 7 0.4% 22 1.4%* 47 3.0% 0 newborns ² Ferguss 7 on prenatal samples	10 0.6%* 0.30 - 1.16 % 15 0.9% 0.53 - 1.56 % 8 0.5% 0.22 - 0.99 % 7 0.4% 0.18 - 0.91 % 22 1.4%* 0.87 - 2.09 % 47 3.0% 2.19 - 3.92 % 0 newborns ² Ferguson-Smith, 1984 on 52 96 * significant			

Prenatal diagnosis in 1586 ICSI foetuses¹

- Inherited abnormalities 1.4%
- Known risk related to the chromosomal anomalies in the parents (6.3%)
- 17/22 cases paternally inherited
- Preimplantation > prenatal diagnosis

➡ Informed choice of the parents prior to the procedure

¹Bonduelle et al. 2002

Prenatal diagnosis in 1586 ICSI foetuses¹

- Non-inherited (*de novo*) anomalies 1.6%
- Significantly higher than general population (with same age) but absolute risk low
- Related to sperm characteristics
- · Severity is variable (termination not always chosen)
- Detectable from 11th week of pregnancy
 - ⇒ Informed choice of the parents <50% agree to do a prenatal test</p>
 ¹Bonduelle et al. 2002

FU children after male i

Prenatal diagnosis in 1586 ICSI foetuses¹ *de novo* anomalies, sperm parameters / origin

- Sperm count (72%) $<20.10^6$ / ml \Rightarrow 2.1 % chromosomal abnormalities Fisher Exact 2 tailed test p <0.05
- Sperm motility (83%) <50~% N motility \Rightarrow 1.9% chromosomal abnormalities Fisher Exact 2 tailed test p<0.05
- Sperm morphology \Rightarrow no influence abn < 14 % N or abn \geq 14 % N morphology
- Sperm origin \Rightarrow no influence

¹Bonduelle et al. 2002

FU children after male infertility

Prenatal diagnosis in 1586 ICSI fetuses / anomalies in relation to sperm origin¹

	de novo	inherited
Figurated shorm	1 7%*	1 / 94
• n =1469	(25)	(22)
 Epididymal sperm 	0%*	0.0%
• n = 31	(0)	(0)
 Testicular sperm² 	2.3%*	1.2%
• n = 85	(2)	(1)

Prenatal diagnosis after use of testicular sperm ¹ in non- obstructive azospermia (NOS) and obstructive azospermia (OA) ²						
	de novo	inherited				
 Testicular sperm n = 85 (of 257) 	2.3% (2)	1.2% ⑴				
Non-obstructive (NOA) • n = 15 (of 61)	6.7%* (1)	0.0% (0)				
Obstructive (OA) • n = 70 (of 196)	1.4%* (1)	1.4% (1)				
¹ Bonduelle et al. 2002 ² Vernaeve et al. 2003	* not signifi	cant				
FU children after male infertility 10/11/2007						

Prenatal diagnosis in Belgium and France

	Epidydimal	Testicular	ICSI total
	de novo +	de novo +	de novo +
	inherited	inherited	inherited
Belgium	n = 31	n = 85	n = 1586
	(0)	(3)	(47)
	0%	3 .5% ¹	3.0% ¹
France	n = 546	n = 201	n= 2332
	(1)	(5)*	(16)
	0.2%	2.5% ²	0.7% ²
¹ n.s. ² p =	0.02 *mo	st <i>de novo</i> and	terminated

Chromosomal anomalies in relation to sperm origin / quality

- Increased aneuploidy rate in sperm when severe testicular failure
 - Levron et al., 2001; Burello et al., 2002; Palermo et al., 2002
 Glanarolli et al. 2005. Higher aneuploidy compared to the general population in
- Higher aneuploidy rate in MESA / TESE embryos compared to
- ICSI <u>embryos</u> from normospermic patients • Gianarolli et al. 2000

- Higher incidence of mosaicism in TESE embryos
 - Silber et al. 2003 Immature centrosome leading to errors in mitosis?

