POOR OVARIAN RESPONSE (POR)

IS OOCYTE CRYOPRESERVATION A PREVENTIVE TOOL FOR PATIENT AT RISK OF POR?

L. Gianaroli, S. Resta, M.C. Magli, A.P. Ferraretti

S.I.S.Me.R. Reproductive Medicine Unit – Via Mazzini, 12 – 40138 Bologna, Italy

www.iiarg.com

www.sismer.it

Oocyte cryopreservation – Clinical applications

entails potential advantages for human IVF

It is a less ethically disputable alternative to embryo cryopreservation

It could solve the dilemma of abandoned frozen embryos in the IVF laboratory

Oocyte cryopreservation – Clinical applications

It gives an opportunity for fertility preservation

to women at risk of

premature ovarian

failure

Oocyte cryopreservation Indications to fertility preservation

maloationo to fortinty procor

- Tumors
- Genetic factors (fragile X)
- > Autoimmune diseases
- Chromosomal abnormalities (deletions, Turner's syndrome)
- Endometriosis
- Recurrent ovarian cysts

508 patients 714 714 714 714

13	16	18	21	22
	X	Y	15	

Indication to PGD	No. cycles	Mean age	Previous cycles
Maternal age (≥ 36 years)	567	39.9±2.6	2.5±2.5
Repeated cycles (≥ 3)	128	32.7±2.1	4.1±1.6
Recurrent abortions (≥ 3)	19	31.9±1.9	1.9±1.9

Updated from: Gianaroli et al. (2000) Gonadal activity and chromosomal constitution of in vitro generated embryos.

S.I.S.ME.R. ISO 9001:2008

Molec Cell Endocrinol 161, 111-116

CHROMOSOMALLY ABNORMAL EMBRYOS ACCORDING TO THE NUMBER OF COLLECTED OOCYTES

PGD FOR ANEUPLOIDY CLINICAL OUTCOME ACCORDING TO THE NUMBER OF COLLECTED OOCYTES

PGD FOR ANEUPLOIDY CLINICAL OUTCOME ACCORDING TO THE NUMBER OF COLLECTED OOCYTES

CHROMOSOMALLY ABNORMAL EMBRYOS ACCORDING TO THE NUMBER OF COLLECTED OOCYTES AND AGE

Monosomy/trisomy

≥ 36 years

≤ 35 years

CLINICAL OUTCOME ACCORDING TO THE NUMBER OF COLLECTED OOCYTES AND AGE

IMPLANTATION RATE ACCORDING TO THE NUMBER OF EUPLOID EMBRYOS

Oocyte Cryopreservation Methods:

- Slow Freezing

- Ultrarapid Freezing (Vitrification)

Slow-freezing/Rapid thawing

- 1 = Washing solution
 - PBS + 30% Plasmanate
- 2 = Equilibration solution (10 min)
 - 1.5 M PROH + 30% Plasmanate
- **3 = Loading solution**

4-well dish 1.5 M PROH + 0.3 M SUC + 30 % Plasmanate Thawing solutions consist in a gradually decreasing concentration of PROH and a constant 0.3 M sucrose concentration:

SOLUTION 1: 1.0 M PROH + 0.3 M SUC + 30% Plasm. (5 min) SOLUTION 2 : 0.5 M PROH + 0.3 M SUC + 30% Plasm. (5 min) SOLUTION 3 : 0.3 M SUC + 30 % Plasm. (10 min) SOLUTION 4 : PBS + 30 % Plasm. (10 min + 10 min at 37°C)

Vitrification (Kuwayama method)

Equilibration Solution (ES): 7,5% DMSO 7,5% ETHYLENE GLYCOL 10% HSA

Vitrification Solution (VS) 15% DMSO 15% ETHYLENE GLYCOL 10% HSA

0.5 M Sucrose

Thawing Solution (TS): 1 M Sucrose + 10 % HSA at 37°C for 1 min

Dilution Solution 1 (DS1): 0.5 M Sucrose + 10 % HSA for 3 min

Dilution Solution 2 (DS2): 0.25 M Sucrose + 10 % HSA for 3 min

Re-warming

Oocyte cryopreservation procedures

	Slow freezing	Vitrification
CPA concentration	1.5 M	3.0-5.0 M
Volume	0.3-1.0 mL	<1 µL
Cooling rate	~0.5°C/min	~25000-50000°C/min
Reduced osmotic injury	No	Yes
Seeding	Yes	No need
Procedure	Time consuming	Simple
Freezing machine	Required	No need
Costs	High	Less??? (no freezing machine needed, but expensive handling devices)
Liquid nitrogen	High amount	Low amount
Risk of contamination	Close systems	Open systems

