SPERM ONLY PLEASE: Prevention of infections in an artificial insemination program

Carin Huyser Reproductive and Endocrine Unit Department Ob/Gyn University of Pretoria Steve Biko Academic Hospital South Africa carin.huyser@up.ac.za

ESHRE Campus workshop Genk Belgium, 15 December 2009

CONTENT

I. Introduction

- Infection and contamination control
 - Environment
 - Staff
 - Supplies
 - Patients & specimens

II. Aim

• Origin & prevention

III. Prevalence (origin) of pathogens in ART

- Bacteria and STIs
- Viruses
- Interaction STI & HIV
- IV. Risk reduction (prevention)
 - Screening & counselling
 - Semen washing
 - Validation of specimens
 - ART procedure: IUI versus IVF/ICSI
- V. Discussion & Conclusion
- VI. Acknowledgements

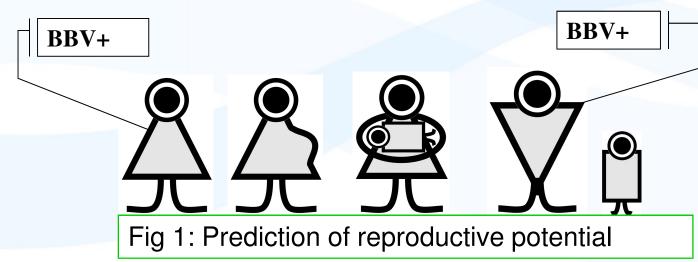
I. INTRODUCTION

'Semen contains vitality & heredity, not germs': seminal discourse in the AIDS era¹.

Infection and contamination control in ART laboratory²⁻⁴:

- Environment (inside & outside of lab e.g. *Pseudomona* spp. in water, fungal spores in air)
- **Staff** (individuals & techniques)
- Facilities & supplies (equipment, eg. cryostorage tanks; media)
- Patients & specimens

1. Khan et al. J Health Popul Nutr 2006; 24:195-200;

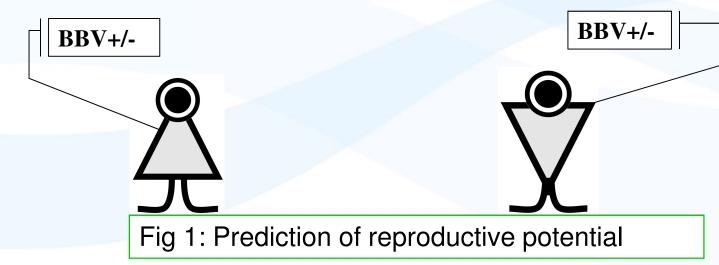

2. Englert *et al. Hum Reprod Update* 2004; **10**:149-162; **3**. Elder, Baker & Ribes. Infections, Infertility and Assisted Reproduction 2005; **4**. Magli *et al. Hum Reprod* 2008; **23**:1253-1262

I. INTRODUCTION

Infection and contamination control in ART laboratory¹:

Patients & specimens (semen)

- Prevalence of pathogens (origin)
- Risk reduction (prevent)



I. INTRODUCTION

Infection and contamination control in ART laboratory²:

Patients & specimens (semen)

- Prevalence of pathogens (origin)
- Risk reduction (prevent)

II. AIM

 The prevalence of pathogens (origin)¹ and methodologies to prevent infections (risk reduction) from *male → female in an ART program²:

*Male: HIV-seropositive and the female HIV-seronegative

through:

 Screening of patients, thorough counselling, appropriate treatment and applying appropriate semen decontamination & ART (IUI) procedures

1. Dejucq-Rainsford & Jégou. *Curr Pharm Des* 2004; **10**:557-75 2. Englert *et al. Hum Reprod Update* 2006; **10**:149-161

CONTENT

- I. Introduction
 - Infection and contamination control
 - Environment
 - Staff
 - Supplies
 - Patients & specimens

II. Aim

Origin & prevention

III. Prevalence (origin) of pathogens in ART

- Bacteria and STIs
- Viruses
- Interaction STI & HIV
- IV. Risk reduction (prevention)
 - Screening & counselling
 - Semen washing
 - Validation of specimens
 - ART procedure: IUI versus IVF/ICSI
- V. Discussion & Conclusion
- VI. Acknowledgements

III. PREVALENCE - Bacteria

Prevalence of micro-organisms in semen samples¹:

Coagulase negative staphylococci

Ureaplasma sp.

