Testicular tissue: When and how should it be cryopreserved?

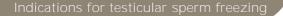
tre for Reproductive Me UZ Brussel, Belgium

Control of

Outline

- History of sperm freezing
- Indications for testicular sperm freezing
- When to cryopreserve?
 - \rightarrow Two approaches: Pros and cons
 - \rightarrow OA and NOA
 - → Retrieval methods
- Which quality to cryopreserve?
- Cryodamage to testicular sperm
- How to cryopreserve?
- ICSI with fresh/frozen testicular sperm
- Freezing for prepubertal boys
- Conclusions

34


Rentration

- 1776 Spallanzani → low t° effects on human spermatozoa
- 1866 Montegazza suggested cryobanks for animal semen
- 1949 Polge used glycerol as cryoprotectant for mammalian spermatozoa

34

- 1950 successful use of extenders
- 1953 Sherman observed fertilization and embryo development with human sperm frozen on dry ice
- 1964 First birth after glycerol freezing of human sperm in liquid nitrogen
- 1973 First association of sperm banks (CECOS France)
- 1976 American Society of Tissue Banks •
- 1996 First birth after using frozen testicular sperm for ICSI Ċ

Contraction to

• Fertility treatment

- → Azoospermia
- → Preserve sperm for later fertility treatment (ICSI)
- → Avoid repeated testicular surgery
- → Avoid problems in coordinating OPU and testicular
- surgery
- → Ensure presence of sperm before ovarian stimulation
- → Select patients for fertility treatment allocation

• Fertility preservation

 \rightarrow for boys and adults before starting gonadotoxic treatment

Annual in the second

• Etiology of azoospermia → Excretory (OA) Q → Secretory (NOA) U • Method of testicular sperm retrieval Α → Open biopsy → Aspirations L • Allocation criteria for NOA patients Ī. • Occasion of testicular sperm retrieval т → Diagnostic У → Therapeutic Imment

(OA)

- Mechanical cause
- Normal spermatogenesis
- High sperm numbers
- Epididymal or testicular sperm
- 100% recovery rate
- Causes
 - Vasectomy
 - Congenital bilateral absence of the vas deferens (CBAVD)
 Post infectious epididymitis

 - Testicular trauma
 - Young's syndrome
 - Retrograde ejaculation

Obstructive azoospermia Non-obstructive azoospermia (NOA)

- Biological cause
- Severely impaired spermatogenesis Low to absent sperm numbers
- Testicular sperm
- 50-60% recovery rate
- Causes
 - Chromosomal abnormalities - Yq deletions
 - latrogenic treatment
 - Cryptorchidism
 - Testicular torsion - Unknown genetic causes (?)

O Rentering to

When to cryopreserve?

- Factor Time Occasion
 - → Diagnostic occasion
 - → Therapeutic occasion

• Factor Quality

- → High
- → Fair
- → Low
- → Extremely low

Repair of the later of the

When to cryopreserve?

- Two cryo approaches:
 - 1. Spermatozoa can be frozen on the day of oocyte retrieval $\Rightarrow\,$ First ICSI with fresh spermatozoa
 - ⇒ Cryopreservation of supernumerary sperm for later ICSI cycles
 2. Spermatozoa can be frozen on a day independent of oocyte
 - retrieval ⇒ Cryopreservation of spermatozoa for later ICSI cycles ⇒ ICSI cycles with frozen-thawed spermatozoa

• Pros and cons for both approaches

- \rightarrow Different for patients with OA or NOA
- \rightarrow Dependent on sperm retrieval procedure
- → Depending on flexibility of scheduling TESE

*

Pros and cons of both approaches

Approach 1: ICSI-cryo

- Pro: Loss of sperm quality by freezing is avoided – lower risk of finding only immotile sperm
- Pro: lower sperm quality limits for ICSI treatment
- Pro: less restrictive criteria for patient allocation to ICSI
- Con: concomitant scheduling of sperm and oocyte retrieval on the same day
- Con: 50% risk of pointless ovarian stimulation in NOA
- Con: more stressful to the couple

