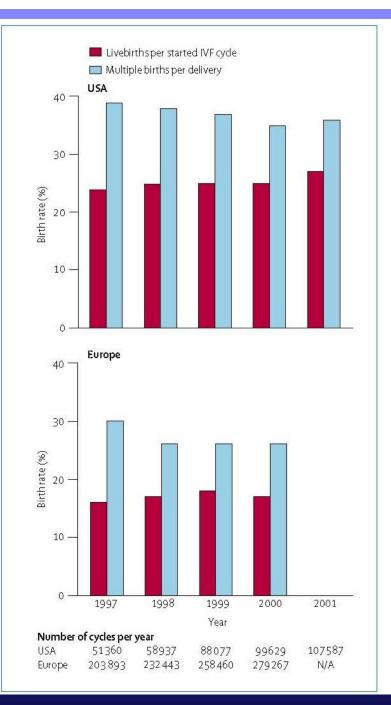
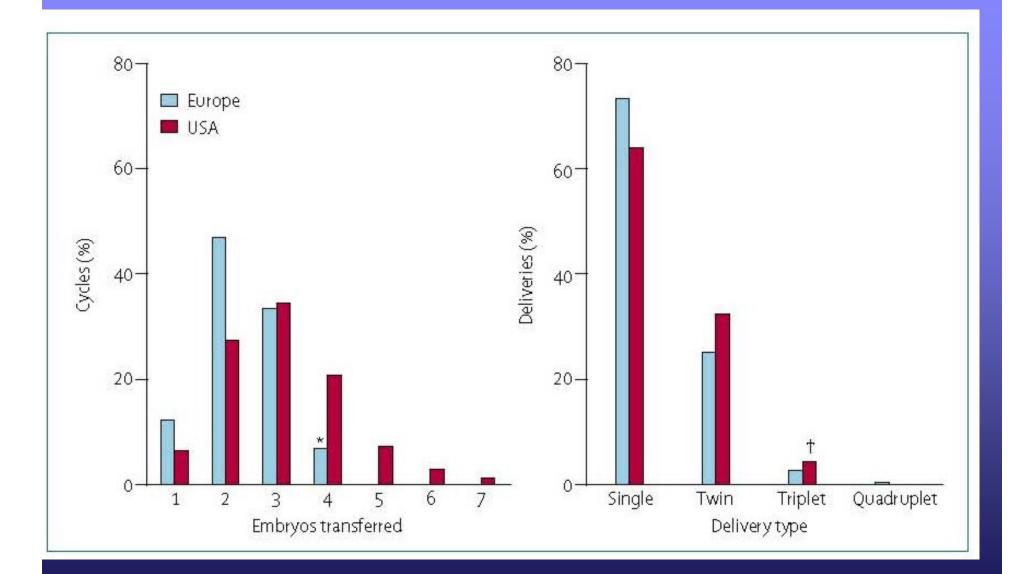
Health of Children Born after ICSI

Basil C. Tarlatzis, MD, PhD

Professor of Obstetrics – Gynaecology and Reproductive Medicine Aristotle University of Thessaloniki, Greece


ART Children

- 1978: IVF, Louise Brown (R.Edwards, P.Steptoe)
- 1990 : ICSI (Palermo, Van Steirteghem, Devroey)
- 2005 : World


More than 3 million children (200 000 per year)

Approx. half from multiple pregnancies

The Problem of Multiple Pregnancies

Fauser et al, Lancet 365, 1807, 2005

Fauser et al, Lancet 365, 1807, 2005

Multiplicity and Pregnancy Complications

	Singleton	Twin	Triplet	Р
Pre-eclampsia	1.2	2.9	5.6	0.001
Preterm labour	7.1	19.7	40.4	0.001
PROM	2.8	7.8	13.6	

