Genetic factors and poor ovarian response to stimulation Prof. Bart CJM Fauser, MD, PhD

Dept. Reprod Medicine & Gynecology University Medical Center, Utrecht, The Netherlands

Fauser, conflict of interest statement

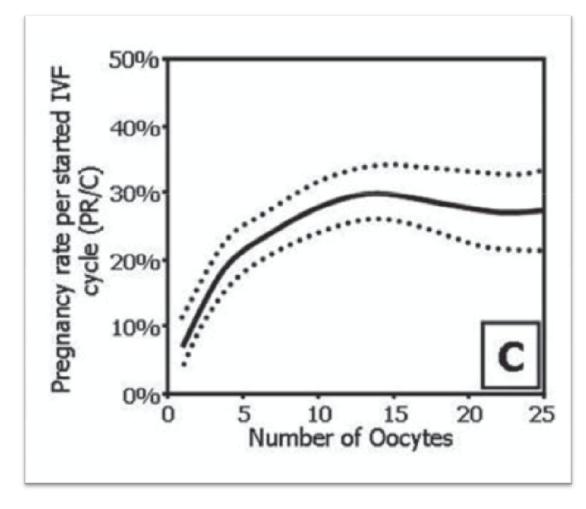
Received fees and grant support from the following companies (in alphabetic order);

Andromed, Ardana, Ferring, Genovum, Glycotope, Merck Serono, Organon, Pantharei Bioscience, Philips, PregLem, Schering, Schering Plough, Serono, and Wyeth.

Lecture learning objectives

- Ovarian aging and potential relevance for low response
- Menopausal age, and relevance
- Genetics of (premature) menopause
- New genomic technologies and potential relevance for low response

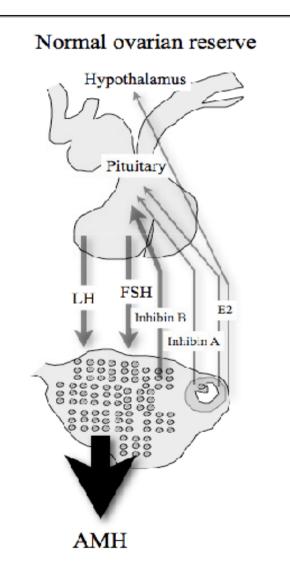
Optimum number of oocytes for a successful first IVF treatment cycle


Mark van der Gaast is a PhD student at the Division of Reproductive Medicine, Department of Obstetrics and Gynaecology of the Erasmus Medical Centre in Rotterdam (The Netherlands). His thesis focuses on endometrial receptivity in human reproduction. He started his Obstetrics and Gynaecology residency in September 2003.

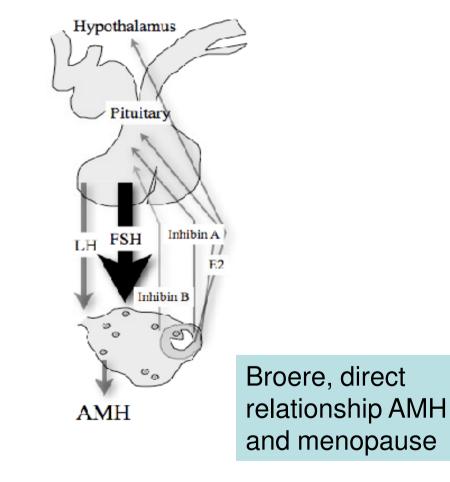
RBM 2006

Dr Mark van der Gaast

MH van der Gaast¹, MJC Eijkemans², JB van der Net², EJ de Boer³, CW Burger^{4,} FE van Leeuwen⁵, BCJM Fauser^{1,6}, NS Macklon^{1,6,7}

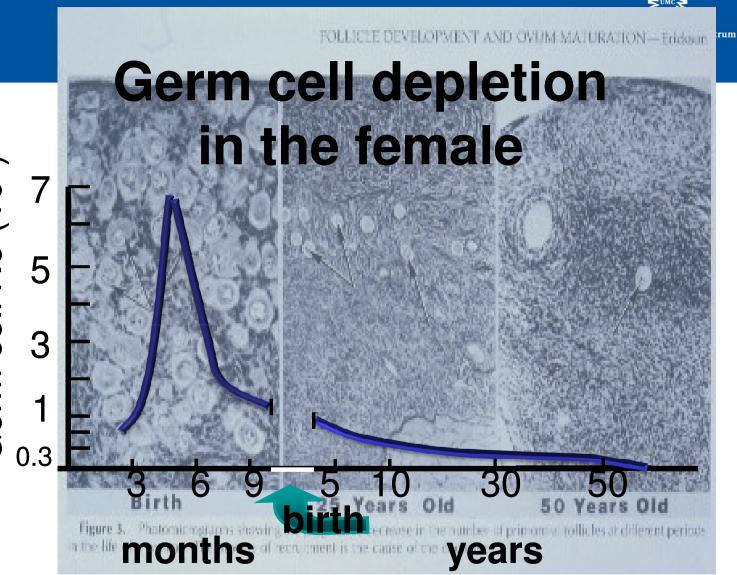

National Dutch registry

- 7.422 women
- GnRH a, long protocol


TABLE 1. Evide stimulation for IVE		Associa	tion betwe nd early i				e e esponse to ransition o	ovarian r menopause
			dy group or responders)			Control (IVF normal r		
Study	n	Median follow-up time	Cases entered menopause or menopausal transition (%)	FSH (IU/liter)	n	Median follow-up time	Cases entered menopause or menopausal transition (%)	Adjusted odds or hazard ratio ^a
Farhi, 1997 (326), case report	12	9 months	100	23-85	_	_	-	-
De Boer, 2003/2002 (62, 92), retrospective cohort	636	6 yr	22		3675	5 yr	7%	~3.1 (odds)
Lawson, 2003 (63), retrospective cohort	118	5 yr	50		265	5 yr	16%	~3.1 (hazard)
Nikolaou, 2002 (64), case control	12	7 yr	92		24	7 yr	17%	~5.3 (odds)

