The Perspective of Ovum

Peter Sjoblom Nottingham University Research and Treatment Unit In Reproduction NURTURE

Overview

- General observations
- Differences between in vivo and in vitro reproduction from nthe eggs perspective

More questions than answers!

What's So Special About Gametes?

- Highly charged cells waiting to burst into activity after encountering each other
- Require close contact with somatic cells for normal differentiation
- Each cell is genetically unique
- Phenotype largely determined by somatic genome

=> No biological basis for natural selection of unique properties

What's So Special About Eggs?

- Mitosis
 - Finalised in fetal period
- Meiosis
 - Put on hold
- Genetic control of early development
 - Major transcription initiated long after fertilisation
- Needs sperm centrosome for post-fertilisation mitosis
- Mitochondria

Timeline

Thessaloniki 2009

Structural and Functional Changes in Oocytes

- Primary follicles
 - Mitochondrial proliferation
 - Increase in endoplasmic reticulum
- Early secondary follicles
 - Secretion of zona pellucida proteins by the oocyte
 - Cortical granules scattered in the cytoplasm
 - Transcription, translation, accumulation of untranslated mRNA (truncation of polyA, possibly clustering in RNP)

Structural and Functional Changes in Oocytes

- Secondary follicles
 - Growth from 35 µm to 110 µm, almost finished at antrum formation
- Large antral follicles
 - Migration of cortical granules
 - Polarised distribution of proteins and RNA
- Ovulation
 - Progress of meiosis
 - Uncoupling of gap junctions

The Ovum Is A Charged Cell

- Finite life after ovulation
 - Degradation of RNA?
- Waiting to explode into action after contact with sperm
 - Prevention of polyspermia
 - Progression of meiosis

Fertilisation

- Sperm penetration through zona
- Sperm-egg fusion
- Polyspermia block
- 2nd meiotic division
- Decondensation of sperm nucleus
- Protamin-histone replacement
- Formation of pronuclei

What Does The Sperm Contribute?

- Genetic (DNA) inheritance
- Epigenetic inheritance
- Structural inheritance (centrosome)
- Activation signal

Thessaloniki 2009

- On average <3 oocytes in each cycle has good developmental potential
- About 2-5% of oocytes retrieved in vitro become babies (What is the appropriate comparison in vivo?)
- Why do we give such large doses of hormones and why do we collect so many oocytes?

- Environmental factors
 - Physical-chemical factors (T, pH, osm, oxygen, light)
 - Nutritional factors (media, metabolites)
 - Cellular factors (epithelial cells, sperm concentration)

Development *in vitro vs in vivo* Temperature

- Chemical reaction rates
- Solubility
- Macromolecular structure
 - Proteins and nucleic acids
 - Lipid bilayers
 - Tubulin

Temperature

Thessaloniki 2009

Temperature

Temperature

- Macromolecular conformation
 - Charge of –NH₂ and COOH groups; hydrogen bonds
- Reaction rates
- Protein function
- Energy storage

- Oocytes incapable of regulating internal pH
- Internal pH regulation requires presence of bicarbonate in surrounding medium

Fertilisation in vitro vs in vivo Nutritional factors

- Energy requirements differ between developmental stages
 - Abrupt vs gradual change
- Composition of media
 - Simple versus complex
 - Degradation
- Removal of metabolites
 - $-NH_4^+$

Fertilisation in vitro vs in vivo Cellular factors

- Tubal epithelium
- Sperm concentration
 - 100,000 vs 100
 - Consumption of nutrients
 - Accumulation of metabolites

- Escape from the intrafollicular environment
- Functional life of oocytes probably 6-10 h post ovulation
- Optimal time of insemination probably close to natural time of ovulation

Fertilisation in vitro vs in vivo Interval hCG oocyte retrieval

Sjoblom ESHRE Campus Thessaloniki 2009

(Nargund et al, 2001)

Oocyte Freezing

- Risk of aneuploidy due to degradation of meiotic spindle
- Efficacy of reproduction only marginally lower than with fresh oocytes

Ovarian Tissue Freezing

- Still very small numbers thawed and transplanted, but huge numbers frozen
- "Results are promising"
- Great need for fertility preservation

Future Challenges

- Understanding and manipulation of oogenesis and folliculogenesis
- Understanding ovarian senescence
- Identifying characteristics of oocytes with good developmental potential
- Improvement of culture conditions
- Understanding the developmental impact of in vitro manipulations