

## Why test for Oxidative Stress and DNA damage in sperm?

## Sheena E. M. Lewis





Reproductive Medicine Queen's University Belfast s.e.lewis@qub.ac.uk

ESHRE Campus, Thessaloniki, 2009

### **Semen analysis**

- Essential for initial diagnosis
- Limited as prognostic tool for ART
- Only 20% of young Norwegian men achieve WHO values Jorgensen et al, 2006
- Only 46% of older men >45yrs (n=1174) meet all WHO values

Hellstrom et al, 2006

- In infertility diagnosis-Many men with 'below normal' values can be fertile Haugen et al, 2006
- Men with 'normal' values can be infertile Bonde et al, Lancet 1998



### **Clinical significance of semen profiles**

No single parameter was diagnostic of infertility (n=1461) Extensive overlap between fertile and infertile ranges Morphology most powerful *Guzick et al, 2001* 

Morphology most powerful but volume and motility of limited value Probability of pregnancy  $\uparrow$  as concentration  $\uparrow$  up to 40 x 10<sup>6</sup>/mL then no further association (n=430) extensive overlap between fertile and infertile ranges

Bonde, Skakkebaek et al, 1998

Concentration and motility were most powerful Morphology poorest predictive power - 50% of fertile men had abnormal morphology (n=719) *Nallella, Agarwal et al, 2006* 

243 fertile men had a mean of only 20% normal morphology by WHO 1992 criteria *Chia et al, 1998* 

## Regional and world- wide variation of semen parameters

• Within USA, New York had highest concentrations

(134 x 10<sup>6</sup>/mL)

Iowa had lowest concentrations $(48 \times 10^{6}/mL)$ Thailand $(52 \times 10^{6}/mL)$ 

- In Japan, fertile men had lower semen quality, similar to Norway (20% < WHO)</li>
- In Europe, Finland and Denmark's fertile men have markedly different semen profiles

Fisch et al, 1996, Swan, 2006; Jorgensen et al, 2006; Iwamoto et al, 2006

## Variability of semen parameters between and within individuals

 Marked biological heterogeneity of semen between 243 fertile men

*Chia et al, 1998* 

 Even consecutive samples from same individuals (twice a week for 120 weeks)
 *WHO*, 1990 (673 samples from 7 men over 324 weeks)

Mallidis et al,1991

Reference values have limited diagnostic value for infertility and are not predictive for ART

## Intracytoplasmic sperm injection ISCI- 1992

Success for men with poor semen quality Only requirement is sperm viability Natural barriers (poor motility or defective sperm zona binding) removed Usable with immature sperm Pregnancy rates of 30-50% The 'ISCI Escalation'almost twice as many cycles as IVF -reduction in andrological research



ESHRE's European IVF Monitoring Consortium, 2008

## Smalle Philedangage

Occupation Plastics and resins, solvents, wood processing, metal industry, Automobile, truck and aircraft mechanics Sedentary or stressful job

**Environment** 

#### **Endocrine disruptors**

xenoestrogens

**Anti-androgens** 

**Toxic compounds** 

Genetic Inheritance CABVD Robertsonian translocations Y-chromosome deletions Paternal Age Lifestyle diet smoking alcohol recreational drugs STDs injury infection

## High levels of sperm DNA damage have some correlation with

#### Oligozoospermia

*Irvine et al, 2000, Shayegon and Zini, 2002, Menezo et al, 2003, Schmid et al, 2003, O'Connell et al, 2003* 

#### Poor motility and morphology

O'Connell et al, 2003, Saleh et al, 2003

#### • OAT

Gandini et al, 2000; Siddighi et al, 2004; Trisini et al, 2004; Huang et al, 2005, Appasamy et al, 2007

#### Cytoplasmic retention

Huszar et al, 2001, Aitken et al, 2006

#### mtDNA damage

O'Connell et al, 2003

## DNA reproducibility compared to conventional parameters

### • DNA is more consistent than SA

Schrader et al. 1988; Evenson et al. 1991; Zini et al. 2001; Loft et al. 2003

### Sperm DNA has lower CV (20% cf >40%)

*Evenson et al, 1999,2000,2002, Zini et al, 2001; Loft et al, 2003 De Jonge et al, 2004* 