α-Haemolytic streptococci

Escherichia coli

Enterococcus faecalis

Enterococcus sp.

Mycoplasma sp. *Staphylococcus aureus*

1. Fourie et al. Andrologia (in preparation); 2. Radhouane et al. BMC Infec Dis 2007; 7:129-138

III. PREVALENCE - STI's

Besides HIV, the most common STIs reported include¹⁻²:

chancroid, human papiloma virus, herpes simplex, trichomoniasis and candidiasis, while **gonorrhoea**, syphilis and **chlamydia** also contribute to damages of Fallopian tubes.

1. Bambra Hum Reprod Update 1999; 5:1-20; 2. Ochsendorf Andrologia 2008; 40:72-75

III. PREVALENCE – Interaction STD & HIV

 Association of sexually transmitted diseases (STDs) and HIV¹ <u>Epidemiologic synergy</u> – Transmission: Susceptibility & Infectiousness Duration of infectiousness:

Rate of progression/recovery, recurrence of STDs

 STDs seems to have a stronger effect on susceptibility to HIV than on infectiousness of HIV; treatment of STDs in HIV+ patients should be targeted¹

Impact on:

- seminological parameters¹⁻²,
- Ieukocytospermia and/or seminal viral load^{1,3} and
- shedding⁴ (e.g. cytomegalovirus⁵, Herpes simplex, Candida or Trichomonas infections⁶)

1. Røttingen et al. Sex Transm Dis 28:579-597; 2. Bezold et al. Fertil Steril 2007; 87:1087-1097;

3. Xu et al. J Infect Dis 1997; **176**:941-7; **4**. Gupta et al. J Infect Dis 2000; **78**:1321-1323;

5. Sheth et al. J Infect Dis 2006; 193:45-48; 6. Reichelderfer AIDS 2000; 14:201-7

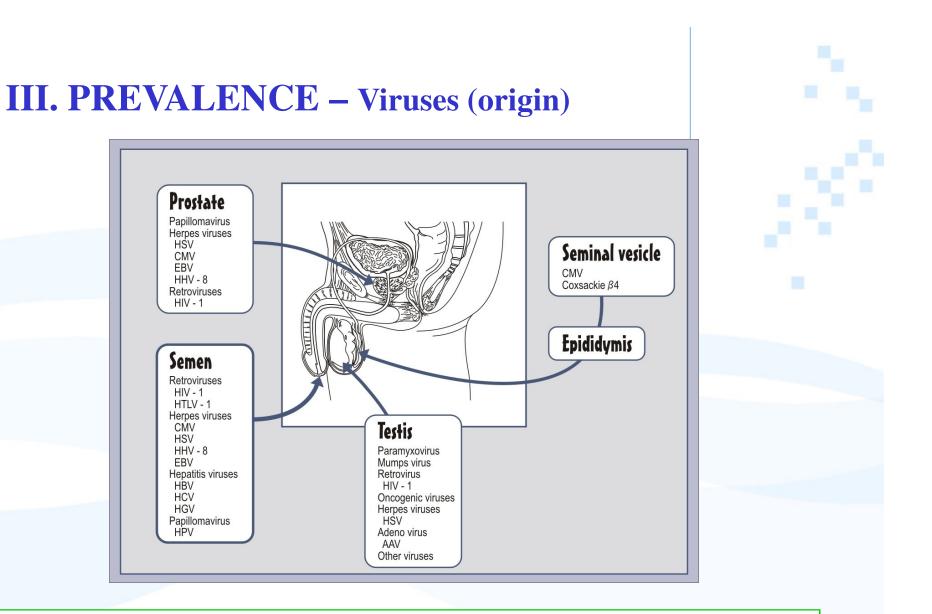


Fig 2: Summary of viruses identified in the genital tract of the male

Adapted from Dejucq-Rainsford & Jégou. Curr Pharm Des 2004;10:557-75

III. PREVALENCE – Viruses (blood-semen loads)

Table 1: HIV-1 RNA detection before and after preparation according to viral load in blood¹