Oocyte cryopreservation – Possible injuries

Credit: RMA & CRi

Background is dark & even - good imaging

Cytoplasmic and Cytoskeletron damage

Oocyte ageing

Zona pellucida hardening

> Membrane permeability

Meiotic spindle depolymerization

Polar body degeneration/fusion

Impact on oocyte physiology

S.I.S.ME.R. ISO 9001:2008

Tri-laminate nature of Zona Pellucida especially apparent

Is oocyte cryopreservation efficient enough to be employed as a method to preserve female fertility?

In the last few years advances in cryopreservation methodologies have dramatically improved the efficiency of oocyte cryopreservation.

Slow-freezing (1.5 M PROH + 0.3 M Sucrose)

	Ooc		
Authors	N° Survived/ N° Thawed (%)	Fertilization Rate %	ET (%)
Chen et al., Hum. Rep. (2002)	8/8 (100)	57	1/1 (100)
Fosas et al., Hum. Rep. (2003)	79/98 (90)	73	4/7 (57)
Porcu , Hum. Rep.(2005)	1914/2750 (69.6)	73.9	85/501 (17)
Bianchi et al., RBM Online (2007)	306/403 (75.9)	76.2	17/80 (21.3)
Magli et al., Fertil. Steril. (2010)	726/997 (73)	73	37/203 (18)

Vitrification				
	Ood	cytes	Drognancios/	
Authors	N° survived/ N° Thawed (%)	Fertilization Rate %	ET (%)	
Kuleshova et al., Hum. Rep. (1999)	11/17 (65)	45	1/3 (33)	
Katayama et al., Fertil. Steril. (2003)	42/46 (94)	91	2/6 (33)	
Yoon et al., Fertil. Steril. (2003)	325/474 (69)	72	6/28 (21)	
Kuwayama et al., RBM Online (2005)	58/64 (91)	90	12/29 (41)	
Selman et al., Fertil. Steril. (2006)	18/24 (75)	78	2/6 (33)	
Antinori et al., RBM Online (2007)	328/330 (99.4)	92.9	39/120 (32.5)	

1999 : research on vitrification as a valid alternative to slow-freezing

Human Reproduction, Vol. 14, No. 12, 3077-3079, December 1999 <

Birth following vitrification of a small number of human oocytes: Case Report

Lilia Kuleshova¹, Luca Gianaroli², Cristina Magli², Anna Ferraretti² and Alan Trounson^{1,3}

¹ Centre for Early Human Development, Monash Institute of Reproduction and development, Monash University, Wright Street, Clayton, Victoria, Australia and ² SISMER srl , Bologna, Italy

ISO 9001:2008

March 2004 – Introduction of the Italian law that limits to three the number of oocytes to be inseminated:

the sudden need to cryopreserve oocytes adviced to choose slow-freezing as the most reliable method.

A cautious approach to vitrification was decided by applying this technique only when appropriately verified. The program provided the use of

- 1) Discharged oocytes
- 2) Sybling oocytes in patients with more than 10 oocytes
- 3) Alternating patients

	TOTAL
	March 2004 -
	December 2009
No. cycles	812
No. Transferred cycles (%)	665 (82)
No. Clinical pregnancies (%)	106 (15.9)
Implantation rate (%)	122/1317 (9.2)
Abortions (%)	26 (24.5)
LBR (%)	80 (9.9)

	Slow-freezing	Vitrification
No. cycles	771	41
Age	35.5 ± 4.1	36.4 ± 4.2
Survival Rate (%)	2566/3731 (68.8)	142/201 (70.6)
Fertilization Rate (%)	1494/2015 (74.1)	81/111 (73)
Cleavage rate (%)	1283/1494 (85.9)	69/81 (85.2)
4C1 (+2)	218/1283 (17)*	23/69 (33.3)*
8C1 (+3)	64/680 (9.4)**	12/36 (33.3)**
No. Transferred cycles (%)	631 (81.8)	34 (82.9)
	* P<0.001 **P<	<0.001 S.I.S.ME.R.