Approach 2: cryo-ICSI

Entration

- Pro: Independent scheduling of sperm and oocyte retrieval
 Pro: avoid pointless ovarian
- stimulation of the female partner (if no sperm is retrieved)
- Pro: less stressful to the couple
 Con: Risk of not finding motile sperm post-thaw
- Con: Higher sperm-quality limits for allocation to ICSI treatment (quality loss by freezing-thawing)

Contract and

OA patients and retrieval method

• Sperm obtained by TESE or open biopsy

- → Sperm recovery in 100% of patients, mostly high numbers
- → Both cryo approaches are effective
- \rightarrow One or two biopsies provide sufficient sperm for several ICSI cycles

OA patients and retrieval method

• Sperm obtained by TESA or FNA

- → Sperm recovery in almost 100% of patients
- → Only low sperm numbers retrieved
- \rightarrow Easily performed always freshly on the day of oocyte retrieval
- → Freezing not always possible, depending on
 - Sperm number
 - Collection method
 - Droplets under oil
 - Culture medium in dishes
 - Culture medium in tubes

NOA patients and retrieval method

• Sperm obtained by TESE or open biopsy

- Successful in 50-60% of patients: poor numbers and motility,
- multiple biopsies
 → Cryo and later use for ICSI is possible in many cases
 - Depending on the quality
 - Depending on the criteria for freezing
 - Depending on the allocation criteria for ICSI treatment
- → Scheduling fresh TESE as back up in severe cases
 - back up in severe cases
- → Fresh TESE for ICSI is the only option in extremely poor cases

Verheyen et al. 2004, HR 19, 2822

NOA patients and retrieval method

• Sperm obtained by TESA

- \rightarrow Often unsuccessful, no sperm or poor numbers obtained
- → Poor chance to freeze spermatozoa
- → Uncommon procedure in NOA

• Sperm obtained by micro-TESE

- → Fair number may be obtained
- → Skilled microsurgeon
- → Reasonable chance to freeze spermatozoa
- → Less common procedure
- Schlegel et al. 1999, HR 14, 131 Colpi et al. 2009, RBMOnline 18, 315

Colpriet al. 2009, RBMONTINE I

34

Contract and Reported in the second in the

Distantiation in

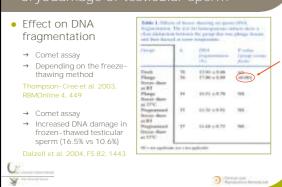
Which quality to cryopreserve

- No upper limit
- Lower limit ? In NOA
 - → Different from clinic to clinic
 - → Depending on patient allocation criteria
 - → Possibility to schedule fresh TESE as back-up at OPU
 - → UZBrussel CRM
 - Number: ≥ 1 spermatozoon
 - Motility: no cut-off, even 0% motility
 - \Rightarrow Obtained either after mechanical or enzymatical treatment

Verheyen et al. 1995, HR 10, 2956

Crabbé et al. 1997, 12, 1682

• Effect on motility and viability 80 70 60 prefreeze 50 post-thaw pre-selection 40 post-thaw post selection 32 30 26 22 recovery 20 10 6 Verheyen et al. 1997, FS 67, 74 0 motility % vitality % Carnet-sec


Cryodamage of testicular sperm

- Effect on the ultrastructure
 - → Rupture of plasma membranes
 - → Rupture of acrosomal membranes

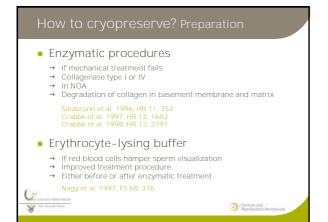
Nogueira et al. 1999, HR 14, 2041

Cryodamage of testicular sperm

How to cryopreserve? Constitution Biopsy Suspension Individual cells Preparation Cryoprotectant Freezing procedure Slow controlled-rate Rapid vapour Vitrification Carriers Carriers

How to cryopreserve? Constitution

- Individual spermatozoa (NOA)
 - → Time-consuming procedure before freezing
 - → Carriers
 - Microcentrifuge tubes
 - Straws
 - Empty zona pellucidaMicrodroplets under oil
 - Interodroprets drider
 - → Rarely performed
 - → European Cell & Tissue Directives