Blood viral load	Semen	%	Sperm sample
<50	7/41	17	0/41
>50-<1,000	7/20	35%	0/20
>1,000-<10,000	4/8	50%	0/8
>10,000	15/16	94	6/16
Total:	33/85	39	6/85

Blood viral load impact on seminal viral load¹

 Seminal viral load impact on efficiency of sperm washing²
 Washed sperm samples (DGC + SU) contaminated with HIV-1 RNA, when seminal plasma >1 x 10⁶ copies/ml

1. Englert et al. Hum Reprod Update 2004; 10:149-162;

2. Fiore et al. Fertil Steril 2005; 84:232-234

CONTENT

- I. Introduction
 - Infection and contamination control
 - Environment
 - Staff
 - Supplies
 - Patients & specimens
- II. Aim
 - Origin & prevention
- III. Prevalence (origin) of pathogens in ART
 - Bacteria and STIs
 - Viruses
 - Interaction STI & HIV
- IV. Risk reduction (prevention)
 - Screening & counselling
 - Semen washing
 - Validation of specimens
 - ART procedure: IUI versus IVF/ICSI
- V. Discussion & Conclusion
- VI. Acknowledgements

IV. RISK REDUCTION

Screening & counselling of male patient

Decisions:

Diagnostic

Infectious disease tests

- Swab bacterial infections
- Blood viral load/CD4 count
- Semen spermiogram
 - bacteria culture
 - viral load DNA/RNA

Treatment

- Antibiotics/HAART
- Semen decontamination technique
 - Density gradient centrifugation (DGC)
 - Washing cycles/Swim-up/Inserts
- Viral validation DNA/RNA
- Appropriate ART procedure IUI IVF/ICSI

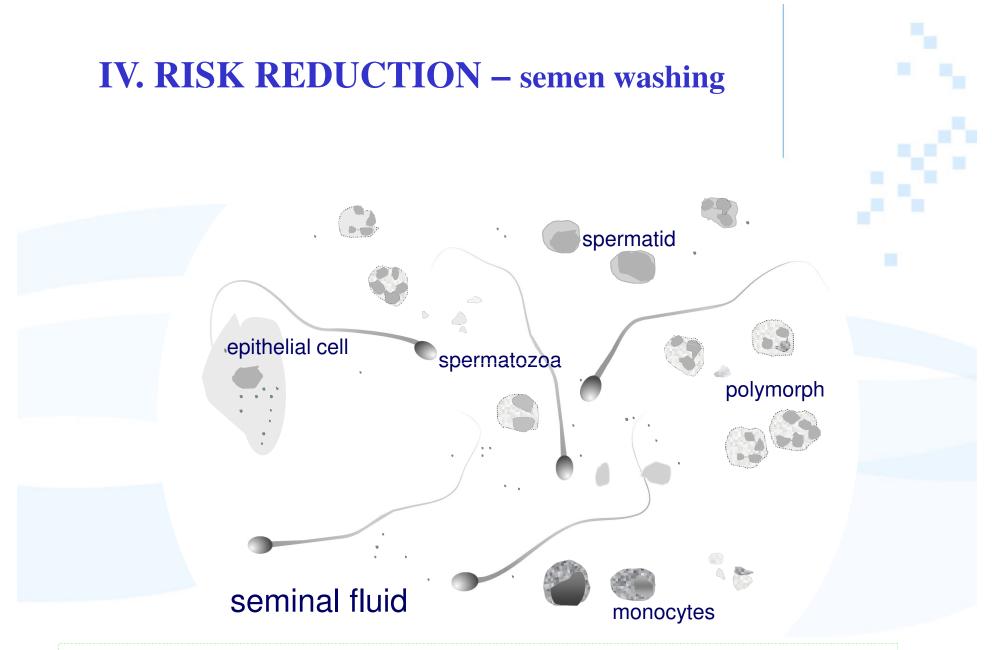


Fig 3.1: Schematic presentation of spermatozoa and non-sperm cells (not according to scale)