• DNA has 'high monthly repeatability' within donors CV 10% cf 44% for conc, 78% for motility and 69% for morphology

Evenson et al, 1991, Smit et al, 2007

doi:10.1093/humrep/del134

#### Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications

J.Erenpreiss<sup>1,2,5</sup>, M.Bungum<sup>1,3</sup>, M.Spano<sup>4</sup>, S.Elzanaty<sup>1</sup>, J.Orbidans<sup>2</sup> and A.Giwercman<sup>1</sup>

- Retrospective study (n=282 consecutive patients)
- Attending for IUI, IVF or ICSI with 2-5 DNA tests
- Mean CV of DFI was 29%
- 37% (95% CI: 27%,49%) of patients with DFI>30% in 1<sup>st</sup> test had DFI<30% in 2<sup>nd</sup> test
- 27% (95%CI: 16%,40%) of patients with 21-30% DFI in 1<sup>st</sup> test had DFI>30% in 2<sup>nd</sup> test
- Intra- individual variation in DFI is significant
- Repeated DNA tests are necessary

## Does Sperm DNA influence Fertility outcomes?

Nuclear DNA anomalies lead to:-

Failure of fertilization in IVF

Bianchi et al, 1993; Sun et al, 1997

Failure to implant in ICSI

Sakkas et al, 1996; Lopes et al, 1998

- Increased time to conception
- Poor embryo development Morris et al, 2002; Tomsu et al, 2002
- Post-implantation loss and malformations

Robaire et al, 1985

Increased miscarriage rate

Evenson et al, 1999; Carrell et al, 2003

Childhood cancers
 Knight and Marrett, 1997





## Sites and Causes of Sperm DNA Damage

#### **Seminiferous tubules**

**Abortive apoptosis** 

Sakkas et al, 1999

#### Abnormal chromatin packaging

Manicardi et al., 1995, ;Carrell and Liu, 2001; Zhang et al, 2006

**Epididymis** 

Incomplete repair of physiological nicks

Sakkas et al., 1999

Assault by senescent sperm and toxics

Hess, 1998; Moore, 1999

#### **Aberrant SCF pathway**

Shaman et al, 2007, Yamauchi et al, 2007

Post ejaculation

Clinical hazards imposed in ART labs Oxidative Stress.....

### **Oxidative Stress and Fertility**



Du Plessis et al, Expert Reviews, 2009

#### **Oxidative Stress is a major cause of DNA damage**



Agarwal, 1996; Altken & Krausz, 200 Agarwal & Said, 2005; Lewis & Aitken, 2005, Peris et al, 2007;Lewis et al, 2008

Figure 1 Types of DNA damage that might be encountered in human spermatozoa.

Aitken and De Illius, 2009

#### **Implications of sperm DNA**



#### Aitken and de Iulius, 2007

## Risk of Diseases in Offspring from Damaged Sperm DNA

- Sperm DNA damage increases with O Age Singh et al, 2003; Wyrobek et al, 2006; Aitken and de Iulius, 2007
- Oxidative damage increases with Age
- ↑
   Ó age is associated with 
   ↑
   incidence of disease
   misseries

-miscarriage de Rochebrochard and Thonneau, 2002

- dominant genetic mutations-Achondroplasia and Apert Syndrome *Crow, 2000; Wyrobek et al, 2006*
- neurological Disorders -Schizophrenia, Autism and Bipolar Disease Sipos et al, 2004; Frans et al, 2008
- Birth defects- neural tube defects and even Downs Syndrome
   McIntosh et al, 1995

## Methodologies to Evaluate Sperm DNA Damage

#### Strand breaks

•Sperm Chromatin Structure Assay (SCSA)

•TUNEL



- Single-cell gel electrophoresis assay(Comet)
- •Sperm Chromatin Dispersion Test (SCD)