Chromosomal anomalies in relation to sperm origin / quality

- No difference in <u>non-obstructive</u> azospermia / normal spermatogenesis azospermia patients
 - Mateizel et al. 2002. n =17 NOA; 26 OA
 - NO difference in chromosomal abnormality in patients with severe testicular failure vs normal spermatogenesis except for more aneuploidy for chromosome 18

- Higher aneuploidy rate in preimplantation <u>NOA embryos</u>
 Silber et al. 2003
- Lower implantation rate of NOA embryos compared to OA
 Vernaeve at al., 2002

FU children after ma 10/11/2007

Perinatal outcome

Literature : ICSI and IVF are a risk factor of adverse perinatal outcome

- Higher risk in singletons^{1,2}
 - LBW OR 1.8 (CI 1.4 2.2)
 - VLBW OR 2.7 (CI 2.3 3.1)
 - prematurity OR 2.0 (CI 1.7 2.2)
 - perinatal mortality OR 2.2 (CI 1.6 3.0)
- Related to high rates of multiples
- Perinatal outcome in ART twins comparable to the general population or better²
- No obvious difference between IVF and ICSI

¹Meta analysis, R Jackson et al. 2004 ² Helmerhorst F et al. 2004

Perinatal outcome: pregnancy data / evolution of pregnancies UZ Brussel

	ICSI ¹	Testicular ²
Pregnancies	3073	299
Biochemical	8.2%	12.0%
Ectopic	1.6%	0.7%
Miscarriage	13.9%	14.2%
Termination	0.6%	0.0%
Birth	73.3%	72.6%
Lost to FU	2.4%	8.3%
	1 Bonduelle et al 2002	2 Vernaeve et al 2003

Perinatal outcome: Testicular NOA / OA

		Total	NOA	OA
			-	-
Singletons	n = 1499	n = 148	n = 38	n =110
Prematurity	8.4%	16.2%	24.3% ¹	13.1% ¹
All births	n = 2840	n = 257	n = 61	n = 196
LBW	27.1%	49.4%	33.9% ¹	30.7% ¹
VIRW	4.5%	7.8%	10.2% ²	3.6% ²

Pe tes	Perinatal outcome in ICSI literature / testicular sperm							
	Belgium singleton		Germany ² singleton		Sweden ³ singleton			
	ICSI n = 1499	Test ¹ n = 326	ICSI n = 1944	Test n = 147	ICSI n = 773	Test n = 23		
Prema <37w	8.4%	4.9%	-	-				
LBW <2500	7.2%	6.8%	10.8%4	6.1%4	7.6%6	17.4%6		
VLBW <1500	1.5%	0.93%	3.0%5	0.7%5	1.4% ⁷	0%7		
GA	-	38.7W	38.9w ⁸	39.1w ⁸	40w	40w		
¹ De Schr ² Ludwig	ijver et al. Upd et al. Hum.	ate 10/2007 Reprod.,18, 2	4,5,6 2003 ³ W	^{6,7,8} Not signif ennerholm et	ficant al., Hum Repre	od, 2000		

Perinatal	death in	ICSI	literature /
testicular	sperm		

	Stillbirth ICSI	Testicular	Perinatal ICSI	death Testicular			
Belgium ¹	n = 2889	n = 257	n = 2889	n = 257			
	1.7%	2.3%	1.9%	2.7%			
Germany ²	n = 3199	n = 229	n = 3199	n = 229			
	0.3%4	0%4	1.4%5	1.3%5			
Sweden ³	n = 1192	n = 31	n = 1192	n = 31			
	0.5%4	0%4	1.2%5	3.2%5			
¹ Bonduelle et al. ² Ludwig et al., H	¹ Bonduelle et al., Hum Reprod, 2002 ³ Wennerholm et al., Hum Reprod, 2000 ² Ludwig et al., Hum Reprod, 2003 ^{4,5} not significant						

Stillbirth and perinatal death in Brussels study

	ICSI		Testicular	
		Total	NOA	OA
Total children	2889	257	61	196
Stillborns ¹	1.7%	2.3%	4.9%	1.5%
Perinatal death	1.9%	2.7%	6.6% ²	1.5% ²

² FE p < 0.05

Congenital malformations

Major malformations definitions

- ICD-10 codes for malformations
- Major malformation defined as malformation causing functional impairment and/or requiring surgical correction
- Remaining malformations were classified as minor