15

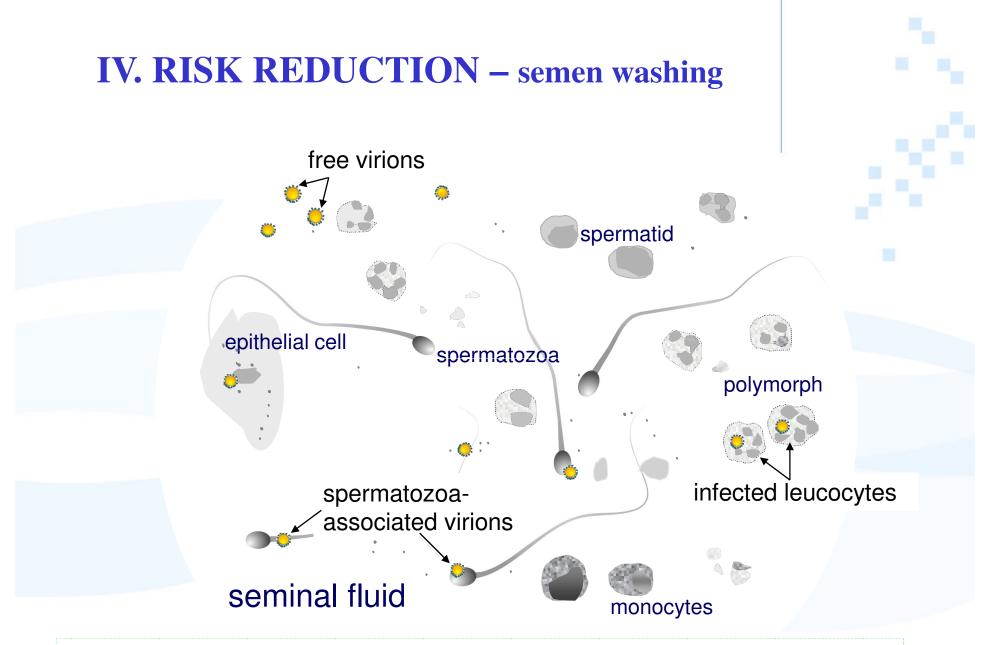


Fig 3.2: Schematic presentation of spermatozoa and non sperm cells, with viral particles (not according to scale)

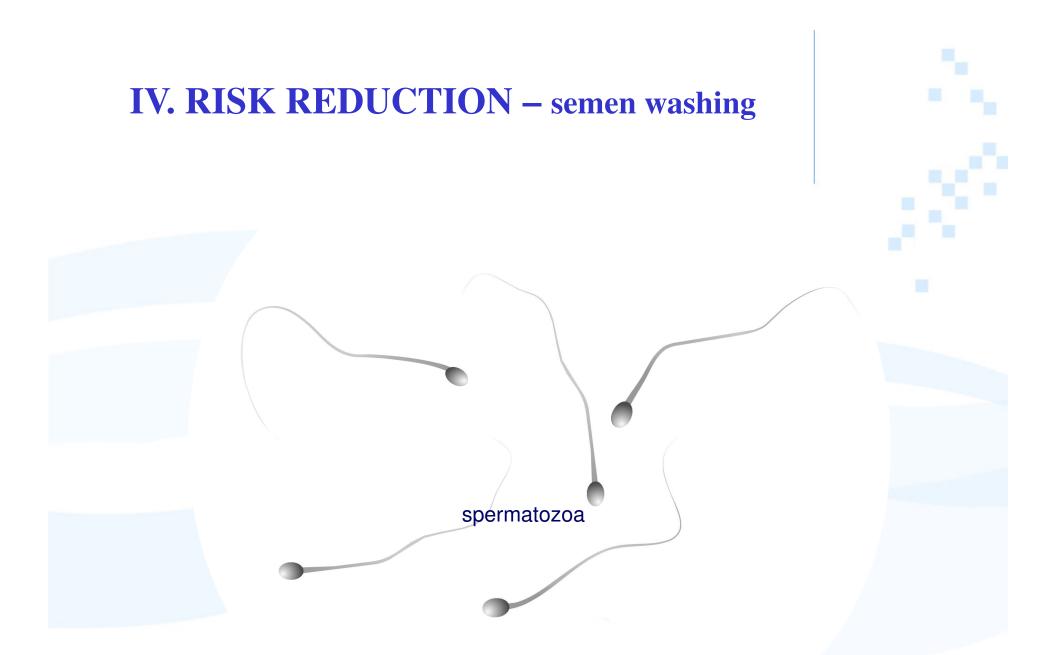


Fig 3.3: Schematic presentation of spermatozoa without contaminating cells (not according to scale)