010

How to cryopreserve? Preparation

- Mechanical procedures
 - \rightarrow Scissors, needles, forceps, glass slides
 - → In OA and NOA
 - → Rupture of tubules sperm release
 - Verheyen et al. 1995, HR 10, 2956
- Dissection of biopsy
 - → Isolation of most dilated tubules
 - → Higher recovery rate in NOA Kamal et al. 2004, J Androl 25, 123

- In-vitro culture
 - \rightarrow OA: Improval sperm morphology and quality of motility → NOA: No change in motility Liu et al. 1997, HR 12, 1667
 - $\rightarrow~$ Recommendation to inject without delay/incubation
 - → Increase of DNA fragmentation by 4 hour incubation
 → Comet assay

Felationships between thawed, and post-cryo sperm.	fragmented DNA in free preservation incubated	sh., frozen- testicular			
	DNA fragmentation (%)				
Time point of analysis	Mean ± S.E.	P volue			
Fresh	10.6 = 1.03				
d-bring	22.5 ± 3.89				
34-hour	10.1 ± 2.33	.017			
Fecotors that ed	16.5 古 1.00	.0001			
d-hann post they	29.5 ± 1.45	.00004			
24-bowr gest-thaw	30.4 ± 1.71	<.(0001			
Note: P values are compations to tresh data, n = 34,					
(Balash), Incademont of materialian spream. Period Natural 2006.					

Concentration/dilution

- $\rightarrow~$ OA with high numbers: dilute suspension before freezing
- → NOA with low numbers: concentrate (or dilute) suspension
- → Avoid refreezing

• Glycerol

- → Cryoprotectant of choice for mature spermatozoa
- → Addition of extenders (commercially available media)
- → Testicular tissue structure is not preserved → Germ cells do not survive

• DMSO

- → Cryoprotectant of choice for preservation of tubule structure → Fertility preservation for prepubertal boys
- Keros et al. 2005, HR 22, 1384; Goossens et al. 2008, FS 89, 725
- → Best maintains tissue capacity to initiate spermatogenesis

Carton air

- Slow controlled-rate vs rapid vapour
 - \rightarrow No evidence from the literature
 - → Same methods as semen freezing
 - → Vapour freezing = procedure of choice
 - → Rapid freezing necessitates rapid thawing

• Vitrification

- \rightarrow Extremely high cooling rates
- → Small volumes (individually aspirated spermatozoa)
- → High concentrations of cryoprotectant
- → Low efficiency

Contraction to

How to cryopreserve? carriers

• Closed systems

- → High-security sealed straws
- → No ampoulles, no cryotubes
- → Correctly, clearly identified
- → European Cell and Tissue Directives
- → Avoid transmission of pathogens and virusses

• Liquid nitrogen or vapour

- → Store safely
- → Day and night monitoring

CSI with fresh/frozen testicular sperm

• OA: Many reports since 1996

- Romero et al. 1996, FS 65, 877
- → Comparable fertilization rate, embryo quality, pregnancy and implantation rate

• NOA: Few reports since 1998

- → Criteria for testicular sperm freezing
- → Comparable to impaired fertilization rate and implantation rate

Nicopoulos et al. 2004, FS 82, 691: Meta-analysis fresh-frozen OA+NOA

- \rightarrow Similar fertilization, clinical and ongoing pregnancy rate
- → Significantly impaired implantation rate

Contraction to making

U.