Endocrine changes associated with ovarian aging

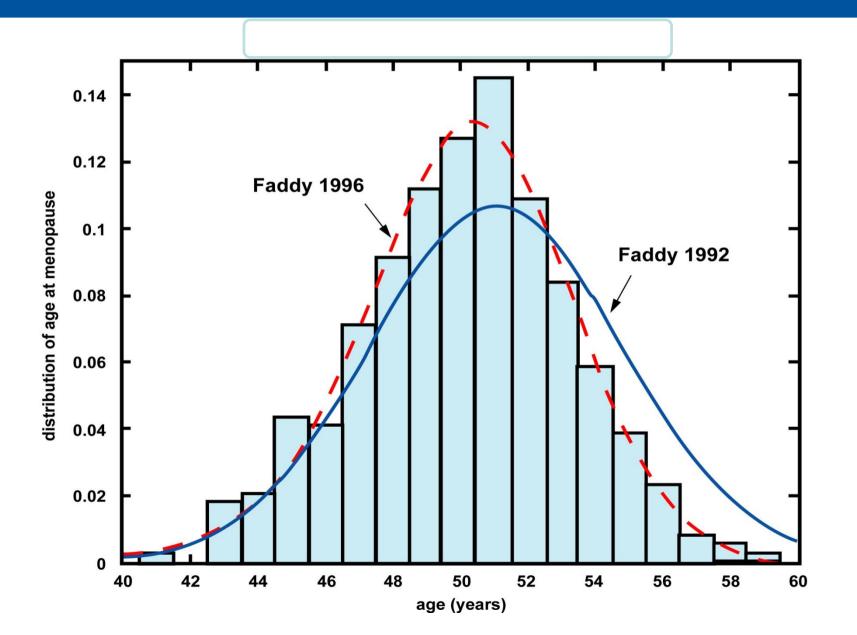
Decreased ovarian reserve



AMH levels and prediction of menopause 12 yrs later

Study design	results
inclusion	130 fertile women 25-46 yrs (t_1) Assessment 12 yrs later (t_2)
Results t ₂	35 regular,31 menopausal transition,44 postmenopausal
Predictors initial screening for reaching menopause t ₂	Age, ROC AUC 0.91 AMH, ROC 0.90 AFC, ROC 0.85
Multi-variate model	

Broer, Florence 2010

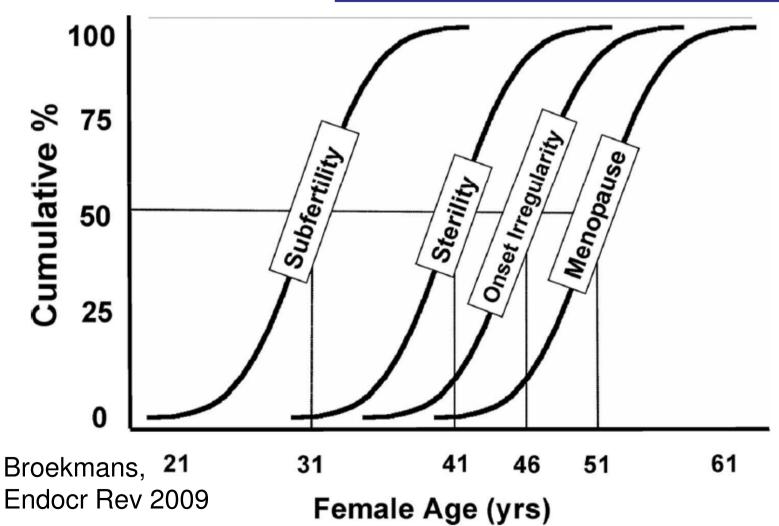


SMM2

Germ cell No (10⁶)

Distribution of age at menopause miversitair Medisch Centrum

Utrecht



Individual variability in menopausal age is related to preceeding decreased fertility

Universitair Medisch Centrum Utrecht

Low response \rightarrow early menopause

entrum

Functional genetic polymorphisms and female reproductive disorders: Part I: polycystic ovary syndrome and ovarian response

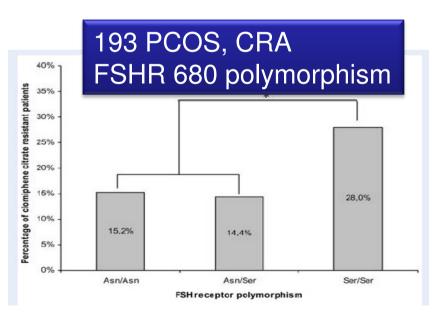
M. Simoni^{1,5}, C.B. Tempfer², B. Destenaves³ and B.C.J.M. Fauser⁴