FIVNAT, 1998

CHILDREN BORN AFTER ASSISTED REPRODUCTION TECHNIQUES

- Perinatal Outcome
- Congenital Malformations
- Chromosomal Abnormalities
- Psychomotor development
- Genomic Imprinting Defects
- Cancer

Coding systems

- Classification by system
 - ICD international coding system
- National registers
 - British Pediatric Classification adds additional numbers to the ICD code
 - guidelines for coding
- Eurocat
 - surveillance of congenital anomalies
- MC Kusick

Bonduelle et al., 2002

Major Malformations in IVF, ICSI and Naturally Conceived Children

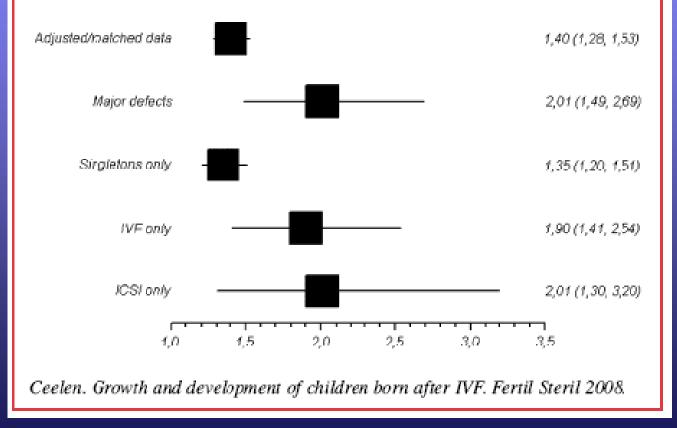
Table II. Odds Ratio From a Meta-Analysis in Subgroups and Overall

		95%	6 CI	Number
	OR	Lower	Upper	of studies
IVF Single	1.51	0.85	2.7	8
IVF Multiple	0.92	0.75	1.12	7
ICSI Single	1.33	0.90	1.95	6
ICSI Multiple	1.18	0.60	2.37	4
IVF All	1.28	0.93	1.75	16
ICSI All	1.23	0.80	1.88	7
IVF/ICSI ^a	1.29	1.01	1.67	19

^aUsing a single OR for each publication all statistical significance tests for heterogeneity were P < .0001 and random effects model was used.

Rimm et al, J Ass Repr Gen, 21, 437, 2004

Table 2. Analysis of sub-cohorts in a meta-analysis on the risk of major malformations after IVF and ICSI. Data according to Hansen *et al.* (2005).


	No. studies	Pooled OR	95% CI
Major birth defects	15	1.32	1.20-1.45
All infants (singletons and multiples)	17	1.36	1.28-1.45
Singletons only	15	1.31	1.17-1.46
IVF only	12	1.94	1.50-2.50
ICSI only	5	1.28	1.14-1.43

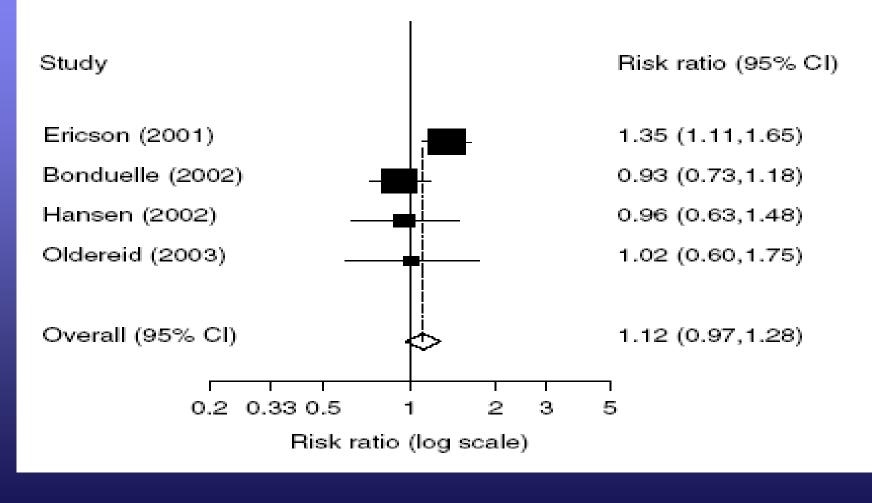
ICSI = intracytoplasmic sperm injection; OR = odds ratio; CI = confidence interval.