Internal guidelines to code for major/minor

<section-header><section-header><section-header><equation-block><text>

Malformations in ICSI: sperm parameters / origin

Sperm conc.	$\geq 5.10^{6}$ /ml	2.8 % ¹
Sperm conc.	< 5.10 ⁶ /ml	3.8 % ¹
 Ejaculated sperm 	n = 2477	3.4 % ¹
 Testicular² 	n = 525	5.1 % ¹
Epididymal	n = 105	3.8 % ¹

¹Fisher's Exact Test n.s

²De Schrijver et al. update 10/2007 of children born after TESE

Malformations in ICSI: sperm origin

	Liveborns	Major malf	
ICSI	2840	3.4 % ¹	_
Testicular ²	525	5.1 % ¹	
• NOA ³	58	3.7 % ¹	
• OA	193	2.1 % ¹	

¹Fisher's Exact Test non significant ²De Schrijver et al. update 10/2007 of children born after TESE ³Vernaeve et al. 2003

Malformations in ICSI literature / testicular sperm

	Epididymal	Testicular	ICSI	Statistics
Belgium	n = 105 liveb 3.8%	n = 251 liveb 2.4%	n = 2840 liveb 3.4%	n.s.
France A France B	n = 546 preg 2.2% OR=1.30 [0,95-1,84]	n = 201 preg 4.0% ²	n = 2332 preg 2.5% ²	² n.s. significant
Germany	n = 26 liveb 3.8%	n = 229 liveb 9.1% ³	$n = 3199$ liveb $8.4\%^3$	³ n.s.
France A De Germany Ludy	Mouzon et al oral cor wig et al., Hum Repro	mm., 2005 B de Mo d, 2003	ouzon et al. 2007	

Long term FU studies on ICSI

• Multicentre EU study at 5y

- on 1515 ICSI, IVF and SC children
- Bonduelle et al. 2004

Major malformations at 5 years ¹					
	ICSI n 540	IVF n 437	Control n 538	p-value	
Neonatal	3.3%	2.1%	1.9%	ns	
Childhood	3.0% ¹	2.3%	0.4%1	¹ 0.001	
Total major malformation	<u>6.3%²</u>	4.3%	2.2% ²	² 0.001	
¹ Bonduelle et al.	. 2004				

Major malformations at 5 years

Increase in ICSI > IVF > control children

- Not detected at birth
- Partially due to increased defects in uro-genital system
- Higher malformation rate in ICSI boys 8.2% > girls 3.6%

Growth at 5 years

Subgroups

- Epididymal and testicular
- Ejaculated <1 million/ml
- Ejaculated 1- 4.99 million/ml
- Ejaculated 5- 19.9 million/ml
- Ejaculated > 5 million/ml
- No difference in growth and cognitive development
- ¹ Wennerholm et al. H Reprod 2005

Major malformations after epididymal and testicular sperm¹

- Questionnaire sent to the parents
- Age children 3m -7y
- 96 % return rate
- Major malformation rate not increased
- Hypospadias more frequent OR 1.6% 95 CI 0.3-5.7

¹ Fedder et al. 2007

Major malformations at 8 years in 150 ICSI and SC children¹

- Medical or neurological outcome similarPhysical examination
- Weight, heigth, HC and Body Mass Index similar
- Major congenital malformation were more frequent in ICSI
 RR 2.94 (95% CI 1.09-7.89)
- RR 2.94 (95% CI 1.09-7.69)
- Pubertal staging was similar in both groups
- Genital examination : similar
 ¹ Belva et al. 2007

FU children after male infertility 10/11/2007

Long term development

Long term psychomotor / behavioral development

Review (9 publications) on ICSI behavioral and cognitive development (9 publications) Leslie et al. 2005

- Majority of ICSI children have normal mental development
- · Most have found no increased risk for developmental delay
- Demographics, maternal education and social class are important determinants

EU study on 1515 ICSI, IVF and controls children at the age of 5 years (EU study)¹

- Ponjaert et al, Ped 2005
 ICSI is not associated with <u>mental</u> and psychomotor abnormalities
- Barnes et al, H Reprod 2004
 - Couples benefiting from successful ICSI have no adverse effects on their relationships with their child or between themselves
 - Indeed they appear to be more dedicated to parenting. This may have implications for the future, as their children mature