**Chromatin packaging defects** •Acid Aniline blue

•Chromomycin A3







Novel tests- for biomarkers of OS in DNA 8-Hydroxy-2'-deoxyguanosine (8-OH2dG) - the most abundant DNA adduct

- In sperm, no repair and little antioxidant protection
- DNA exposed to  $ROS \rightarrow DNA$  adducts
- Adducts are highly mutagenic
- 8-OH2dG can lead to a GC to TA transversion
- valuable biomarker of sperm health
- High Performance Liquid Chromatography





## **DNA damage caused by OS**



#### **Strand breaks**

#### **Subjects**

Type 1 diabetics (n=27) Non diabetics attending for investigation of infertility (n=29)



#### oxidised bases



Article

Increased concentrations of the oxidative DNA adduct 7,8-dihydro-8-oxo-2'-deoxoguanosine in the germ-line of men with type 1 diabetes



Dr Ishola Agbaje is a Specialist Registrar in Obstetrics and Gynaecology. In 2004 he joined the Reproductive Medicine Research Group at Queen's University Bellisat as a doctoral research fellow. His research interests are principally focused on sperm nuclear and mitochondrial DNA damage and the effects of diabetes on mails fertility.

Dr Ishola Agbaje IM Agbaje<sup>1,4,5</sup>, CM McVicar<sup>1,4</sup>, BC Schock<sup>2</sup>, N McCiure<sup>2</sup>, AB Atkinson<sup>3</sup>, D Rogers<sup>1</sup>, SEM Lewis

## **DNA damage caused by OS**



Article

Increased concentrations of the oxidative DNA adduct 7,8-dihydro-8-oxo-2'-deoxoguanosine in the germ-line of men with type 1 diabetes



Dr Ishola Agbaje is a Specialist Registrar in Obstetrics and Gynaecology. In 2004 he joined the Reproductive Medicine Research Group at Cueen's University Betlast as a doctoral research fellow. His research interests are principally focused on sperm nuclear and mitochondrial DNA damage and the effects of diabetes on male Retility.

Dr Ishola Agbaje IM Agbaje<sup>1,4,3</sup>, CM McVicar<sup>1,4</sup>, BC Schock<sup>2</sup>, N McClure<sup>2</sup>, AB Atkinson<sup>3</sup>, D Rogers<sup>1</sup>, SEM Lewis<sup>1</sup>

#### Human Reproduction, Vol.24, No.9 pp. 2061-2070, 2009

Advanced Access publication on June 12, 2009 doi:10.1093/humrep/dep214

human reproduction ORIGINAL ARTICLE Andrology

#### Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis

L.K. Thomson<sup>1,4</sup>, S.D. Fleming<sup>2</sup>, R.J. Aitken<sup>3</sup>, G.N. De Iuliis<sup>3</sup>, J.-A. Zieschang<sup>1</sup>, and A.M. Clark<sup>1</sup>

| Sperm DNA<br>fragmentation and<br>and 8OHdG | r     | þ      |
|---------------------------------------------|-------|--------|
| Native semen                                | 0.756 | <0.001 |
| Post DCG                                    | 0.568 | <0.001 |



## **Are sperm DNA tests** useful as diagnostic or prognostic clinical tests? A MARINA

### For a test to be useful, it must have strong predictive capacity for pregnancy outcome and little overlap between fertile and infertile samples

IN VITRO FERTILIZATION

Do sperm DNA integrity tests predict pregnancy with in vitro fertilization?

John A. Collins, M.D., \* Kurt T. Barnhart, M.D., b and Peter N. Schlegel, M.D.