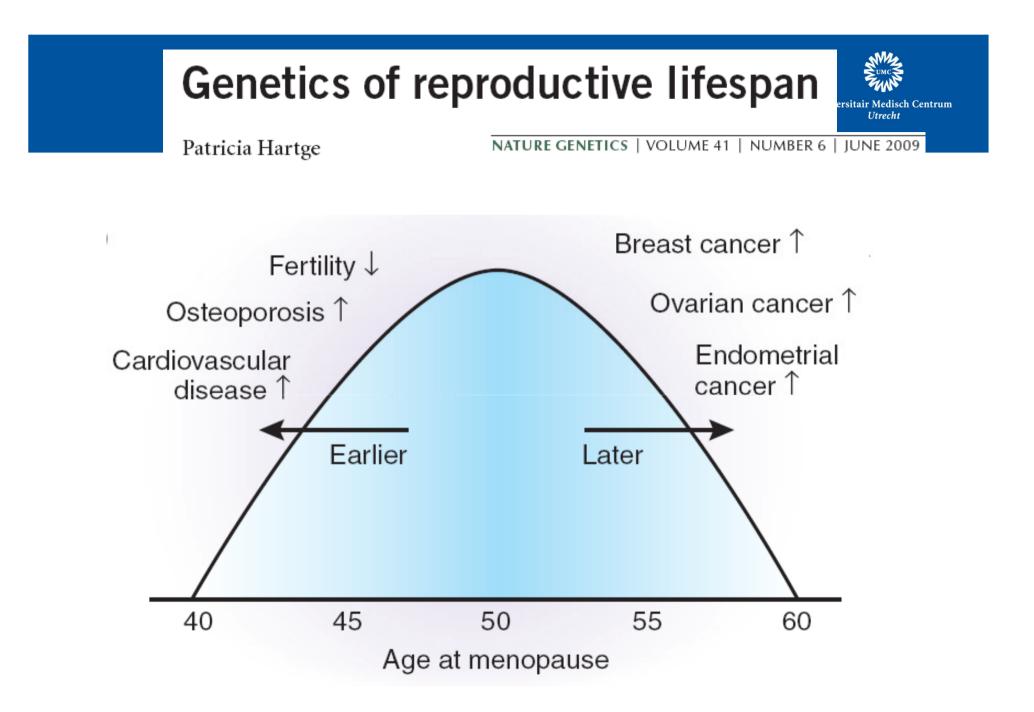
Table V. Polymorphisms in genes encoding sex hormones and hormone regulators, enzymes involved in metabolism and biosynthesis, or paracrine factors.

Protein name	Protein function	Variant		Association with ovari	an response	Phenotype (cases, controls)
		Name	dbSNP ID	Positive (cases, controls)	Negative (cases, controls)	
rmone regulators						
Anti-Müllerian hormone	Homone	p.149S	rs10407022			Cancasian women—E ₂ levels (53, 45 (Kevenaar et al., 2007)
Anti-Müllerian hormone type II receptor	Hormone receptor	-482A/G	rs2002555			Caucasian women—E ₂ levels levels (53, 45) (Kevenar et al., 2007)
Oestrogen receptor a	Homone receptor	Pvull RFLP (-397T/C) (g.938T/C)	rs2234693		Spanish women (170) (Mao <i>et al.</i> , 2000; de Castro <i>et al.</i> , 2004) Chinese women (200, 200) (Sundarmjan <i>et al.</i> , 1999)	Caucasian women—follicule/oocyte ratio, pregnancy nate (100, 100) (Georgiou et al., 1997) Chinese women—serum oestratdiol levels, follicule/oocyte ratio, pægnan rate (200, 200) (Sundarrajan et al., 1999)
Oestrogen receptor β	Homone receptor	AluI RFLP (1730A/G) (39 A/G)	rs4986938		Spanish women (170) (Mao et al., 2000; de Castro et al., 2004)	
5 Follicle-stimulating hormone receptor	Homone receptor	p.N680S (in complete LD with p.A307T, rs6165)	n#166	German women (93) (Pezz Mayorga et al., 2000; Behre et al., 2005)	Dutch women (105) (Klinkert et al., 2006)	German women—peak oestradiol lew (93) (Behre et al., 2005)
				Japanese women (58) (Sudo et al., 2002)		German women—cixulating FSH, levels, number of follicules, latheal phase and menstrual cycle length (23 (Perez Mayorga et al., 2000; Greb et al., 2005)
				Spanish women (102) (de Castro et al., 2003; de Castro et al., 2004)		Japanese women (58)—basal FSH (Sado et al., 2002)
				Korean women (263) (Jun et al., 2006)		Dutch women (148) (Laven et al., 2003) Swedish women (68) (Falconer et al., 2005)
				Gæek women (125 (Loutmdis et al., 2006)		Korean women—basal FSH, pregnan rate (263) (Jun et al., 2006)
						Greek women (125)—FSH levels, follicule and oocyte number (Loutnoi et al., 2006) Datch women—pregnancy nite (105) (Klinkert et al., 2006)
metabolism and biosynthesis Aromatase	Steroid biosynthesis	1672C/T	rs10046		Spanish women (170) (de Castro <i>et al.</i> , 2004)	
	tabolism and biosynthesis Aromatase					Aromatase Steroid biosynthesis 1672C/T rs10046 Spanish women (170)