Ludwig, RBM Online 10, suppl 3, 83, 2005

FIGURE 2

Estimates of congenital malformation risk (pooled odds ratios) in children born after ART. Published by Hansen et al. 2005.

Ceelen et al, Fertil Steril, 2008


Risk for Congenital Malformations in ART Children (Sweden)

Congenital Malformations among Infants Born after IVF Compared with All Infants*

		All ^a	"W	leeded"b
Adjustments .	OR	95% CI	OR	95% CI
Year of birth	1.42	1.32-1.52	1.52	1.29–1.66
Year of birth and maternal		•		
age	1.40	1.30-1.60	1.48	1.30-1.62
Year of birth and parity	1.39	1.29-1.49	1.50	1.28-1.64
Year of birth, maternal age,				
and parity	1.33	1.24-1.43	1.44	1.32-1.57
Singletons	1.30	1.20-1.41	1.39	1.26-1.53
Multiple births	1.02	0.91 - 1.15	0.96	0.76-1.21
Also years of known				
childlessness	1.05	0.95-1.16	1.12	0.99-1.28
Also maternal smoking	1.04	0.93-1.16	1.12	0.98-1.27
Singletons	1.07	0.95-1.21	1.11	0.95–1.29
Multiple births	0.86	0.70-1.05	0.94	0.73–1.19

Kallen et al, Birth Def Res, 73, 162, 2005

Meta-analysis of Major Birth Defects in IVF and ICSI Children

Lie et al, Intern J Epidemiol, 34, 696, 2005

Risk for Congenital Malformations in ART Children (Sweden)


Distribution of All Infants with a Congenital Malformation (Irrespective of Source)						
	Accord	ding to IVF N	Method Used*	13061		
	Number of ir	nfants		. nohi	kada yayan	
Method	Malformed	Total	Percent	95% CI	OR	95% CI
Standard IVF				, ris list	magnina hair	
Fresh stimulated	829	10116	8.2	7.7-8.7	1.00	Reference
Fresh unstimulated	3	112	2.7	0.6-7.6	0.30	0.10-0.88
Frozen	81	1055	7.7	6.1-9.5	0.94	0.74-1.21
ICSI						
Ejaculated sperm	371	4248	8.7	7.9–9.6	1.08	0.94-1.25
Epididymal sperm	10	135	7.4	3.6-13.2	0.95	0.49-1.87
Testicular sperm	11	147	7.5	6.8-13.0	0.93	0.49-1.75
Frozen ejaculated sperm	28	343	8.2	5.5-11.6	0.99	0.66-1.49
Frozen other sperm	3	33	9.1	1.9-24.3	0.98	0.38-4.11
Frozen unspecified	5	43	9.1	3.9-25.1	1.30	0.50-3.36
Other or unspecified	3	48	6.3	1.3-17.2	0.76	0.24-2.40
All ICSI vs. all standard IVF						
Standard IVF	913	11283	8.1	7.6-8.6	1.00	Reference
ICSI	428	4949	8.6	7.9–9.5	1.00	0.74–1.36

*Numbers and odds ratio (OR) with 95% confidence interval (95% CI) for any malformation according to IVF method. Adjustment for year of birth, maternal age, and number of infants in birth.

