Use of sperm DNA tests to evaluate pre- and post-chemotherapy sperm quality

Bernard Robaire

Sperm DNA: organisation, protection and vulnerability: from basic science to clinical application ESHRE Campus symposium Stockholm, Sweden 21-22 May 2009

Departments of Pharmacology and Therapeutics and of Obstetrics and Gynecology McGill University

Animal models

- Cyclophosphamide
- (commonly used anticancer drug) - Bleomycin / Etoposide / Cisplatin (Testis cancer)

Human studies

- Testis Cancer
- Hodgkin Lymphoma
- Infertility patients

Animal models

 Cyclophosphamide (commonly used anticancer drug)
 Bleomycin / Etoposide / Cisplatin (Testis cancer)

Human studies

- Testis Cancer
- Hodgkin Lymphoma
- Infertility patients

Acknowledgements Cyclophosphamide Studies

Barbara Hales

Tara Barton Alexis Codrington Jianping Qiu

March of Dimes

Anticancer Agent

Immunosuppressive Agent

(Non)-Hodgkin Lymphoma Lymphocytic Leukemia Breast Ovarian Lung

Lupus Erythematosus Wegener Granulomatosis Graft-versus-Host Disease

Sperm Quality: Chromatin Biomarkers Sperm decondensation Sperm decondensation - in vitro, in vivo Breaks and cross-links and integrity of chromatin - Alkaline elution - Comet Assay - SCSA / acridine orange assay - TUNEL assay - Chromosomal aberrations (FISH) Chromatin template function - DNA replication - RNA transcription – germ cell - qPCR Chromatin structure - Protamine / histones - Protamine / histones - Disulfide links Nuclear matrix

Chromatin epigenome - DNA methylation / histone acetylation - protamine – histone ratio - piRNAs, microRNAs

Sperm Quality: Chromatin Biomarkers Sperm decondensation - in vitro, in vivo Breaks and cross-links and integrity of chromatin - Alkaline elution - Comet Assay - SCSA / acridine orange assay - TUNEL assay - Chromosomal aberrations (FISH) Chromatin template function - DNA replication - RNA transcription – germ cell - DNA transcription – germ cell - qPCR Chromatin structure - Protamine / histones - Disulfide links

- Nuclear matrix
- Chromatin epigenome DNA methylation / histone acetylation protamine histone ratio piRNAs, microRNAs

Sperm Quality: Chromatin Biomarkers
Sperm decondensation
- in vitro, in vivo
Breaks and cross-links and integrity of chromatin
- Alkaline elution
- Comet Assay
- SCSA / acridine orange assay
- TUNEL assay
- Chromosomal aberrations (FISH)
Chromatin template function
- DNA replication
- RNA transcription – germ cell
- aPCR
Chromatin structure
- Protamine / histones
- Disulfide links
- Nuclear matrix
Chromatin epigenome
- DNA methylation / histone acetylation
- protamine – histone ratio
- piRNAs, microRNAs

Tail Extent Moment = <u>Tail Length x % Tail DNA</u> 100

DFI: DNA Fragmentation Index DFI= red fluorescence / total fluorescence

DNase Digestion of Chromatin

2D Gel Electrophoresis

Sperm DNA-nuclear matrix halo structure Biology of Reprod. 60:702-706, 2000

Nuclear Matrix Proteins Identified	Function
DnaJ/Hsp40, subfamily B, member 6	Co-Chaperone
DnaK-type molecular chaperone hst70	Co-Chpaerone
F-actin capping protein beta subunit	Cvtoskeleton
Keratin K5	Cvtoskeleton
Organic anion transporter/Testis specific transporter	Nucleocytoplasmic Transport
Phosphoprotein phosphatase 1 gamma catalytic chain	Signal Transduction
cAMP-specific 3,5-cyclic phosphodiesterase 4C	Signal Transduction
Chromodomain protein Y-chromosome-like	Transcriptional Co-repressor / Histone Acetyltransferase
Glutathione-S-transferase, mu 5	Antioxidant Defense
LPP LIM domain preferred translocation partner	Nucleocytoplasmic Transport
Outer dense fiber protein	Cytoskeleton
Phosphatidylethanolamine binding protein	Lipid Binding
Phospholipid hydroperoxide glutathione peroxidase	Antioxidant Defense
Poly(rC) binding protein 1	(Post-) Transcriptional Control
Proteosome subunit beta type 4 precursor	Metabolism
Similar to Ran-interacting protein MOG1	Nucleocytoplasmic Transport
Triosephosphate isomerase 1	Glycolysis
Hypothetical protein DKFZp434H2215	?
Hypothetical protein MGC 26988	?
Unknown protein for MGC 95189	?