Pharmacogenomics in Ovulation Induction

312 PCOS STK 11 polymorphism 1.0 0.8 Proportion of ovulated cycles 0.6 46% 0.4 31% 26% 0.2 0.0 C/C C/G G/G Genotype at STK11_rs8111699 SNF metformin


Ovulatory Response to Treatment of Polycystic Ovary Syndrome Is Associated with a Polymorphism in the *STK11* Gene


Richard S. Legro, Huiman X. Barnhart, William D. Schlaff, Bruce R. Carr, Michael P. Diamond, Sandra A. Carson, Michael P. Steinkampf, Christos Coutifaris, Peter G. McGovern, Nicholas A. Cataldo, Gabriella G. Gosman, John E. Nestler, Linda C. Giudice, Kathryn G. Ewens, Richard S. Spielman, Phyllis C. Leppert, and Evan R. Myers for the Reproductive Medicine Network*

Clomiphene citrate resistance in relation to follicle-stimulating hormone receptor Ser680Ser-polymorphism in polycystic ovary syndrome HR 2009

A. Overbeek^{1,4}, E.A.M. Kuijper¹, M.L. Hendriks¹, M.A. Blankenstein², I.J.G. Ketel¹, J.W.R. Twisk³, P.G.A. Hompes¹, R. Homburg¹, and C.B. Lambalk¹

Genetics of age at natural menopause

Table I Genome-wide linkage analyses; regions with (suggestive) linkage with ANM.

Study	Linkage region	LOD score	Nª	N markers ^b
van Asselt et <i>a</i> l., 2004	9q21.3 Xp21.3	2.6 3.1	579 ^x (165 families)	417
Murabito et al., 2005b	Chrom 8 at 26 cM	2.6	861 ^ψ (291 families)	401
	Chrom 16 at 11 cM	2.4		
	Chrom II at II3 cM	2.I ^ω		

Human genes associated with ovarian insufficiency

X chromosome genes	References
BHLHB9 (basic helix-loop-helix)	Hees et al. 2004
BMP15 (bone morphogenetic protein)	Di Pasquale et al. 2004
DACH2 (drosophila dachsund)	Prueitt et al. 2002
DIAPH2 (homologue drosophila diaph)	Bione et al. 1998
FMR1 (fragile X mental retardation)	Allingham et al. 1999
FMR2	Murray et al. 1999
POF1B (POF 1B gene)	Lamcombe et al. 2006
XIST (x inactivation transcript)	Sato et al. 2004
XPNPEP2 (propyl aminopeptidase)	Prueitt et al. 2000

De Vos, Lancet 2010

Human genes associated with ovarian insufficiency

Selected autosomal genes	References
DAZL (deleted azzospermia)	Tung et al. 2006
EIF5B (eukaryotic translation initiati	on) Fogli et al. 2004
ESR1 (estrogen receptor)	Bretherick et al. 2008
FIGLA (murine factor germline alph	a) <i>Zhao et al. 2008</i>
FOXL2 (forkhead transcription factor	or) Crisponi et al. 2001
FOXO1A / 3A (forkhead box)	Watkins et al. 2006
FSHR (FSH receptor)	Aittomaki et al. 1995
GALT (galactose-phosphate transfe	erase) Leslie et al. 1992
GDF9 (growth differantiation factor)	Dixit et al. 2005
GPR3 (G protein coupled receptor)	Kovanci et al. 2008
INHA (inhibin A)	Dixit et al. 2004
LHB (LH beta)	Takahashi et al. 1999
NOBOX (murine newborn ovary bo	x) Zhao et al. 2005
PGRMC1 (Prog receptor membrane	e) V Dooren et al. 2009
TGFBR3 (TGF receptor)	Dixit et al. 2006

Transgenic mouse models and ovarian insufficiency

<u>system</u>	<u>Study design</u>	<u>Proposed mechanism</u>
GDF9	Knock-out	Early follicle arrest
Bax	Knock-out	Increased ovarian reserve
AMH	Knock-out	Premature foll pool exhaustion
FSHR	Knock-out	Accelerated follicle death
FOXO3a (forkhead transcription)	Knock-out	Early follicle exhaustion
FoxI2 (forkhead/winged helix transcription)	Knock-out	Early follicle exhaustion
Nobox (newborn ovary homeobox)	Knock-out	Accelerated oocyte loss
Sohlhl (spermatogenesis/oogenesis specific helix-loop-helix)	Targeted deletion	Disturbed early follicle transition
Pten (phosphate and tensin homolog deleted chrom 10)	Oocyte specific knock-out	Premature exhaustion
		De Vos, Lancet 2010

Possible relevance of POF genetics for ovarian reserve

RBM Inline - Vol 19 No 3. 2009 385-390 Reproductive BioMedicine Online; <u>www.rbmonline.com/Article/3871</u> on web 4 August 2009

Article

Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve

Dr Norbert Gleicher founded the Centre for Human Reproduction (CHR) in 1981. He is a graduate of Tel Aviv Medical School in Israel and completed his residency at Mount Sinai School of Medicine in New York. Dr Gleicher has published hundreds of scientific papers and book chapters in the areas of reproductive endocrinology and infertility, and high-risk obstetrics. He has edited some of the most prestigious textbooks in these specialties and has also been editor-in-chief of two scientific journals. Dr Gleicher now practices exclusively in New York as Medical Director of CHR-NY.