Birth Defects Research (Part A) 73:162–169 (2005)

ICSI-CFO Study (supported by EU) Members of Steering Committee

ICSI-CFO Study (supported by EU)

 Study of 1515 ICSI, IVF and spontaneously conceived children at the age of 5 years and their families

ICSI CFO Study: Major malformations at 5 years					
	ICSI n 540	IVF n 437	Control n 538	p-value	
Neonatal	3.3%	2.1%	1.9%	ns	
Childhood	3.0% ¹	2.3%	0.4% ¹	¹ 0.001	
Total major malformation	6.3% ²	4.3%	2.2% ²	² 0.001	

Prevalence of Major Malformations

- ICSI vs control: OR 2.85 (Cl 1.46-5.59)
 IVF vs control: OR 1.82 (Cl 0.86-3.85)
 After adjustment for maternal age, educational level, social class, smoking and drinking, OR slightly attenuated
 - ICSI vs control: OR 2.54 (CI 1.13-5.71)
 IVF vs control: OR 1.67 (CI 0.70-3.98)

Uro-genital Major Malformations in ICSI (n=20)

Hypospadias (3) Congenital malformations of male genital organs Hydrocoele (3) Undescended testicle, unilateral (4) Duplication of ureter Urethral stenosis (3) Congenital vesico-ureteric junction obstruction (2) Congenital vesico-uretero-renal reflux (3)

Major Malformations in ICSI Children vs Controls

Procedure	Total boys MAJ %	Total girls MAJ %	Boys and girls %
ICSI <i>vs</i> Control	8.2%	3.6%	6.3%
	RR 2.60 CI: 1.2 – 5.5	RR = 1.44 CI: 0.99 - 2.09	RR = 2.58 CI: 1.37 - 4.84

Malformations in ICSI Children by Sperm Origin

Sperm origin	Major %	Abnormal / total
Ejaculate	4.2% ^{1,2}	32 / 758
Epididymal	9.1% ¹	2 / 22
Testicular	12.5% ²	2 / 16
	^{1,2} FE n.s.	

Prevalence of Major Malformations

Increase in ICSI children
Not detected at birth
Partially due to increased defects in
uro-genital system
Higher malformation rate in ICSI
Boys 8.2% > girls 3.6%

Subfertility as a risk factor

- *Buck Louis (2005)* highlighted major drawback of all studies, ie one group is fertile, the other one is subfertile.
 - Optimal study design would be:
 - 1. Comparison spontaneous and ART conceptions in subfertile population
 - 2. Comparison spontaneous and ART conceptions in fertile population

Subfertility and Risk for Major Malformations

Spontaneous conception in subfertile

couples in Sweden (1983 – 1986)

Ghazi et al, 1991

Table 3. Risk	of premature	birth (a) a	and major	malformations
(b) depending	on the time t	to pregnan	cy (Ghazi	et al., 1991).

Time to pregnancy (years)	Odds ratio	95% Confidence interval
(a)		
1	1.03	1.01-1.26
2	1.13	1.01-1.26
2 3	1.16	1.00-1.35
4	1.29	1.07-1.55
≥5	1.60	1.44-1.77
(b)		
1	0.97	0.85-1.10
2	1.00	0.87-1.16
3	1.01	0.83-1.24
4	1.14	0.90-1.45
≥5	1.18	1.01-1.37
1-3	0.99	0.90 - 1.08
≥4	1.17	1.03-1.33

Ludwig, RBM Online 10, suppl 3, 83, 2005

CHILDREN BORN AFTER ASSISTED REPRODUCTION TECHNIQUES

- Perinatal Outcome
- Congenital Malformations
- Chromosomal Abnormalities
- Psychomotor development
- Genomic Imprinting Defects
- Cancer

Chromosomal Abnormalities in ART Babies

- No systematic data in conventional IVF
- Limited data in ICSI fetuses
- Data from VUB
 - 1586 fetal karyotypes
 - Initially in almost all pregnancies now in < 50%