Slow-freezing Vs Vitrification

SISMER EXPERIENCE (2004-2009)

⇒iiarg

Is embryo development comparable between slow-freezing and vitrification?

<u>Oocyte cryopreservation – SISMER experience</u> <u>March 2008 - November 2009</u>

	Slow freezing	Vitrification
N° cycles	77	41
Age	35.4 ± 3.7	36.5 ± 4.2
Survival Rate (%)	248/383 (64.8)	142/201 (70.6)
Fertilization Rate (%)	160/217 (73.7)	81/111 (73)
Cleavage rate (%)	125/160 (78.1)	69/81 (85.2)
4C1 (+2)	20/125 (16)ª	23/69 (33.3)ª
8C1 (+3)	9/72 (12.5) ^b	12/36 (33.3) ^b
PR/ET (%)	10/64 (15.6)	9/34 (26.5)
IR (%)	11/138 (8)	10/67 (14.9)
a) P<0.005		S.I.S.M

Slow-freezing and embryo development

The complexity in freezing human oocytes is due to their high temperature sensitivity and despite the recent improvements the implantation rate per thawed oocyte remains extremely low implying that the efficiency of slow-freezing is still far from being optimal.

Does oocyte slow-freezing have an impact on embryo development?

FIGURE 2

Top-quality embryo development after culture to day 2, day 3, day 4, and day 5. Values with same superscripts are significantly different.

Magli. Embryo development from thawed oocytes. Fertil Steril 2010.

Magli et al., (2010) Embryo development from thawed oocytes. Fertil. Steril. 93: 510-516

TABLE 2					
Fertilization and embryo development in fresh and frozen cycles according to maternal age.					
	≤;	35 y	≥36 y		
	Fresh cycles	Frozen cycles	Fresh cycles	Frozen cycles	
No. cycles Age (mean \pm SD) (y) No. inseminated oocytes No. fertilized oocytes (%) No. zygotes with the configurations A1 α , A2 α , A1 β , and A2 β (%) No. embryos (%) Day 2top-quality embryos (%) Day 3top-quality embryos (%) Day 4top-quality embryos (%) Day 5top-quality embryos (%) No. transferred cycles (%)	$\begin{array}{c} 117\\ 31.9\pm 4.6\\ 351\\ 287(82)^a\\ 164(57)^c\\ 259(90)\\ 91(35)^c\\ 58/255(23)^g\\ 43/128(34)\\ 22/78(28)\\ 108(92)^i\\ \end{array}$	$\begin{array}{c} 120\\ 31.7 \pm 4.1\\ 303\\ 219 \left(72\right)^n\\ 101 \left(46\right)^o\\ 189 \left(86\right)\\ 33 \left(17\right)^o\\ 10/102 \left(10\right)^9\\ 4/16 \left(25\right)\\ 1/4 \left(25\right)\\ 93 \left(78\right)^i\\ \end{array}$	$\begin{array}{c} 117\\ 38.5 \pm 4.6\\ 351\\ 298 \left(85\right)^h\\ 190 \left(64\right)^d\\ 275 \left(92\right)\\ 106 \left(39\right)^f\\ 57/240 \left(24\right)^h\\ 44/117 \left(38\right)\\ 25/77 \left(32\right)\\ 110 \left(94\right)^j\\ \end{array}$	$\begin{array}{c} 136\\ 38.5\pm4.2\\ 316\\ 231\left(73\right)^{h}\\ 124\left(54\right)^{d}\\ 207\left(90\right)\\ 41\left(20\right)^{f}\\ 5/87\left(6\right)^{h}\\ 1/8\left(13\right)\\ 0/2\\ 110\left(81\right)^{j}\\ \end{array}$	
 ^a P<.01, fresh vs. frozen. ^b P<.001, fresh vs. frozen. ^a P<.025, fresh vs. frozen. ^d P<.025, fresh vs. frozen. ^a P<.001, fresh vs. frozen. ^f P<.001, fresh vs. frozen. ^g P<.01, fresh vs. frozen. ^h P<.001, fresh vs. frozen. ^h P<.005, fresh vs. frozen. ⁱ P<.005, fresh vs. frozen. ⁱ P<.005, fresh vs. frozen. 	oril 2010.				

Magli et al., (2010) Embryo development from thawed oocytes. Fertil. Steril. 93: 510-516

The mean number of top quality embryos that were transferred was significantly lower in thawed cycles than in fresh cycles, in both young and old patients.