Journal of Andrology, Vol. 30, No. 3, May/June 2009 Copyright E American Society of Andrology

Are Tests of Sperm DNA Damage Clinically Useful? Pros and Cons

ARMAND ZINI\* AND MARK SIGMAN

Review

## (Diagnostic) Odds Ratios

An Odds Ratio gives us the chance of a pregnancy occurring if the test result is above our specified threshold

Odds ratios need to be > 2.0 to be useful If CIs include 1.0, relationship is usually NS

Sensitivity- 1.00, if DNA damage above threshold prevents achievement of pregnancy in all cases

Specificity-1.00, if all samples with DNA damage below threshold achieve pregnancy so their sum should approach 2.0

If Sensitivity plus Specificity >1.0, ORs are generally significant

| TABLE 2 |            |       |   | - |
|---------|------------|-------|---|---|
| TABLE Z | <b>T</b> 4 | <br>- | 2 |   |
| THULL C |            |       |   |   |
|         |            | <br>  | • |   |

Diagnostic test properties: studies of the association between sperm DNA fragmentation and pregnancy.

| Study                              | Treatment        | Sens         | Spec      | Sens +<br>Spec | Abnormal<br>tests (%) | DOR   | (95% CI)     |
|------------------------------------|------------------|--------------|-----------|----------------|-----------------------|-------|--------------|
| Boe-Hanson et al., 2006 (46)       | IVF              | 0.06         | 0.97      | 1.03           | 5                     | 2.04  | (0.38, 11.0) |
|                                    | ICSI             | 0.36         | 0.57      | 0.94           | 38                    | 0.76  | (0.21, 2.73) |
| Borini et al., 2006 (52)           | IVF              | 0.17         | 0.89      | 1.06           | 16                    | 1.57  | (0.38, 6.51) |
|                                    | ICSI             | 0.71         | 0.75      | 1.46           | 60                    | 6.55  | (1.77, 24.3) |
| Bungum et al., 2004 (26)           | IVF              | 0.17         | 0.85      | 1.02           | 16                    | 1.16  | (0.64, 2.12) |
|                                    | ICSI             | 0.30         | 0.63      | 0.93           | 33                    | 0.74  | (0.42, 1.31) |
| Check et al., 2005 (47)            | IVF              | 0.30         | 0.83      | 1.13           | 27                    | 1.90  | (0.61, 5.89) |
| Gandini et al., 2004 (48)          | ICSI             | 0.38         | 0.44      | 0.83           | 45                    | 0.52  | (0.10, 2.74) |
| Host et al., 2000 (53)             | IVF              | 0.34         | 0.80      | 1.14           | 30                    | 1.91  | (0.93, 3.91) |
|                                    | ICSI             | 0.58         | 0.38      | 0.96           | 59                    | 0.84  | (0.29, 2.43) |
| Huang et al., 2005 (54)            | IVF              | 0.22         | 0.83      | 1.04           | 19                    | 1.30  | (0.66, 2.56) |
|                                    | ICSI             | 0.64         | 0.50      | 1.14           | 57                    | 1.78  | (0.76, 4.16) |
| Larson et al., 2000 (24)           | IVF, ICSI        | 0.58         | 0.94      | 1.59           | 42                    | 10.17 | (1.77, 58.4) |
| Larson-Cook et al., 2003 (25)      | IVF, ICSI        | 0.17         | 0.98      | 1.16           | 11                    | 5.08  | (1.24, 20.8) |
| Payne et al., 2005 (49)            | IVF, ICSI        | 0.16         | 0.71      | 0.87           | 20                    | 0.44  | (0.15, 1.27) |
| Sell et al., 2004 (14)             | IVF, ICSI        | 0.46         | 0.61      | 1.07           | 43                    | 1.32  | (0.43, 4.07) |
| Virro et al., 2004 (50)            | IVF, ICSI        | 0.35         | 0.81      | 1.17           | 29                    | 2.27  | (1.30, 3.96) |
| Zini et al., 2005 (51)             | ICSI             | 0.17         | 0.81      | 0.98           | 18                    | 0.87  | (0.24, 3.19) |
| Note: Cl. confidence interval: DOF | R. diagnostic od | ds ratio; \$ | Sens, sen | sitivity; Spec | , specificity.        |       |              |

Collins. Sperm DNA integrity texts. Fertil Steril 2008.