UZ Brussel study on 151 ICSI and control children at age 8 and 10

- Leunens et al. 2006
 - ICSI and SC children show a comparable cognitive and motor development until the age of 8 and 10 years
- Leunens et al. 2007
 - Couples benefiting from successful ICSI have no adverse effects on their relationships with their child or between themselves when the children are 8 years

Conclusion

Conclusions (1)

• Prenatal diagnosis in ICSI

- A slight increase (1.6%) in *de novo* anomalies
- Related to sperm concentration and motility
- Indications for prenatal testing if concentration $$<20.10^6$\,/$ ml or abnormal motility
- Prenatal diagnosis after testicular sperm
 - Comparable rate in Belgium

Possible higher risk in NOA→ Further analysis TO DO

10/11/2007

Conclusion (2)

- Adverse neonatal outcome in ART / ICSI
- Higher risk in singletons for
 - LBW x2
 - VLBW x2-3
 - prematurity x2
 - perinatal mortality x2
- Mainly related to high rates of multiples

No obvious difference between IVF and ICSI

Conclusion (3)

- Neonatal data after ICSI + testicular sperm
 - No different pregnancy course and neonatal outcome in Belgium, German and Swedish study
 - Higher rate of VLBW, in the NOA group (1study)
- Perinatal death after ICSI + testicular sperm
 - · No statistical increase in limited series
 - Higher perinatal death in severely defective sperm (NOA) in 1 study

Conclusion (4)

- Malformation rate in ICSI
 - · At birth comparable in ICSI to IVF
 - Malformation rate in ICSI <u>20-30% higher</u> compared to the general population, based on controlled studies and meta analysis
 - · No influence of sperm parameters or sperm origin
- Malformation rate in ICSI + testicular sperm
 - No difference in Belgium, France, Sweden and Germany

Take home messages

- Prenatal diagnosis is advisable in pregnancies after ICSI with male factor infertility (< 20.10⁶ / ml or abnormal motility)
- A possible higher risk of chromosomal anomalies in ICSI embryos after use of sperm from NOA patients needs to be further investigated
- Outcome of children after use of different sperm sources /quality seems satisfactory
- Further investigations needed on neonatal outcome and further development of ICSI–NOA children

Acknowledgements

Children and parents

- Multidisciplinary team of the Centres for Medical Genetics and for Reproductive Medicine two full-time research nurses paediatricians-geneticists

 - gynaecologists psychologists
- data managers
 data managers
 cytologists, molecular biologists, embryologist
 Support from University Hospital, University Research Council, Willy
 Gepts Foundation, unrestricted educational grant from Organon
- Geneticists Psychologists Data management I. Ponjaert L. Leunens I. Liebaers W. Meul K. Keymolen M. De Rademaeker J. Nekkebroek Gynecologists M. Camus Paediatricians Laboratory V. Vernaeve F De Schrijver F. Belva C. Staessen E. Van Assche W. Verpoest H. Tournaye S. De Smyttere W. Lissens W. Foulon S. Seneca K. Sermon E. SLeurs Research nurses A. Buysse S. Maes M. De Rijcke **Clinical directors** P. Devroey E. Piccard Administration I. Liebaers J Van der Elst V. Van Beneden J. Heulaerts P. Milants A. Callens V. De Wolf Medische Genetica Centrum voor Reproductieve Geneeslunde

Malformations in ICSI literature / testicular sperm

	Epididymal	Testicular	ICSI	Statistics
Belgium	n = 105 liveb 3.8%	n = 251 liveb 2.4%	n = 2840 liveb 3.4%	n.s.
France A France B	n = 546 preg 2.4% - 2.2%	n = 201 preg 6.5% ¹ - 4.0% ²	n = 2332 preg $3.2\%^1 - 2.5\%^2$	¹ p<0.05 ² n.s.
Germany	n = 26 liveb 3.8%	$n = 229$ liveb $9.1\%^3$	n = 3199 liveb 8.4% ³	³ n.s.
A including B major ma ³ Ludwig et	chromosomal aberrat Iformations excluding al., Hum Reprod. 200	ions which were in chromosomal ano	terrupted malies	