Oocyte cryopreservation and "social freezing"

The approach to oocyte cryopreservation and, consequently, the patient expectation depends on the purpose:

Medical reason

 Non-medical reason (postponed parenthood, donation of oocytes)

The purpose of oocyte cryopreservation for fertility preservation is based on data showed in recent literature demonstrating that outcomes from cryopreserved oocytes are comparable to these from fresh cycles.

Are vitrified oocytes performing as well as fresh oocytes?

Fresh vs vitrified oocytes

embryo morphology of fresh and vitrified sibling oocytes					
	Fresh ICSI	Vitrified/Warmed ICSI (%)	Absolute difference (%) (95% CI)	OR (95% CI)	Р
Fertilization (2PN) per sibling oocyte	100/120 (83.3) ^b	95/124 (76.6) ^a	-6.73 (-16.6 to 3.39)	0.65 (0.33 to 1.29)	0.20
Fertilization (2PN) per injected oocyte	100/120 (83.3) ^b	95/120 (79.2) ^b	-4.17 (-14.0 to 5.7)	0.76 (0.37 to 1.53)	0.50
Normal 2PN morphology	96/100 (96.0) ^c	86/95 (90.5) ^c	-5.47 (-13.4 to 1.84)	0.39 (0.08 to 1.49)	0.16
IPN oocytes	3/120 (2.5) ^b	6/120 (5.0) ^b	2.5 (-2.82 to 8.22)	2.05 (0.42 to 2.9)	0.50
3PN	1/120 (0.83) ^b	2/120 (1.66) ^b	0.83 (-3.09 to 5.1)	2.01 (0.10 to 119.9)	1
Degenerated oocytes post-ICSI	1/120 (0.83) ^b	4/120 (3.34) ^b	2.51 (-1.75 to 7.47)	4.08 (0.39 to 203.5)	0.37
Day 2 embryo development	100/100 (100) ^c	93/95 (97.9)°	-2,11 (-7.3 to 1.9)	0.0 (0.00 to 0.23)	0.24
Excellent quality embryos	52/100 (52.0) ^d	49/95 (51.6) ^d	-0.43 (-14.2 to 13.3)	0.98 (0.53 to 1.79)	0.90
Good quality embryos	38/100 (38.0) ^d	41/95 (43.2) ^d	5.16 (-8.49 to 18.6)	1.24 (0.67 to 2.28)	0.47
Fair/poor quality embryos	10/100 (10.0) ^d	3/95 (3.16) ^d	-6.84 (-14.6 to 0.42)	0.29 (0.05 to 1.19)	0.10

Table III Primary and secondary outcomes measures: fertilization, pronuclear morphology, embryo development and embryo morphology of fresh and vitrified sibling oocytes

*Percentages, expressed per warmed oocyte.

^bPercentages, expressed per inseminated oocyte.

^cPercentages, expressed per 2PN fertilized oocyte.

^dPercentages, expressed per cleaved oocyte.

Rienzi et al., (2010) Embryo development of fresh 'versus'vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum.Rep., 25: 66–73

Fresh vs vitrified oocytes

Table II Clinical outcomes of cycles performed with vitrified/warmed oocytes

	Patients included (N = 40)
Number of warmed oocytes (mean \pm SD)	3.1 ± 0.30
Number of embryos transferred (mean \pm SD)	2.3 ± 0.88
Number of embryo transfer performed (%)	39/40 (97.5)
Clinical pregnancy rate per cycle (%)	15/40 (37.5)
Clinical pregnancy rate per transfer (%)	15/39 (38.5)
Ongoing pregnancy rate per cycle (%)	12/40 (30.0)
Ongoing pregnancy rate per transfer (%)	12/39 (30.8)
Implantation rate (%)	19/93 (20.4)
Ongoing implantation rate (%)	16/93 (17.2)

Rienzi et al., (2010) Embryo development of fresh 'versus'vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum.Rep., 25: 66–73

Fresh vs vitrified oocytes (vitrification egg donation program)

TABLE 2

Oocyte distribution, survival, and fertilization.