## **Sperm DNA Damage and IUI Outcomes**

| Author     | Assay | n   | Design | Threshold<br>(%) | < Threshold<br>Pregnancy (%) | > Threshold<br>Pregnancy (%) | Pregnancy | OR  | 95%CI      | Ρ      |
|------------|-------|-----|--------|------------------|------------------------------|------------------------------|-----------|-----|------------|--------|
| Duran '02  | TUNEL | 154 | prosp  | 4                | NA                           | NA                           | 13/154    |     |            |        |
| Muriel '06 | SCD   | 100 | prosp  |                  |                              |                              |           |     |            |        |
| Bungum '07 | SCSA  | 387 | prosp  | 30               | 23.7                         | 3.0                          | 78/381    | 9.9 | 2.37,41.51 | <0.001 |

Very useful test for IUI

## **Sperm DNA Damage and IVF Outcomes**

| Author          | n   | design | Female sel | Assay                | Threshold (%) | < Preg (%) | > Preg (%) | Fert         | Preg         | OR   | CI         |
|-----------------|-----|--------|------------|----------------------|---------------|------------|------------|--------------|--------------|------|------------|
| Filatove '99    | 176 | -      | none       | Chromatin compaction | 50            | 23         | 6          | 0            | $\downarrow$ | 6.33 | 1.82,22.08 |
| Host '00        | 175 | Pro    | none       | TUNEL                | 4             | NA         | NA         | $\downarrow$ | $\downarrow$ | 1.92 | 0.92,4.04  |
| Tomlinson '01   | 140 | -      | none       | ISNT                 | -             | NA         | NA         | 0            | $\downarrow$ |      |            |
| Tomsu '02       | 40  | Pro    | <40        | COMET                | -             | NA         | NA         | 0            | $\downarrow$ |      |            |
| Morris '02      | 20  | Retro  | <40        | COMET                | -             | NA         | NA         | 0            | 0            |      |            |
| Henkel '03      | 208 | Pro    | None       | TUNEL                | 37            | 34.7       | 18.7       | 0            | 0            | 2.24 | 1.09,4.58  |
| Gandini '04     | 12  | Pro    | None       | SCSA                 | 27            | 25         | 0          | 0            | 0            |      |            |
| Huang '05       | 217 | Retro  | None       | TUNEL                | 10            | 56.8       | 51.7       | $\downarrow$ | 0            | 1.30 | 0.66,2.56  |
| Boe- Hansen '06 | 139 | Pro    |            | SCSA                 | 27            | 29         | 14.3       |              | $\downarrow$ | 2.43 | 0.28,20.83 |
| Borini '06      | 83  | -      | None       | TUNEL                | 10            | 23.2       | 15.4       | $\downarrow$ | $\downarrow$ | 1.66 | 0.33,8.28  |
| Bakos '07       | 45  | -      | None       | TUNEL                | -             | NA         | NA         | $\downarrow$ | $\downarrow$ |      |            |
| Benchaib '07    | 84  | pro    | <40        | SCSA                 | 15            | 29         | 25         | 0            | $\downarrow$ | 0.46 | 0.11,2.00  |
| Bungum '07      | 388 | pro    | <40        | SCSA                 | 30            | 33.7       | 29         | 0            | $\downarrow$ | 1.24 | 0.69,2.26  |
| Frydman '07     | 117 | pro    | <40        | TUNEL                | 35            | 57.8       | 23.5       | 0            | $\downarrow$ | 2.97 | 1.39,6.32  |
| Lin '07         | 117 | pro    | <40        | SCSA                 | 27            | 51.3       | 54.4       | 0            | $\downarrow$ | 0.88 | 0.35,2.19  |

# So is DNA damage a useful test for IVF?

- Combined odds ratio 1.67 for no pregnancy with high DNA damage (1.27-2.20) p<0.01</li>
- Positive predictive value 74% but wrongly predicts failure in 26%