17

Fig 5: Schematic presentation of sperm processing using a tube insert:
1) Layering; 2) Prevention of recontamination using an elongated micropipette to bypass contaminated layers
Loskutoff *et al. Fertil Steril* 2006; **81**:440-447; Huyser *et al. Hum Reprod* 2006; **21**(Suppl 1)i58

CONTENT:

- I. Introduction
 - Infection and contamination control
 - Environment
 - Staff
 - Supplies
 - Patients & specimens
- II. Aim
 - Origin & prevention
- III. Prevalence (origin) of pathogens in ART
 - Bacteria and STIs
 - Viruses
 - Interaction STI & HIV
- IV. Risk reduction (prevention)
 - Screening & counselling
 - Semen washing
 - Validation of specimens
 - ART procedure: IUI versus IVF/ICSI

V. Discussion & Conclusion VI. Acknowledgements

IV. DISCUSSION – ART procedure To test or not to test¹⁻³:

Type of test:

- Various tests with different thresholds of detection:
 - Nuclisense Kit RNA extraction; NASBA, bDNA, RT-PCR, nPCR
 - False-negative results due to inhibitors of PCR extraction or dilution below detection limit¹

1. Persico *et al. Hum Reprod* 2006;**21**:1525-30; **2.** Nakhuda & Sauer. Chapter 25. In: Oehninger & Kruger: Male Infertility. 2007; **3.** Gilling-Smith *Curr Obstet Gynaecol* 2006;**16**:299-305

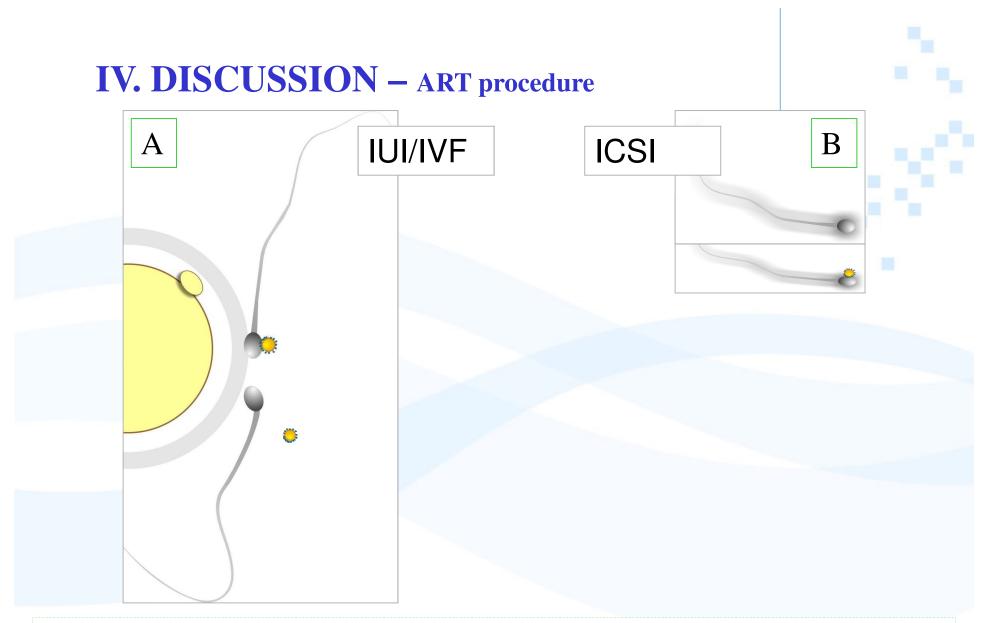
IV. DISCUSSION – ART procedure To test or not to test¹⁻³:

Type of test:

