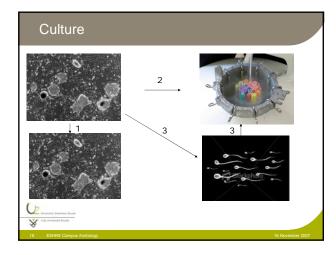


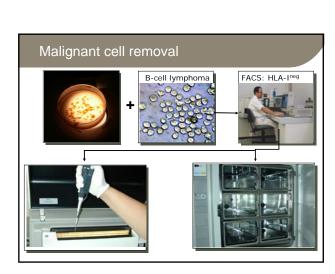
Cryopreservation of cell suspensions


	No. of grafts	Sclerosis / atrophy	Most advanc	ed cell stage	No. of tubules anaysed	No. spz containing tubules	No. of damaged tubules
			spg	spz			
resh	28	0 (0%)		28 (100%)	1538	354 (23%)	603 (39%)
G	14	3 (21%)		11 (79%)	547	176 (32%)	231 (42%)
OMSO	14	1 (7%)	2 (14%)	11 (79%)	949	308 (32%)	302 (32%)

Conclusion

¥

- DMSO is the cryoprotectant of choice for banking spermatogonial stem cells
- Tissue cryopreservation seems to result in better fertility preservation
- The protocol needs to be improved to achieve a better maintainance of tissue architecture and spermatogonial stem cell function


Step by step 1. Long term storage → Cryopreservation → Culture (2. Malignant cell removal) 3. Transplantation protocol 4. Efficiency of reproduction 5. Safety of reproduction

Malignant cell removal

EXPERIENCES IN TEADS (1) A set of the set

experiments and thered before availability of the backbond periods. At most transplant with backbond packbond backbond backbond backbond backbond backbond backbond packbond backbond backbond backbond backbond backbond backbond packbond backbond b

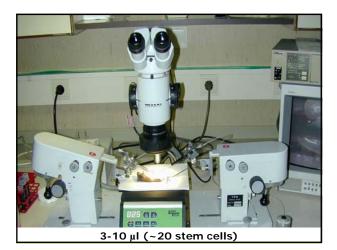
U2 ¥

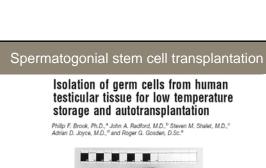
	HLA class 1	positivity (%)	Tumour growth	n in culture (%)	PCR
Patiënt	Before FACS	After FACS	Siatra MACC	ANN FAOS	
1	12,03	0,09	578		
2	7,72	0,25	556		
3	16,31	2,26	102		
4	5,79	0,49	592		
5	17,14	0,88	1.005		

Conclusion

- FACS for HLA-I alone is not effecient enough in decontaminating the cell suspension
- Additional markers will be necessary
- Other decontamination strategies need to be explored

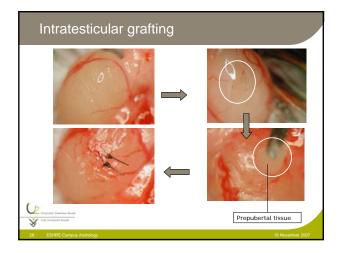
Step by step

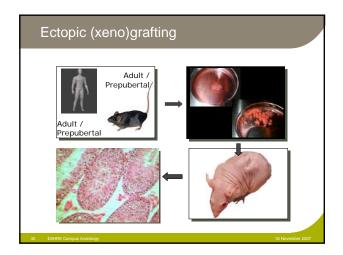

6 ¥

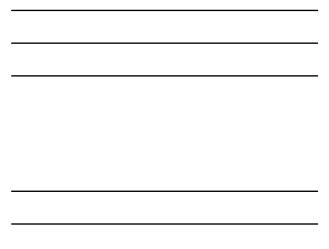

- 1. Long term storage \rightarrow Cryopreservation \rightarrow Culture
- (2. Malignant cell removal)
- 3. Transplantation protocol
- 4. Efficiency of reproduction
- 5. Safety of reproduction

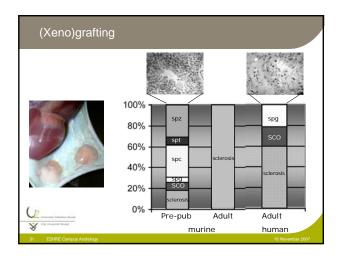
Spermatogonial stem cell transplantation

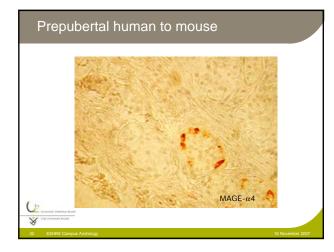
Spermatogenesis following male germ-cell transplantation (spermatogenia/stem offs/testm/transpesic mice)