Collins et al, 2008; Zini et al, 2009

## **Sperm DNA Damage and ICSI Outcomes**

| Author          | n   | design         | assay  | Threshold (%) | < Preg (%) | > Preg (%) | Fert         | Preg         | OR   | CI        |
|-----------------|-----|----------------|--------|---------------|------------|------------|--------------|--------------|------|-----------|
| Hammadeh '96    | 61  | Pro            | A-Blue | 29            | 18.5       | 35.3       | 0            | $\downarrow$ | 2.40 | 0.72,7.96 |
| Host '00        | 61  | Pro            | TUNEL  | 4             | NA         | NA         | 0            | 0            | 0.79 | 0.28,2.25 |
| Virant-Klun '02 | 183 | Pro            | AO     | 56            |            |            | $\downarrow$ | 0            |      |           |
| Morris '02      | 40  | Pro            | COMET  | -             | NA         | NA         | 0            | 0            |      |           |
| Henkel '03      | 54  | Retro          | TUNEL  | 24            | 48         | 22.2       | 0            | 0            | 3.67 | 1.12,12.0 |
| Gandini '04     | 22  | Pro            | SCSA   | 30            | 44.4       | 55.6       | 0            | 0            | 0.36 | 0.06,2.08 |
| Huang '05       | 86  | Retro          | TUNEL  | 4             | 59.5       | 33.3       | $\downarrow$ | 0            | 1.80 | 0.76,4.27 |
| Check '05       | 104 | -              | SCSA   | 30            |            |            | -            | 0            | 1.34 | 0.52,3.43 |
| Zini '05        | 60  | Pro            | SCSA   | 30            | 51         | 55         | 0            | 0            | 0.87 | 0.23,3.22 |
| Boe-Hansen '06  | 47  | Pro            | SCSA   | 27            | 27.6       | 33.3       |              | 0            | 0.76 | 0.21,2.72 |
| Borini '06      | 50  | -              | TUNEL  | 10            | 45         | 10         | 0            | $\downarrow$ | 7.36 | 1.67,32.4 |
| Muriel '06      | 85  | Pro            | SCD    | -             | NA         | NA         | $\downarrow$ | 0            |      |           |
| Benchaib '07    | 218 | pro            | TUNEL  | 15            | 37.4       | 27.8       | 0            | $\downarrow$ | 1.55 | 0.70,3.41 |
| Bungum '07      | 223 | Pro,<br>consec | SCSA   | 30            | 37.3       | 47.9       | 0            | 0            | 0.65 | 0.37,1.14 |
| Lin '07         | 86  | pro            | SCSA   | 27            | 52.3       | 47.6       | 0            | 0            | 1.21 | 0.45,3.23 |
| Bakos '07       | 68  | -              | TUNEL  | 35            | NA         | NA         | 0            | $\downarrow$ |      |           |

## Combined Odds ratio=1.20 (0.91,1.59) p>0.05

so there is no clinical application as sperm DNA damage does not affect pregnancy rates after ICSI

- ISCI appears to bypass poor sperm DNA too

Zini et al, 2009

## Sperm DNA Damage and Pregnancy Loss after IVF and/or ICSI

| Author       | ART             | n   | Threshold | < Preg loss<br>(%) | > Preg loss<br>(%) | Preg loss<br>(%) | Risk       | OR    | СІ         |
|--------------|-----------------|-----|-----------|--------------------|--------------------|------------------|------------|-------|------------|
| Virro '04    | IVF and<br>ICSI |     | 30%       | NA                 | NA                 |                  |            |       |            |
| Check '05    | ISCI            | 104 |           |                    |                    | 47               | 1          | 2.27  | 0.45,1.59  |
| Zini '05     | ISCI            | 60  | 30%       | 12                 | 33                 | 16               | 1          | 3.67  | 0.46,29.42 |
| Borini '06   | IVF             | 82  | 10%       | 15.8               | 50                 | 6                | Ŷ          | 32.0  | 0.62,1663  |
| Borini '06   | ICSI            | 50  | 10%       | 0                  | 62.5               | 25               | Ŷ          | 108.0 | 1.73,6729  |
| Benchaib '07 | IVF             | 84  | 30%       | 2.6                | 25                 | 13               | ↑          | 10.0  | 0.87,114.8 |
| Benchaib '07 | ICSI            | 218 | 30%       | 2.8                | 8.3                | 13               | Ŷ          | 3.51  | 0.89,23.28 |
| Lin '07      | ISCI            | 137 | 27%       | 11.8               | 40                 | 12               | ↑          | 2.56  | 0.44,15.03 |
| Lin '07      | IVF             | 86  | 27%       | 8.5                | 16.7               | 12               | Ŷ          | 5.00  | 0.97,25.77 |
| Frydman '07  | ISCI            | 117 | 35%       | 10                 | 36.8               | 19               | ↑          | 5.25  | 1.31,21.11 |
| Bungum '07   | IVF             | 388 | 30%       | 24.4               | 19                 | 22               | 0          | 0.73  | 0.23,233   |
| Bungum '07   | ICSI            | 223 | 30%       | 15.6               | 23.8               | 22               | $\uparrow$ | 1.69  | 0.63,4.49  |