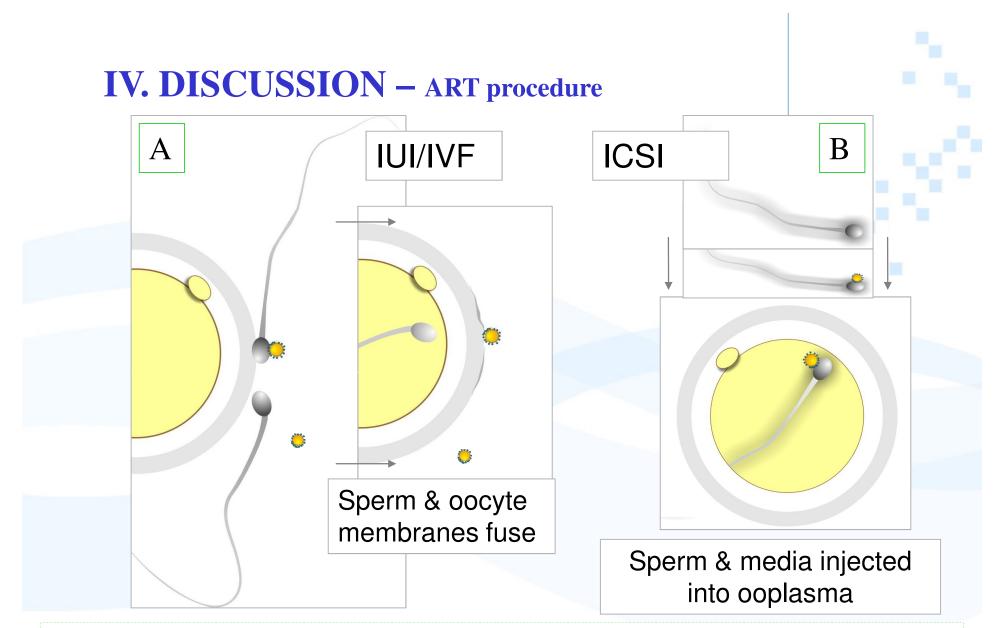
- Various tests with different thresholds of detection:
 - Nuclisense Kit RNA extraction; NASBA, bDNA, RT-PCR, nPCR
 - False-negative results due to inhibitors of PCR extraction or dilution below detection limit¹

• What to test:

- Semen or seminal compartments
- Purified sperm sample (post-processing)
- DNA and/or RNA


• When to test:

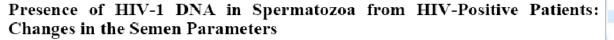
- Prior to procedure, same-day evaluation/freeze-thaw processing
- Follow-up female partner & child


1. Persico *et al. Hum Reprod* 2006;**21**:1525-30; 2. Nakhuda & Sauer. Chapter 25. In: Oehninger & Kruger: Male Infertility. 2007; 3. Gilling-Smith *Curr Obstet Gynaecol* 2006;**16**:299-305

24) 281

22

Fig 6: Conventional insemination (A) versus ICSI (B) – hypothetical risk to introduction external particles. Adapted from: Kvist U. ESHRE Campus Symposium 1-3 Oct 2009. http:://www.eshre.com; See also Semprini & Fiore *Curr Opin Obstet Gynecol* 2004; **16**:257-262


Fig 6: Conventional insemination (A) versus ICSI (B) – hypothetical risk to introduction external particles. Adapted from: Kvist U. ESHRE Campus Symposium 1-3 Oct 2009. http: <u>www.eshre.com</u>; See also Semprini & Fiore *Curr Opin Obstet Gynecol* 2004; **16**:257-262

IV. DISCUSSION – validation – HIV-1 DNA in spermatozoa

418

OURNAL OF

REPRODUCTIVE IMMUNOLOGY Current HIV Research, 2009, 7, 418-424

Walter Cardona-Maya^{*,1}, Paula Velilla², Carlos Julio Montoya², Ángela Cadavid¹ and María T. Rugeles²

¹Reproduction Group, University of Antioquia, Medellin, Colombia; ¹Immunovirology Group, University of Antioquia, Medellin, Colombia

The debate on the presence of HIV-1 in human gametes

Journal of Reproductive Immunology 41 (1998) 41–67

Baccio Baccetti ^{a,*}, Arrigo Benedetto ^b, Giulia Collodel ^a, Antonino di Caro ^b, Anna Rosa Garbuglia ^b, Paola Piomboni ^a