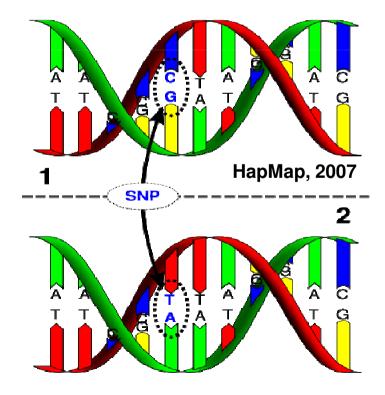
..... and now it is time for something completely different

Universitair Medisch Centrum Utrecht

A genomics view to complex traits

~11,000,000 DNA variants Genetic association studies

~22,000 genes Gene expression studies



What is a SNP?

Single Nucleotide Polymorphism (SNP)

- DNA sequence variation where one nucleotide (A,T,C,G) is changed
- Frequency: 1 in ± 235 bp
- − C ⇔ T and A ⇔ G most common
- Around 10 million SNPs in the human genome

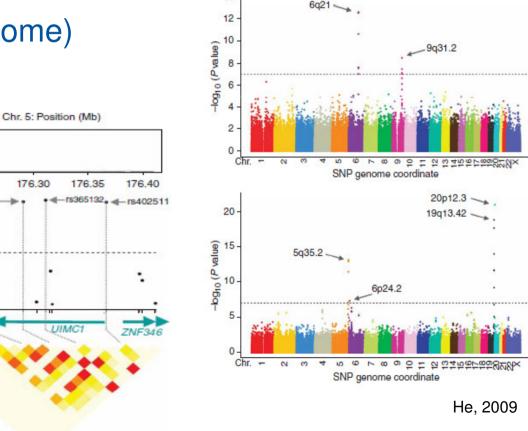
Genome-wide association study (GWAS)

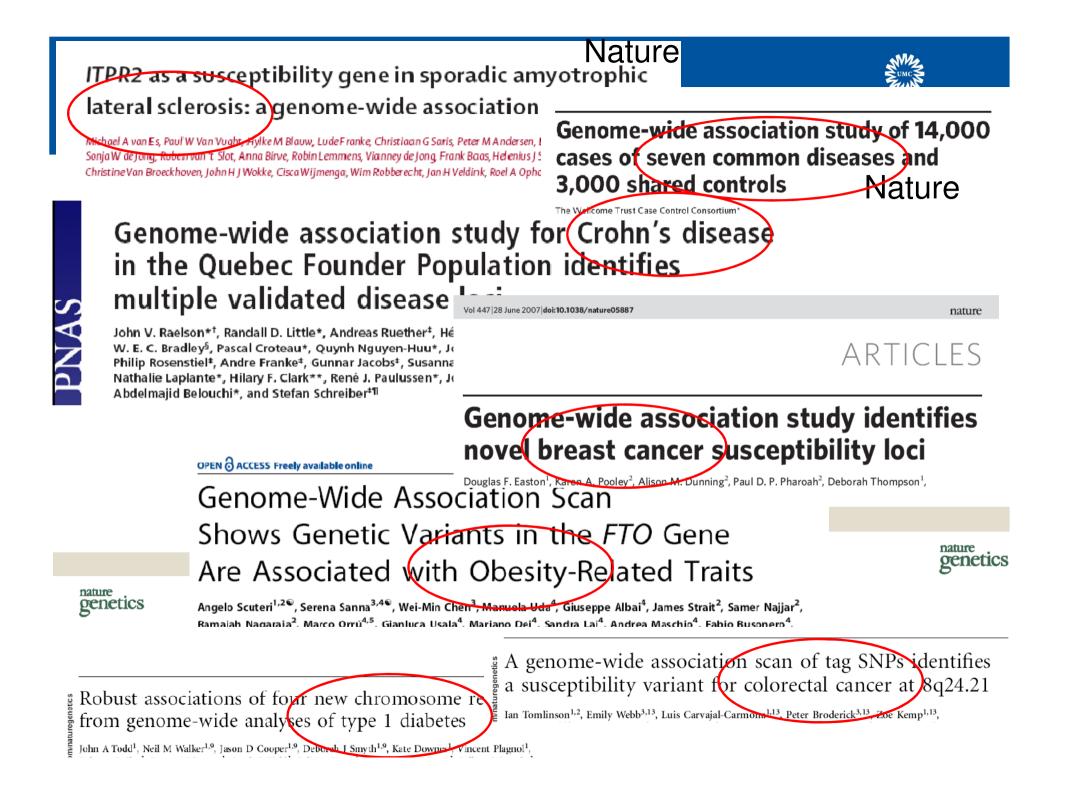
- Made possible by HapMap project 2005
- Around 500.000 SNPs tested
- Mostly tagSNPs • (covering the whole genome)