## So is DNA damage a useful test for predicting pregnancy loss?

- Combined odds ratio 2.48 (1.52-4.04) p<0.0001
- Positive predictive value of loss of 37% (high DNA damage) or 10% (low DNA damage) with sensitivity of 0.4
- However, 67% of couples with high DNA damage had normal offspring

Zini et al, 2009

## Ito summarise the relationship between sperm DNA damage and pregnancy

in IUI: strong negative effect (OR=9.9)

in IVF : mild negative effect (OR=1.7)

in ISCI: no effect (OR=1.2)

Thus

<sup>1</sup>Intervention from IUI to IVF to ICSI, the less impact sperm DNA damage has on early fertility check points

BUT in IVF and ICSI pregnancy loss: DNA damage has a moderate positive effect (OR=2.5)

ie an effect on fetal development

Systematic review and meta- analysis by Zini et al, 2008

## Are we expecting too much from one test?

Other factors with important roles-

- Sperm function
- Oocyte quality
- Embryo quality
- Uterine competence
- ORs are based on thresholds-

-how accurate are they?

## **Single Cell Gel Electrophoresis**

## **Comet** assay



- more sensitive- detecting just 50 SSB/cell
- Inexpensive
- reproducible
- Requires low no of sperm(60,000/slide)
- Measure SSB + DSB and alkali labile sites

### Another test for of DNA adducts

•Formamidopyrimidine-DNA glycosylase; FPG

converts 80HdG to single strand breaks

They can then be measured by Comet assay

FPG extract kindly donated by Gunnar Brunborg, Institute

of Public Health, Oslo, Norway



#### Relationship between sperm DNA fragmentation and pregnancy rates in IVF

| Assay   | Sample | n   | ROC   | CI        | Р     |
|---------|--------|-----|-------|-----------|-------|
| Comet   | Native | 146 | 0.649 | 0.57-0.79 | 0.013 |
|         | DCG    | 149 | 0.634 | 0.54-0.75 | 0.025 |
| Comet + | Native | 64  | 0.698 | 0.60-0.91 | 0.024 |
| FPG     | DCG    | 63  | 0.697 | 0.53-0.87 | 0.029 |



- Native semen 39.6 v 52.3 %
- DGC sperm 28.0 v 36.5%
- Potential breaks constitute additional 12 20 %
- Adducts present in both native and DGC sperm
- No pregnancies when DNA damage > 48/62 %

#### Relationship between sperm DNA fragmentation and pregnancy rates in ISCI

| Assay   | Sample | n  | ROC   | CI        | Р     |
|---------|--------|----|-------|-----------|-------|
| Comet   | Native | 90 | 0.637 | 0.46-0.72 | 0.117 |
|         | DCG    | 89 | 0.553 | 0.43-0.69 | 0.271 |
| Comet + | Native | 51 | 0.686 | 0.51-0.86 | 0.042 |
| FPG     | DCG    | 51 | 0.702 | 0.53-0.87 | 0.027 |





No relationship between Comet and pregnancy
Significant rel between Comet plus adducts and pregnancy