The Team

Project 1: Clinical Andrology

Peter Chan McGill University

University of Calgary Renee Martin Helen Tempest

McGill University Bernard Robaire Raghu Rajan Cristian O'Flaherty Farida Vaisheva

University of Montreal Valerie Desilets

Health Canada Tye Arbuckle

Project 2: Psychosocial Study

Zeev Rosberger McGill University

University of Montreal Marie Achille Tom Baker Cancer Center, University of Calgary Barry Bultz

100

CHR ISC

Grant # HGG-62294

Bernard Robaire McGill University McGill University Barbara Hales Barbara Hales Louis Hermo Jacquetta Trasler Makoto Nagano Geraldine Delbes

Project 3: Animal Models

Donovan Chan Farida Vaisheva Ludovic Marcon Adrienne Bieber

-6

Testis Cancer Chemotherpy: Animal Model

- cer chemotherapy cocktail (BEP): Testicular can
 - Bleomycin: causes cleavage of DNA strands - Etoposide: topoisomerase II inhibitor
 - Cis-Platin: alkylating agent causing DNA cross-links
- Doses: conversion from surface to mg/kg

• 0X, 1/3X,	2/3X	and 1	X - Ble - Ete -Cis-	omycir oposide Platin:	n: 1.5n e: 15m 3mg/l	ng/kg/d ng/kg/d kg/day	lay ay			
Bleomycin Etoposid e	+	+	+	+	+	+	+	+	+	
Cis- Platin			3	weeks	idid	o vma		s ' auda	9 1 SD (weeks ↓ erm

Animal Models

SD and BN rats

Regimens that mimic those used for Non-Hodgkin's lymphoma (CHOP) **Testis cancer (BEP)**

Assess consequences of treatment

- Male reproductive system (weights, hormones, histology)
- Sperm chromatin quality
- Progeny outcome
- Reversibility of effects/Germ stem cells
- Gene expression profiling during spermatogenesis **Epigenetic effects - DNA methylation**
- Stem cell transplantation

Chronic treatment with BEP results in:

- · Effects on body, testis, and epididymis weights
- Abnormal testis histology
- Decreased spermatid head count
- · Significant effects on sperm motility, morphology, and quality
- No effects on litter size, sex ratio, pre- or post-implantation loss
- Decreased post-natal survival

Sperm Quality: Chromatin Biomarkers Sperm decondensation - in vitro, in vivo in vitro, in vivo Breaks and cross-links and integrity of chromatin Alkaline elution Comet Assay SCSA / acridine orange assay TUNEL assay Chromosomal aberrations (FISH) Chromatin template function DNA replication RNA transcription – germ cell qPCR Chromatin structure Protamine / histones - Protamine / histones - Disulfide links Nuclear matrix

- Chromatin epigenome DNA methylation / histone acetylation protamine histone ratio
 - piRNAs, microRNAs

Sperm Quality: Chromatin Biomarkers Sperm decondensation - in vitro, in vivo Breaks and cross-links and integrity of chromatin - Alkaline elution - Comet Assay - SCSA / acridine orange assay - TUNEL assay - Chromosomal aberrations (FISH) Chromatin template function - DNA replication - RNA transcription – germ cell - qPCR Chromatin structure - Protamine / histones - Disulfide links - Nuclear matrix - Nuclear Induix Chromatin epigenome - DNA methylation / histone acetylation - protamine – histone ratio - piRNAs, microRNAs

Time L	ine				
	Testis Ca		Chemo		
Study Gps	HL		Chemo		
	NHL		Chemo		
	Infertile Contr	ol —			
Control Gps					
	Normal Control	ol			

Assay	Criterion	Ser	Sensitivity		cificity
		%	95% IC	%	95% IC
DFI (SCSA®)	> 10.3 %	76	52.8-91.7	90	68.3-98.5
TUNEL	> 389 F.U.	92	63.9-98.7	94	71.2-99
comet	>18.38 mm	81	54.3-95.7	88.9	51.7-98.2
mBBr	< 32.8 %	42	15.3-72.2	100	66.2-100

<u>Sensitivity</u> is the proportion of true positives that are correctly detected by the assay. <u>Specificity</u> is the proportion of true negatives that are correctly detected by the assay.