PREVALENCE OF INHERITED AND DE NOVO ABERRATIONS

PREVALENCE IN VUB ICSI FOETUSSES

- **TOTAL:** 47/1586 = 2.96% = x 3
- DE NOVO: 25/1586 = 1.58% = x 3
- INHERITED: 22/1586 = 1.39% = x 3

Bonduelle M L, ICSI-Related Risk for the Children, PhD Thesis, April 2003

PREVALENCE OF INHERITED AND DE NOVO ABERRATIONS

INHERITED CHROMOSOMAL ANOMALIES

• PATERNAL TRANSMISSION :	17/22
• MATERNAL TRANSMISSION :	5/22
• BALANCED :	21/22
• UNBALANCED :	1/22

Bonduelle M L, ICSI-Related Risk for the Children, PhD Thesis, April 2003

Prenatal Diagnosis in 1586 ICSI Fetuses in VUB

Abnormal results	n	%	Confidence Interval	% normal population ^{1, 2, 3}
De novo	25	1.6%*	1.02 - 2.32 %	0.45 - 0.87%
Sex chrom	10	0.6%*	0.30 - 1.16 %	0.19 - 0.27%
Autosomal	15	0.9%	0.53 - 1.56 %	0.26 - 0.60%
Numerical	8	0.5%	0.22 - 0.99 %	0.14 - 0.33%
Structural	7	0.4%	0.18 - 0.91 %	0.11 - 0.22%
Inherited	22	1.4%*	0.87 - 2.09 %	0.47 - 0.37%
Total	47	3.0%	2.19 - 3.92 %	0.92%

¹ Jacobs et al., 1992 on 34 910 newborns

* significant

² Ferguson-Smith et al., 1984 on 52 965 prenatal samples

³ Hook et al., 1982; 1982

NUMBER OF CHROMOSOMAL ABERRATIONS IN AZOOSPERMIC MALES

References	n	Klinefelter XXY (%)	Other sex chromosome abnormalities (%)	Autosomal aberrations (%)
Hendry 1976	54	3 (5.6)	-	2 (3.0)
Micic 1984	356	26 (7.3)	2 (0.6)	2 (0.6)
Retief 1984	106	12 (11.3)	6 (0.6)	-
Bourrouillou 1985	383	49 (12.8)	5 (1.5)	5 (1.3)
Rivas 1987	163	31 (19.0)	5 (3.0)	2 (1.2)
Matsuda 1989	84	3 (3.4)	2 (2.2)	2(2.2)
	1151	124 (11.0)	20 (1.7)	13 (1.1)

Prevalence of De Novo Chromosomal Anomalies

	Sex	<u>Auto</u>	<u>Total</u>
Bonduelle et al.,	10 (0.63%)	15 (0.95%)	25/586 (1.6%)
2002			
Aboulghar et al., 2001	7 (1.63%)	8 (1.86%)	15/430 (3.4%)

Bonduelle et al., 2002

De Novo Chromosomal Anomalies and Sperm Parameters / Origin

Sperm count $< 20.10^{6}$ / ml $\Rightarrow 2.1$ %* chromosomal abnormalities Fisher's Exact 2 tailed test p < 0.05 Sperm motility < 50 % normal motility \Rightarrow more chromosomal abnormalities Fisher's Exact 2 tailed test p < 0.05■ Sperm origin ⇒ no influence

Chromosomal Abnormalities in ICSI Embryos Using OTA or TESE Spermatozoa

	ΑΤΟ	TESE	P Value
Embryos (N)	830	100	
Normal (%)	347 (41.8)	22 (22.0)	<0.001
Aneuploid (%)	218 (26.2)	17 (17.0)	NS
Mosaic (%)	220 (26.5)	53 (53.0)	<0.001