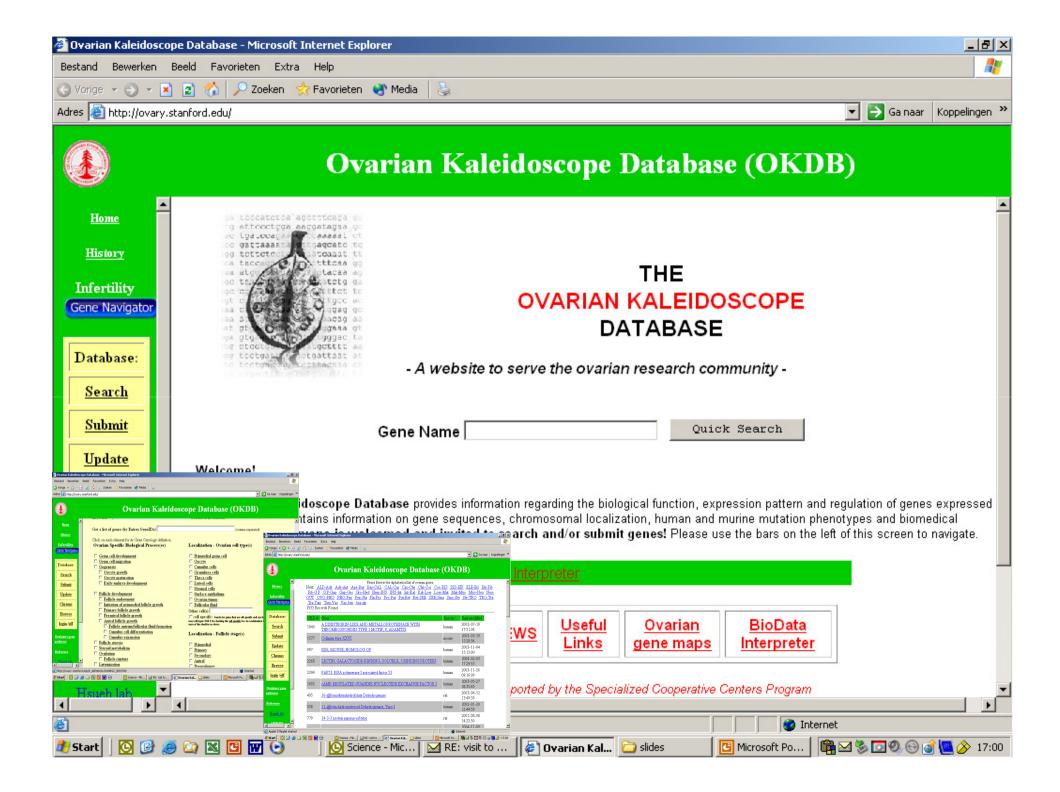
Recomb. rate 20 10-

-log 10 (P value) 987

0


176.25


rs7718874


s691141->

\$2278493

Hypothesis-free

Human studies on genetics of the age at natural menopause: a systematic review

Marlies Voorhuis^{1,2,4}, N. Charlotte Onland-Moret^{2,3}, Yvonne T. van der Schouw², Bart C.J.M. Fauser¹, and Frank J. Broekmans¹

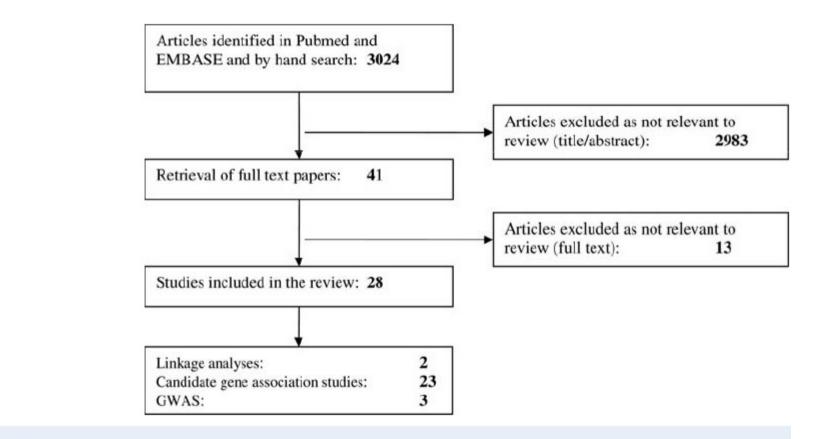


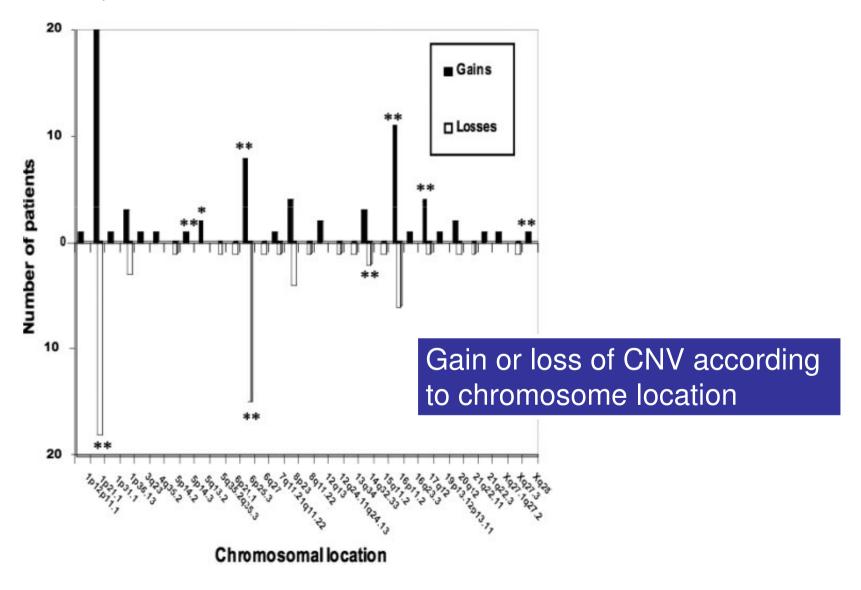
Figure | Flowchart of selection of genetic studies on age at natural menopause.