Testicular cancer patient sperm quality: PRIOR to treatment

	Semen analys	is (PMNF index)
	Normal	Abnormal
DFI (SCSA)	40	43
TUNEL	40	67
Comet	100	29
mBBr	0	100

Red: patients with low WHO sperm parameteres (%).

Green: patients with high WHO sperm parameteres (%).

Hodgkin's lymphoma patient sperm quality: PRIOR to treatment

	Semen analys	is (PMNF index)
	Normal	Abnormal
DFI	30	100
TUNEL	22	n.d.
comet	80	n.d.
mBBr	0	100

n.d.: not determined

Correlations among sperm chromatin assays and semen parameters

	Sperm concentration (x10 ⁶ sp/ml)	Total Sp (x10 ⁶ sp)	Motility (%)	Progressive motility (%)	Normal forms (%)	PMNF Index
DFI (n=64)			-0.64	-0.60	-0.33	-0.34
Mean-DFI (n=64)			-0.57	-0.51	-0.28	-0.27
SD-DFI (n=64)	-0.34		-0.52	-0.51	-0.36	-0.41
Free SH (n=64)			0.35	0.40	0.49	
Log FITC fluoresc. (n=48)			-0.34	-0.33		

CONCLUSIONS

- * Spermatozoa from cancer or infertile patients have lower sperm chromatin quality than in the control group.
- SCSA[®], TUNEL and comet assays similarly predict sperm chromatin quality in infertile patients.
- * In cancer patients, sperm chromatin anomalies can be identified best using the comet assay.
- * Routine semen parameters fail to predict sperm chromatin quality.

Chemo patients	(N=30 for eac	h cancer gi	roup <u>)</u>	
	Clinical/ Psych Evaluations			
	Semen: analyses Anti-body			
/	Hormone: FSH Testosterone Inhibin B Ca Status			
Chemotherapy	Sperm genetic integrity			
T0 T 6 mo	l T 12mo	T 18 mo	T 24	mo
Clinical/Psych Evaluations				
Semen: banking Anti-body				
Hormone: FSH Testosterone Inhibin B				
Genetic: Y-del Karyotype				
Ca Status				
Sperm genetic integrity				

SUMMARY

Pre-chemotherapy, both cancer groups had poorer semen quality compared to controls.

• Among TC and HL patients, 67% and 60%, respectively, had < $5x10^6$ sperm/ml at 6 months post-chemotherapy.

• At 24 months, 60% and 57% of TC and HL, respectively, had normal sperm concentrations.

SUMMARY

• Pre-chemotherapy, sperm DNA damage was higher in the cancer group than controls.

• This damage was increased further at 6 months and remained high by 24-month post-treatment.

• Pre-chemotherapy, cancer patients have low sperm DNA compaction.

• Levels of free thiols and of protamination in cancer patients are similar to controls at 18 months. In contrast, HDS remains high up to 24 months after treatment.

CONCLUSIONS

• Sperm generated post-chemotherapy maintain a significant degree of chromatin damage. Thus, survivors of TC and HL are at risk of having abnormal reproductive outcome.

• Proper counseling to these patients on reproductive risks and fertility preservation prior to chemotherapy is recommended.

DNA Methylation: 5-position of cytosineImage: Strategy and the strategy an

γH2AX Foci In Rat Zygotes Fertilized by Saline and Cyclophosphamide Exposed Spermatozoa						
PN1	PN2	PN3	PN4	PN5		
Saline M→ F→ ● ←PB	M→	6	900			
$\begin{array}{c} CPA \\ M \rightarrow \end{array}$	M→					

PARP-1 In Rat Zygotes Fertilized by Saline and Cyclophosphamide Exposed Spermatozoa					
PN2	PN3	PN4	PN5		
Saline PB →	1.00				
F → Ó ← M	F→	O.B	03		
	F → 🕐	00	8		