#### Clinical significance of Comet using thresholds for native and DGC sperm in IVF & ISCI

| Native                                                              |                                         | IVF                                         |                                                       |                                        | ICSI                                         |                                                     |
|---------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------------------|
|                                                                     | <62%                                    | >62%                                        | OR (CI)                                               | <62%                                   | >62%                                         | OR (CI)                                             |
| Cycles started                                                      | 114                                     | 35                                          |                                                       | 43                                     | 47                                           |                                                     |
| Clinical pregnancies                                                | 25 (80.7%)                              | 4 (36.4%)                                   | 3.54 (1.07-12.89)                                     | 16<br>(88.9%)                          | 12<br>(54.6%)                                | 1.73 (0.64-4.70)                                    |
| Deliveries to date                                                  | 17 (68.0%)                              | 2 (50.0%)                                   | 5.46 (0.86-44.04)                                     | 8 (50.0%)                              | 8 (66.7%)                                    | 1.40 (0.33-6.07)                                    |
| Early pregnancy loss                                                | 3 (12.0%)                               | 1 (25.0%)                                   | 2.44 (0.00-50.80)                                     | 5 (31.3%)                              | 2 (16.7%)                                    | 2.27 (6.28-<br>22.03)                               |
|                                                                     |                                         |                                             |                                                       |                                        |                                              |                                                     |
| DGC                                                                 |                                         | IVF                                         |                                                       |                                        | ICSI                                         |                                                     |
| DGC                                                                 | <48%                                    | IVF<br>>48%                                 | OR (CI)                                               | <48%                                   | ICSI<br>>48%                                 | OR (CI)                                             |
| DGC<br>Cycles started                                               | <48%<br>114                             | IVF<br>>48%<br>35                           | OR (CI)<br>                                           | <48%<br>51                             | ICSI<br>>48%<br>39                           | OR (CI)<br>                                         |
| DGC<br>Cycles started<br>Clinical pregnancies                       | <48%<br>114<br>26 (74.3%)               | IVF<br>>48%<br>35<br>3 (37.5%)              | OR (CI)<br><br>4.97 (1.06-32.03)                      | <48%<br>51<br>19 (86.4%)               | ICSI<br>>48%<br>39<br>9 (50.0%)              | OR (CI)<br><br>1.98 (0.71-5.62)                     |
| DGC<br>Cycles started<br>Clinical pregnancies<br>Deliveries to date | <48%<br>114<br>26 (74.3%)<br>18 (69.2%) | IVF<br>>48%<br>35<br>3 (37.5%)<br>1 (33.3%) | OR (CI)<br><br>4.97 (1.06-32.03)<br>7.41 (0.80-177.8) | <48%<br>51<br>19 (86.4%)<br>10 (45.5%) | ICSI<br>>48%<br>39<br>9 (50.0%)<br>6 (66.7%) | OR (CI)<br><br>1.98 (0.71-5.62)<br>1.67 (0.40-7.40) |

## **Strategies to Reduce Oxidative Stress**

#### **Antioxidant treatment**

• ZnSO<sub>4</sub>/ folic acid and semen quality

Wong et al, 2002

• Zn and Selenium and DNA quality

Menezo et al, 2007

• Vit C and E and ICSI outcome

*Rolf et al,, 1999; Greco et al, 2005* 

Menovit and IVF/ICSI outcome

Tremellen et al, 2007







# Sperm DNA: organisation, protection and vulnerability – from basic science to clinical application

ESHRE Campus symposium

Stockholm, Sweden

21-22 May 2009

Organised by the ESHRE Special Interest Group "Andrology" in collaboration with the Karolinska Institutet (Centre for Andrology and Sexual Medicine, Department of Medicine, Huddinge, Stockholm, Sweden) with support from the Swedish Research Council (Vetenskaprådet).

#### Consensus document:

edited by Chris Barratt

## Recommendations from Consensus Document

- 1. Fundamental research is urgently required
- 2. Standardization of clinical assays
- 3. Animal Models
- 4. High quality clinical data is urgently required
- 5. Long term follow up of ART children



Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications edited by Chris Barratt, ESHRE Campus symposium, Stockholm, Sweden , 21-22 May 2009



## **Acknowledgements**

Prof. Gunnar Brunborg, Institute of Public Health, Norway Luke Simon Ishola Agbaje Ciara Hughes Lauren Dalzell