^a Institute of General Biology, University and Center for the Study of Germinal Cells, C.N.R., Via T. Pendola 62, 53100 Siena, Italy
^b Center of Virology, L. Spallanzani Hosp. IRCCS, Rome, Italy

Journal of Reproductive Immunology 41 (1998) 161–176

Analysis of human immunodeficiency virus in semen: indications of a genetically distinct virus reservoir

Randal A. Byrn ^{a,*}, Ann A. Kiessling ^b

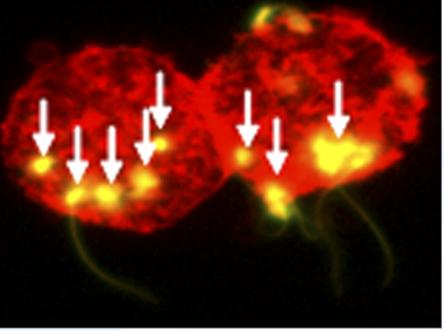
⁴ Vertex Pharmaceuticals, 130 Waverly Street, Cambridge MA 02139-4242, USA ^b Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Room 353, 4 Blackfan Circle, Roston, MA 02115, USA Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells

Ana Ceballos,¹ Federico Remes Lenicov,¹ Juan Sabatté,¹ Christian Rodríguez Rodrígues,¹ Mercedes Cabrini,¹ Carolina Jancic,² Silvina Raiden,² Mónica Donaldson,³ Rodolfo Agustín Pasqualini Jr.,³ Clara Marin-Briggiler,⁴ Mónica Vazquez-Levin,⁴ Francisco Capani,¹ Sebastián Amigorena,⁵ and Jorge Geffner^{1,2}

"Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina Plostituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires C1425ASU, Argentina

Human Reproduction Vol.22, No.11 pp. 2868–2878, 2007 Advance Access publication on September 12, 2007 doi:10.10

HIV-1 viral DNA is present in ejaculated abnormal spermatozoa of seropositive subjects


B. Muciaccia¹, S. Corallini¹, E. Vicini¹, F. Padula¹, L. Gandini², G. Liuzzi³, A. Lenzi² and M. Stefanini^{1,4}

¹Department of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; ²Department of Medical Sapienza University of Rome, Rome, Italy; ³National Institute for Infectious Disease Spallanzani (INMI), Rome, Italy

IV. DISCUSSION – ART procedure & viral validation

The adherence of viral particles & presence of HIV in spermatozoa has been a matter of debate¹

Fig 6: Spermatozoa (arrows) transmit HIV-1 when they attach to dendritic cells (DC - red)² Spermatozoa acted as HIV carrier; attachment increase at pH 6-7, modulating the function of mucosal DC

1. Muciaccia et al., Hum Reprod 2007; 22:2868-2878'

 Cebellos et al., J Exp Med 2009; doi:10.1084/jem.20091579 (Reproduced with permission from: Jorge Geffner, IIHEMA, Academia Nacional de Medicina Buenos Aires, Argentina)

IV. Conclusion – Current treatment, ART & sperm washing

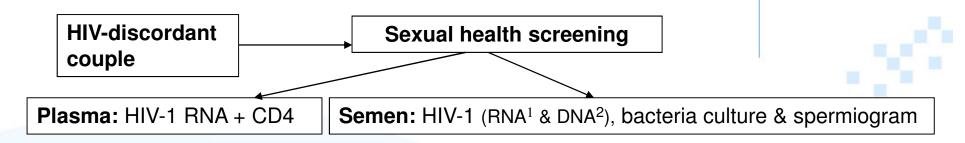


Fig 7: Flow chart for the ART management (adapted from: Ombelet *et al.*, ESHRE Monograph p64-72 2008.)
1. RNA – quantitative Cobas Ampliprep/Cobas Taqman HIV-1, v 2, LLD 40 copies/ml;
2. DNA qualitative - Amplicor HIV-1 DNA, v 1.5, Roche Diagnostics