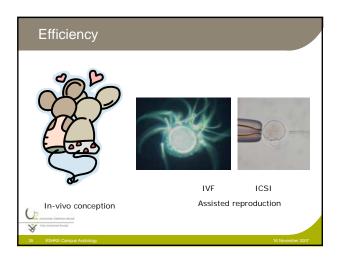





9




	N° of transplantations	N° of testes with donor spermatogenesis (%)	Total colony lenght/testis (mm)
SSCT	9	5 (55)	41.3
Intratesticular grafting	16	16 (100)	125.3
	7	7 (193)	

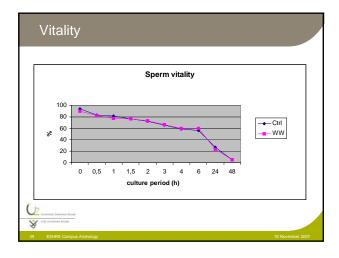


Conclusion

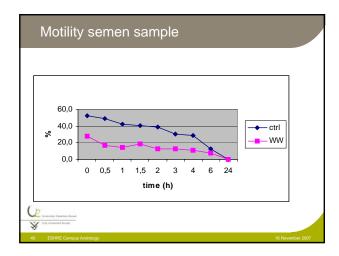
- SSCT and intratesticular grafting are both resulting in reconstitution of a feasible degree of spermatogenesis
- Intratesticular grafting is easier to perform
- Since xenografting holds a risk for zoonosis, it should only be considered for detecting malignant cells in the testis tissue

12	mental Seattan Rose	
¥	(a close the board	

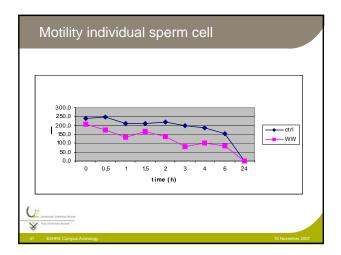
Ir	vivo cono-	ception		(R)
		No. of females with a vaginal plug	Pregnancy rate [%]	No. of foetuses
	After transplantation	17	6 (35)	17 (2.8)
	Fertile controls	10	9 (90)	76 (8.4)
62	natul Zenetys Based		<i>P</i> <0.01	<i>P</i> <0.01
×	ESHRE Campus Andrology			16 November 2007

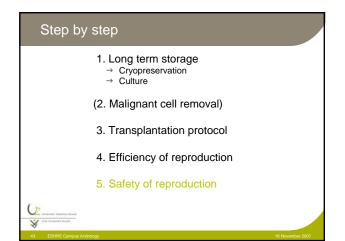


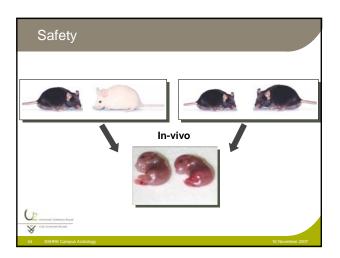
ffspring		(P
Litter size	Second generation (mean)	Third generation (mean)
After SSCT	5-11 (8.0)	6-8 (7.2)
Fertile controls	5-11 (7.6)	4-8 (5.3)

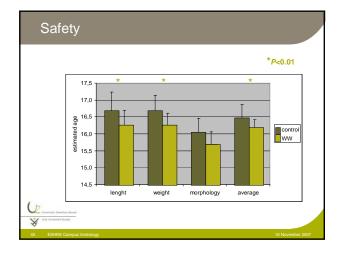


In-vitro	In-vitro fertilisation					
	No. of oocytes	Fertilisation rate (%)	Blastocyst rate (%)			
After transpla	ntation 154	88 (57)	24 (27)			
Fertile control	is 195	155 (79)	88 (57)			
		<i>P</i> <0.00001	<i>P</i> <0.00001			
38 ESHRE Campus	Andrology		16 November 2007			








IC	SI			S.	C
				16)	0
		No. of oocytes	Fertilisation rate (%)	Blastocyst rate (%)	
-	After transplantatie	187	57 (69)	17 (30)	
	Fertile controls	112	38 (61)	14 (37)	
	tal Semantus Based	1			
-8	SHRE Campus Andrology			16 Novemb	e

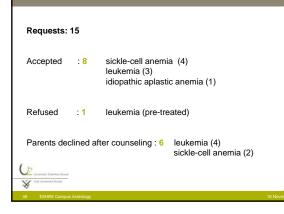
Hope or hype?

Although a number of questions remain unanswered and several aspects of spermtogon al stem cell balling and transplantation need to be improved, we believe in the applications which are associated with spermatogonial stem cells.

Clinical cryopreservation program

Keros et al., 2007

56



Tissue pieces (1-10 mm³)

V ×

Cryoprotectant: Hank's Balanced Salt Solution + 5% DMSO + 5% HSA

Clinical experience