Silber et al, Fertil Steril, 79, 30, 2004

Chromosomal Abnormalities in Sperm from Azoospermic Men

Semen Origin	Sperm Analyzed (N)	Nullisomy (%)	Autosom Disomy (%)	Sex Chr Disomy (%)	Diploidy (%)
Testicular	490	18 (3.7) ^a	10 (2.0) ^b	21 (4.3) ^c	7 (1.4) ^d
Epididym	6675	29 (0.43) ^a	34 (0.51) ^b	41 (0.61) ^c	16 (0.24) ^d
Ejaculated	25150	67 (0.27) ^a	128 (0.51) ^b	113 (0.45) ^c	82 (0.33) ^d

^{a,b,c,d} p<0.01

Palermo et al, Hum Reprod, 17, 570, 2002

Chromosomal Abnormalities in Sperm from Infertile and Fertile Men

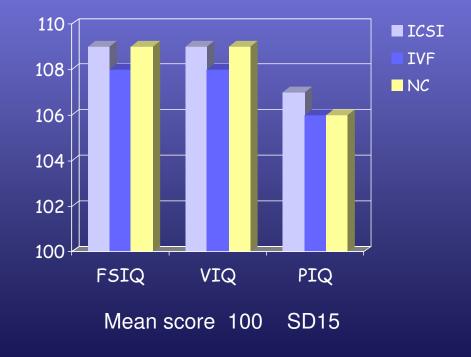
	Chromosomal Abnormalities (%)	P Value
Nonobstructive Azoospermia	19.6	<0.001
Obstructive Azoospermia	8.2	<0.001
Severe OTA	13.0	<0.001
Semen Donors	1.6	

Levron et al, Fertil Steril, 63, 479, 2001

Genetic Risks in ICSI Children

- Risk due to higher maternal age (31%)
- More (5.3%) parental (paternal) abnormal karyotypes
 - More (6%) risk for monogenic diseases
 - Infertility is part of disease CF/CBAVD, Steinert
 - Genetic abnormality causes infertility: Yq11 (micro) deletions
- More multifactorial disorders in infertilie patients?
 ⇒ Genetic counselling needed in high risk situations

CHILDREN BORN AFTER ASSISTED REPRODUCTION TECHNIQUES

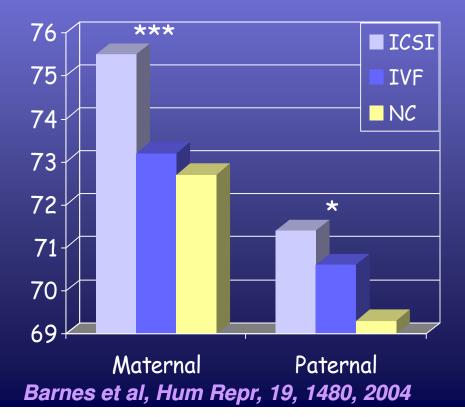

- Perinatal Outcome
- Congenital Malformations
- Chromosomal Abnormalities
- Psychomotor development
- Genomic Imprinting Defects
- Cancer

Cognitive Development at 5 Years

Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R): FSIQ, VIQ, PIQ

- NO differences
 between ICSI, IVF
 and NC children on
 FSIQ, VIQ and PIQ
- Gender effect

Girls obtain higher scores than boys on FSIQ, VIQ and PIQ


Ponjaert-Christoferson et al, Pediatr, 115, 283, 2005

Socio-emotional Development & Family Relationships

Results

- No evidence of increased child behavioural problems (CBCL)
- No evidence of more stress in families who have used ICSI or IVF (PSI)
- Greater investment in parenting associated with ICSI, and less in work (Greenberger)

Maternal and paternal commitment to parenting (Greenberger)

Sperm Concentration and Cognitive Development

 No significant difference in total intelligence quotient (IQ) – performance or verbal IQ- between ICSI and IVF children depending on sperm origin (testicular, epididymal or ejaculated) or sperm concentration (<1, 1-5, 5-20 or >20x10⁶ / ml).

Wennerholm et al, Hum Reprod, 2006

Laterality in ICSI and IVF versus Naturally Conceived Children

Table 1. Observed left handedness (for drawing and writing) in five-yearold children in assisted reproduction treatment groups compared with naturally conceived (NC) controls.