IV. Conclusion – Current treatment, ART & sperm washing

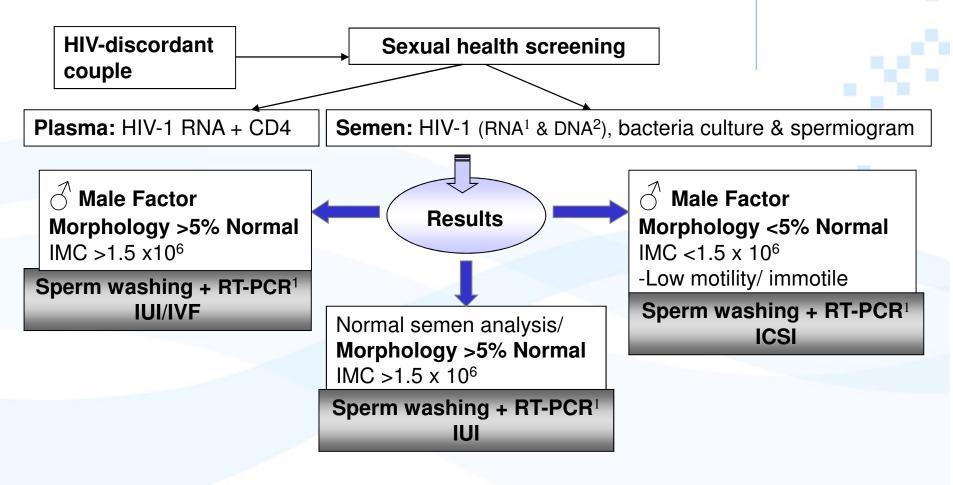
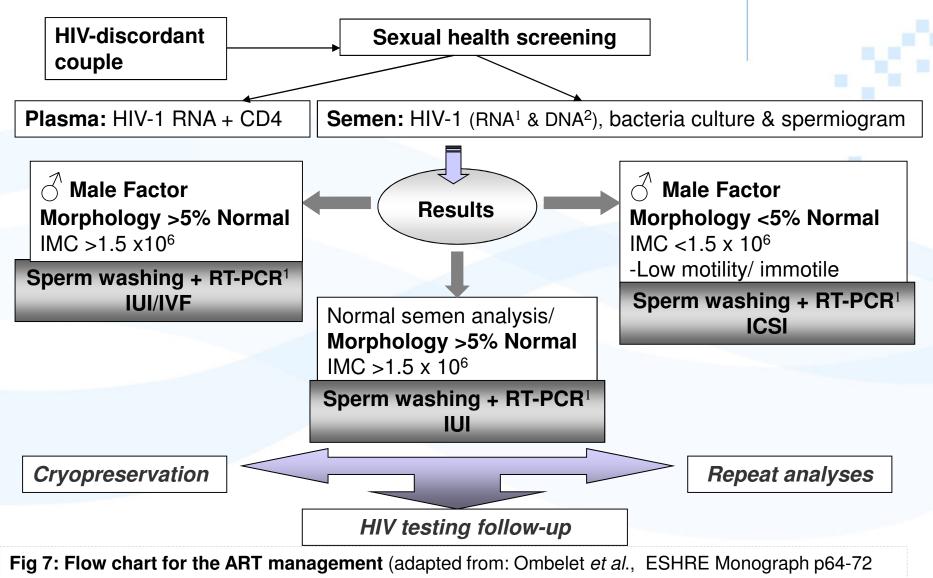



Fig 7: Flow chart for the ART management (adapted from: Ombelet *et al.*, ESHRE Monograph p64-72 2008.)
1. RNA – quantitative Cobas Ampliprep/Cobas Taqman HIV-1, v 2, LLD 40 copies/ml;
2. DNA qualitative - Amplicor HIV-1 DNA, v 1.5, Roche Diagnostics

IV. Conclusion – Current treatment, ART & sperm washing

2008.) **1.** RNA – quantitative Cobas Ampliprep/Cobas Taqman HIV-1, v 2, LLD 40 copies/ml;

2. DNA qualitative - Amplicor HIV-1 DNA, v 1.5, Roche Diagnostics

Acknowledgements:

Staff: Reproductive & Endocrine Unit

Krushmee Singh, Jozef Fourie, Melissa Stander, Prashan Maharaj, Shaan

Maharaj, Laura Grant, Grace Ramaotsoa, Tarina Mathe

Funding: Medical Research Council (MRC).

Disclaimer: Views & opinions expressed do not necessarily reflect the views of the MRC

Graphics: Creative Studios (Health Sciences, University of Pretoria, SA)