Table V. Compatison of a (44 cpck(i) and Borna (42 surrogentum (903A) patient	Compation of opens discussion in the KNI cycles with both () and lisen (42 cycles) toolcalar speer of 52 non-effective mic (900A) pulses				
	Naturk VE:54	FOCCASE TEMP.	Males-Willings		
Croin	44	42			
Search Smolipula (200) Search Smolypura (200)	10 10	110	F = h(RT) F = 0.000		
To complete important with	40.3	85.7	.96		
motile spense Cycles inputed with only module spense (%)	2014 (75)	31943 (50)	1987		
Cyclus apartail with only instantily spense (%)	3/44 (7)	4/42 (310)	9834		
COOvychy	10.9 ± 6.2	4.3 ± 5.2	245		
Materiane Wypchi 5, 59%	9.1 1 53	28 ± 4.2	799		
5 IPN	58.0 1 34.2 1.0 × 11.0	58.7 × 23.5 7.8 ± 19.2	755		
14 10 12290	1.6 1 8.5	1.0 = 4.0	202		

ICSI with fresh/frozen testicular sperm

Table VL. Results of embryo transfer, pregnancy and implastration rates affer ICS1 with fresh (44 cycles) and frozen (42 cycles) testicular sperm of 32 non-obstractive annospermia (NOA) parients

	Fresh TESE	From TESE	Chi-square
Cycles	44	+2	
Transfers (%)	41 (93.2)	32:(76.2)	$P \approx 0.028$
Embryos/ET	2.6	2.5	NS
PoschOG/eyele (%)	9/44 (20.4)	8/42 (19.0)	NS-
Pow BCG/ET (91)	9,941 (21.9)	8/32 (25.0)	NS
Clinical PRAyele (%)	7/44 (15.9)	642 (14.3)	NS
Clinical PR/ET (%)	7/41 (17.1)	6/32 (18.7)	NS
Implantation rate (%)	8/105 (7.6)	6/91 (7.4)	NS
ET, embryo transfer; Pos Verb	, positive, PR, pre		
VCI1	icych et al. 2004, i	111 10, 2022	
			Burteris and B

- Only option for fertility preservation
- Before initiation of gonadotoxic cancer therapy
- Storage of spermatogonial stem cells
- Future autologous intratesticular transplantation after cure

Brinster et al. 1994, Proc Natl Acad Sci USA 91, 11303

- \rightarrow Spermatogonia are able to colonize the seminiferous tubules → Induce active spermatogenesis

- → Multiple injection into rete testis in primates and human most promising technique

- Future autologous intratesticular transplantation after cure
 - \rightarrow Cell suspension transplantation
 - → Tissue grafting
 - → In-vitro maturation
- Concerns
 - → Technical feasibility? Transplantation protocol and storage
 - → Safety? Risk of re-introducing malignant cells
 - → Reproductive efficiency?

Geens et al. 2007, HR 21, 390 Wyns et al. 2010, HR Update 16

O Repaired to Benefit

Clinical application UZ Brussels

Requests: n=23

Accepted: n=15 Sickle cell anemia (8) Thalassemia (1) Leukemia (3) Idiopathic aplastic anemia (1) Granulomatosis (1) Refused: n = 1Parents declined after counselling: n=7 Leukemia (4) Sickle cell anemia (2) Idiopathic aplastic anemia (1)

Internet

Conclusions

- Testicular sperm freezing is an efficient procedure in order to avoid repeated surgery in obstructive and nonobstructive azoospermia
- In OA, freezing can be performed either on a diagnostic occasion or on the day of OPU
- In NOA, pros and cons should be considered for individual clinics or patients
- In NOA with poor testicular quality, a fresh retrieval is preferably scheduled as back-up on the day of OPU
- Cryodamage is observed at the level of motility, viability, ultrastructure,... comparable to ejaculated sperm

Contrations

Conclusions

3

- DNA fragmentation is not affected if adequate freezing procedures are applied
- Testicular spermatozoa are preferably frozen in suspension, obtained after mechanical or enzymatic treatment procedures
- The suspension should be diluted or concentrated in order to optimize the number of treatments
- Glycerol is the cryoprotectant of choice for either slow controlled-rate or rapid vapour freezing of mature testicular sperm
 - Testicular sperm should be stored in closed straws in liquid nitrogen or vapour

. .

•

Repaired and

Contraction to

Conclusions

- In case of fertility preservation for prepubertal boys, testicular biopsies are frozen by slow freezing with DMSO as cryoprotectant
- Before fertility restoration is possible, concerns should be solved and the efficiency should be improved