Conception groups (n)	Percent left handed	χ^2 vs NC control	Significance (P)
NC control girls (250)	12.4	_	_
IVF girls (198)	8.6	1.68	n.s.
ICSI girls (243)	7.0	4.10	< 0.05
NC control boys (273)	13.9	-	_
IVF boys (227)	11.5	0.68	n.s.
ICSI boys (282)	13.8	0.01	n.s.

Sutcliffe et al, Br J Obstet Gynaec, 112, 1, 2005

Human Reproduction Update, Vol.14, No.3 pp. 219–231, 2008 Advance Access publication March 26, 2008 doi:10.1093/humupd/dmn005

Neuromotor, cognitive, language and behavioural outcome in children born following IVF or ICSI-a systematic review

K.J. Middelburg^{1,5}, M.J. Heineman^{2,3}, A.F. Bos⁴ and M. Hadders-Algra¹

¹Department of Paediatrics, Division of Developmental Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; ²Department of Obstetrics and Gynaecology, University Medical Center Groningen, Groningen, The Netherlands; ³Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands; ⁴Department of Paediatrics, Division of Neonatology, University Medical Center Groningen, The Netherlands

Neuromotor and Mental Development of ICSI Children at 5.5 Years (Germany)

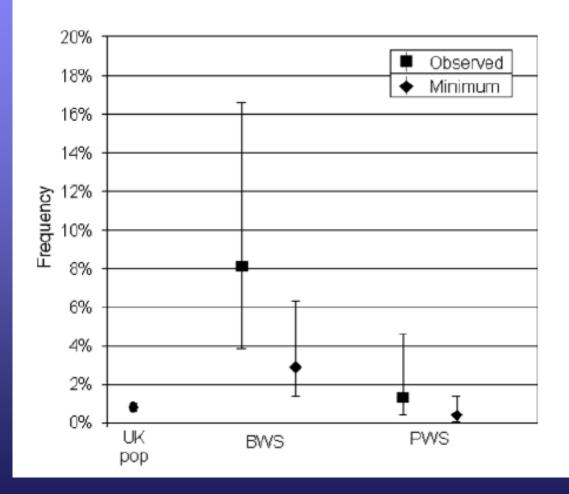
TABLE 3

Test results of the Kaufman Assessment Battery for Children.

	ICSI group (n = 276)	Control group (n = 273)	<i>P</i> value to reject nonequivalence ^a
Sequential processing	101.90 ± 11.53	101.71 ± 11.72	>.01
Simultaneous processing	104.57 ± 11.03	104.59 ± 10.91	>.01
Learning ability/intelligence	102.87 ± 9.19	102.78 ± 9.04	>.01
Planning ability	102.97 ± 11.32	$10\textbf{1}.60\pm \textbf{1}\textbf{1}.25$	>.01

Note: Complete test results were available for 271 ICSI children and 268 control children. ^a Null hypothesis for equivalence: μ (control) – μ (ICSI) > 4 units.

Ludwig et al, Fertil Steril, 2009


CHILDREN BORN AFTER ASSISTED REPRODUCTION TECHNIQUES

- Perinatal Outcome
- Congenital Malformations
- Chromosomal Abnormalities
- Psychomotor development
- Genomic Imprinting Defects
- Cancer

Genomic Imprinting Defects

Angelmann's syndrome (neurogenetic disease) Cox et al, 2002: 2 cases after ICSI Beckwith-Wiedemann syndrome (human large baby syndrome) Sutcliffe et al, 1995: 1 case after cryopreserved ET Olivennes et al, 2001: 1 case after IVF DeBaun et al, 2002: 2 cases after IVF 4 cases after ICSI (ejacul. sperm) 1 case after ICSI (testic. sperm) Maher et al, 2003: 3 cases after IVF **3 cases after ICSI Retinoblastoma** Moll et al, 2003: 5 cases after IVF