	, , ,	· · · ·	· ·
Chromosome	Study	Effect on AMP in years (minor allele)	Gene or gene region
Candidate gene			
12q13	Keevenaar <i>et al.</i> , 2007 (305)	-2.6	AMHR2
13q13	Tempfer <i>et al.</i> , 2005 (289)	+1.5	APO-E
	He et al., 2009 (311)	-1.93	
2p21-22	Hefler <i>et al.</i> , 2005 (298)	-0.8	CYP1B1
	Long <i>et al.</i> , 2006 (331)	-1.0	
	Long <i>et al.</i> , 2006 (331)	+1.2	
	Long et al., 2006 (331)	+0.7	
	Mitchell <i>et al.</i> , 2008 (332)	+2.6	
6q25	Weel et al., 1999 (299)	-1.1	ERα
13q34	van Disseldorp <i>et al.</i> , 2008 (108)	+0.8	F VII
1q23	van Asselt e <i>t al.</i> , 2003 (290)	-3.1	F V Leiden
	Tempfer <i>et al.</i> , 2005 (305)	-2.4	
5q21-22	Zhang et al., 2007 (333)	+1.58	HDC
1p13	Mitchell <i>et al.</i> , 2008 (332)	+1.9	HSDB1
GWA studies			
19q13.4	He <i>et al.</i> , 2009 (311)	-0.49	BRSK1, THEM224 and SUV420H2
·	Stolk et al., 2009 (310)	+0.39	

TABLE 5. Summary of candidate gene and genome-wide association (GWA) studies for age at menopause

MAS UMC S

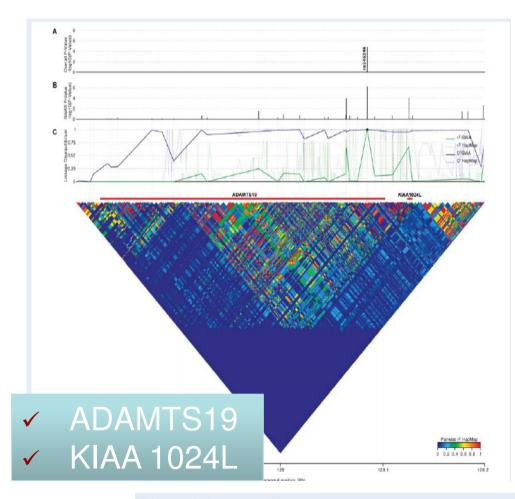
Chromosome	SNP	Study	Effect ANM*	P-value	Nearby genes
19q13.4	rs 72822	He et al., 2009a	-0.49	.8E- 9	BRSK I, THEM224 and SUV420Hi
-		Stolk et al. 2009	+0.391	6.28E-II	
	rs2384687	He et al., 2009a	-0.47	2.4E-18	BRSK1, THEM224 and SUV420H2
		Stolk et al. 2009	-0.381	1.39E-10	
	rs 55 562	He et <i>al</i> ., 2009a	-0.43	2.6E-12	BRSK1,THEM224 and SUV420H2
		Stolk et al., 2009	-0.428	1.04E-09	
	rs897798	He et <i>al</i> ., 2009a	-0.40	1.1E-14	BRSKI, THEM224 and SUV420H2
		Stolk et al. 2009	-0.308	3.91E-08	
	rs7246479	He et al., 2009a	+0.36	2.3E-12	BRSKI
	rs 26 09	He <i>et al</i> ., 2009a	+0.33	6.6E-10	HSPBP1, BRSKI
20p12.3	rs 699 6 5	He et al., 2009a	+1.07	1.2E-21	TRMT6, MCM8
	rs236114	Stolk et al. 2009	+0.495	9.7IE-II	MCM8
5q35.2	rs365132	He et al., 2009a	+0.39	8.4E-14	UIMCI
	rs77 8874	He et <i>al</i> ., 2009a	+0.39	1.3E-13	UIMCI
	rs4025	He et <i>al</i> ., 2009a	+0.39	1.4E-13	UIMCI, ZNF346
	rs69 4	He et <i>al</i> ., 2009a	+0.36	3.9E-12	HK3, UIMCI
	rs2278493	He <i>et al</i> ., 2009a	-0.30	7.2E-08	UNC5A, HK3
2	rs10496265	Lunetta et al., 2007	Not stated	1.1E-08	
	rs10496262	Lunetta et al., 2007	Not stated	3.3E-07	
3q34	Rs7333181	Stolk et al., 2009	+0.520	2.50E-08	ARHGEF7
6p24.2	rs2 53 57	He <i>et al.</i> , 2009a	+0.29	5.1E-08	GCM2, SYCP2L


Table V Genome-wide significant SNPs in association with ANM.