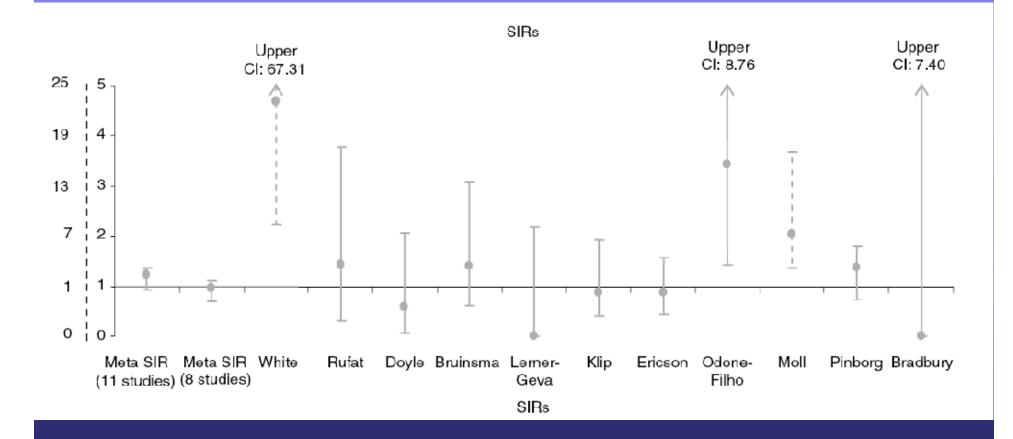
Beckwith-Wiedemann and Prader-Willi Syndromes in IVF/ICSI Children and the UK Population

Sutcliffe et al, Hum Reprod, 2006

CHILDREN BORN AFTER ASSISTED REPRODUCTION TECHNIQUES

- Perinatal Outcome
- Congenital Malformations
- Chromosomal Abnormalities
- Psychomotor development
- Genomic Imprinting Defects
- Cancer

INCIDENCE OF CANCER IN CHILDREN CONCEIVED BY ART


	Country	Mean follow-up (years)	Total cohort size (n)	Total cases (n)	Comparison group	SIR	95% CI
Doyle et al (1998) ⁵⁷	UK	8.6	2507	2	General population	0.57	0.7-2.06
Bruinsma et al (2000)98	Australia	3.9	5249	6	General population	1.39	0.62-3.09
Lerner-Geva et al (2000) ⁹⁹	Israel	43	332	0	General population		
Brinton et al (2004) ²⁰⁰	Denmark	20	30 364	51	General population	1.14	0.8-1.5

SIR=standardised incidence ratios.

Table 3: Risk of childhood cancer after ART

Sutcliffe and Ludwig, Lancet, 2007

INCIDENCE OF CANCER IN CHILDREN CONCEIVED BY ART

Raimondi et al, Br J Cancer, 2005

Fertility

Fertility of ART Children

Louise Brown and her sister gave birth to healthy children

These represents the first, second generation children after IVF.

Pregnancy and Children Outcome after ART: Is there a Reason for Concern?

- Multiple pregnancies remain an important risk factor
- Slightly higher risk of perinatal complications (prematurity, low birth weight), even in singletons, probably related to infertility
- Slightly higher risk of inherited chromosomal anomalies in relation to parental chromosomes and of de novo anomalies related to sperm quality

Pregnancy and Children Outcome after ART: Is there a Reason for Concern?

- Slightly higher risk of major malformations mostly in relation to maternal age, infertility and underlying parental disease
- Psycho-motor development is normal but the neuro-developmental outcome might be influenced by neonatal problems

Pregnancy and Children Outcome after ART: Is there a Reason for Concern?

- Based on the available data, no reason for major concern
- Proper counselling of the couples on existing risks
- Larger studies are necessary to assess the health risks associated with ART but also infertility per se

Thank you!