Array Comparative Genomic Hybridization Profiling Analysis Reveals Deoxyribonucleic Acid Copy Number Variations Associated with Premature Ovarian Failure

J Clin Endocrinol Metab. November 2009, 94(11):4540-4546

Azzedine Aboura,* Claire Dupas,* Gérara Lachajian, Iviarie-France Portnoi, Nathalie Bourcigaux, Didier Dewailly, René Frydman, Bart Fauser, Nathalie Ronci-Chaix, Bruno Donadille, Philippe Bouchard, and Sophie Christin-Maitre



Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible

candidate gene Human Reproduction, Vol.24, No.9 pp. 2372-2378, 2009

Erik A.H. Knauff^{1,11,†}, Lude Franke^{2,3,†}, Michael A. van Es⁴,

Table II POF patient phenotype characteristics (n = 99)

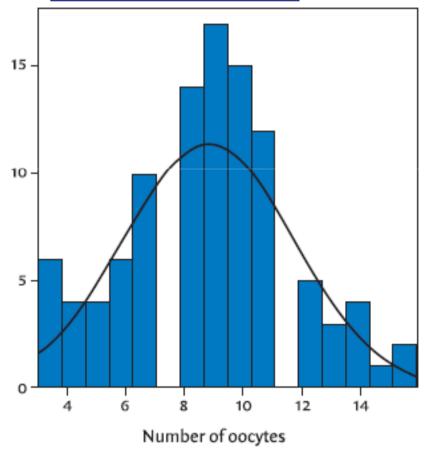
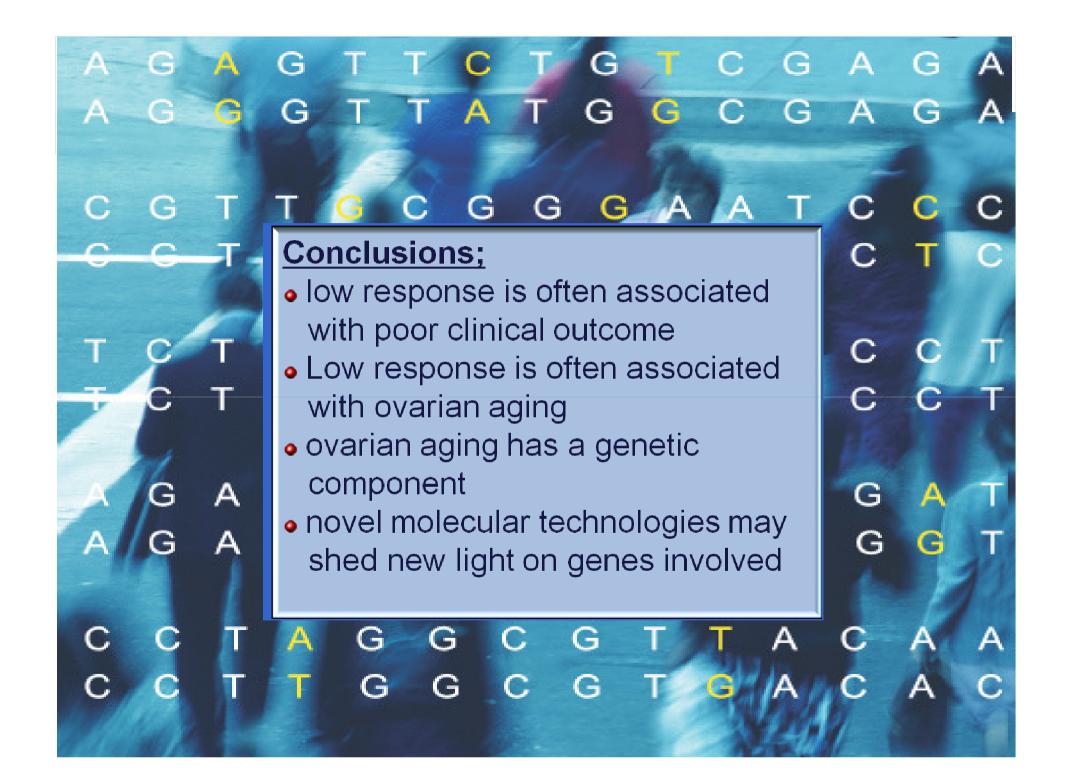

	Mean <u>+</u> SD	%
Age at screening	36.5 ± 7.3	
l st FSH (IU/I)	82.4 ± 29.5	
2nd FSH (IU/I)	79.7 \pm 38.1	
Age at menarche (years)	3.2 ± .6	
Age at amenomhea (years)	31 ± 8.1	
Familial clustering ^a (%)		19
46 XX karyotype (%)		100
FMRI repeats $n < 40$ (%)		100
Caucasian (%)		100
AMH below menopause threshold ^b (%)		100
Undetectable AMH (%)		93
Positive anti-TPO antibodies (%)		25
Adrenal antibodies (%)		2

Figure 2 Schematic 400 kb haploblock view on the long arm of chromosome five surrounding the rs246246 SNP and covering two genes: ADAMTS19 and KIAA1024L.

Genomic predictors of ovarian response to stimulation for IVF

Poisson distribution No oocytes


N=102 Homogeneous Caucasian Mean age; 33.8 Mean BMI 22.4 Mean FSH 8.0

vDisseldorp et al. 2010; submitted

Possible SNPs involved in ovarian response Utrecht

POSSIBLE SNPs	Related genes
rs1885678	RAB32; GTPase
rs9403799	RAB32
rs4499783	MAST4
rs8025763	ARRDC4
rs2271463	CUBN
CANDIDATE SNPs	Related genes
CANDIDATE SNPs rs6166	Related genes FSHR
rs6166	FSHR
rs6166 rs2234693	FSHR ESR1