Vitrified	Fresh	P value
231 (87.2)	219 (89.7)	.363
19 (7.2)	11 (4.5)	.203
15 (5.7)	14 (5.7)	.974
224/231 (96.9)	_	
224	219	
171 (76.3)	180 (82.2)	.128
9 (4.0)	12 (5.4)	.469
7 (3.1)	6 (2.7)	.809
Vitrified	Fresh	P value
161/171 (94.2)	176/180 (97.8)	.083
3.8 ± 1.1	3.9 ± 1.5	.567
136/161 (84.4)	126/176 (71.5)	.005
125/161 (77.6)	149/176 (84.6)	.098
6.9 ± 2.3	6.9 ± 2.7	.558
101/125 (80.8)	120/149 (80.5)	.956
78	143	
38/78 (48.7)	68/143 (47.5)	.869
24/32 (81.1)	42/60 (70)	.612
	Vitrified 231 (87.2) 19 (7.2) 15 (5.7) 224/231 (96.9) 224 171 (76.3) 9 (4.0) 7 (3.1) Vitrified 161/171 (94.2) 3.8 \pm 1.1 136/161 (84.4) 125/161 (77.6) 6.9 \pm 2.3 101/125 (80.8) 78 38/78 (48.7) 24/32 (81.1)	VitrifiedFresh $231 (87.2)$ $219 (89.7)$ $19 (7.2)$ $11 (4.5)$ $15 (5.7)$ $14 (5.7)$ $224/231 (96.9)$ $ 224$ 219 $171 (76.3)$ $180 (82.2)$ $9 (4.0)$ $12 (5.4)$ $7 (3.1)$ $6 (2.7)$ VitrifiedFresh $161/171 (94.2)$ $176/180 (97.8)$ 3.8 ± 1.1 3.9 ± 1.5 $136/161 (84.4)$ $126/176 (71.5)$ $125/161 (77.6)$ $149/176 (84.6)$ 6.9 ± 2.3 6.9 ± 2.7 $101/125 (80.8)$ $120/149 (80.5)$ 78 143 $38/78 (48.7)$ $24/32 (81.1)$ $24/32 (81.1)$ $42/60 (70)$

Cobo. Clinical outcome of oocyte vitrification. Fertil Steril 2008.

Cobo et al., (2008) Clinical outcome of oocyte vitrification. Fertil. Steril. 89:1657-1664

Fresh vs vitrified oocytes (vitrification egg donation program)

TABLE 4			
Clinical results.			
	Vitrified	Fresh	Mixed
No. of transfers	23	1	4
No. of embryos transferred (mean \pm SD)	49 (2.1 ± 1.2)	2 (2 ± 0)	8 (2.1 ± 0.1)
Pregnancy rate per transfer	15/23 (65.2)	1 (100)	2 (50)
Implantation rate (No. of sacs/ No. of embryos transferred)	20/49 (40.8)	2/2 (100)	2/8 (25)
Multiple pregnancy rate (twin)	5/15 (23.8)	1 (100)	0
Miscarriage rate	3/15 (20)	0	0
Biochemical pregnancy rate	1/15 (6.6)	0	0
Ongoing pregnancy rate	11/23 (47.8)	1 (100)	2 (100)

Note: Numbers in parentheses are percentages.

Cobo et al., (2008) Clinical outcome of oocyte vitrification. Fertil. Steril. 89:1657-1664

How many eggs do we need to get a pregnancy?

Table I	Patient's	baseline	characteristics	and	fresh
cycle pa	rameters				

	Patients included (N = 40)
Female age (mean years \pm SD)	35.5 ± 4.8
Baseline FSH (mean mU/ml \pm SD)	6.44 ± 3.1
Previous IVF attempts (mean \pm SD)	0.58 ± 1.0
GnRH-agonist long protocol (%)	31/40 (77.5)
Antagonist protocol (%)	9/40 (22.5)
Days of stimulation (mean \pm SD)	10.8 ± 1.95
Total gonadotrophin amount IU (mean \pm SD)	2201.65 ± 765.7
Number of CCOCs retrieved (mean ± SD)	13.3 ± 4.5
Number of MII cocytes (mean \pm SD)	10.7 ± 3.6
Number of MII oocytes vitrified (mean \pm SD)	6.3 ± 2.8

Table II Clinical outcomes of cycles performed with vitrified/warmed oocytes

	Patients included $(N = 40)$
Number of warmed oocytes (mean \pm SD)	3.1 ± 0.30
Number of embryos transferred (mean \pm SD)	2.3 ± 0.88
Number of embryo transfer performed (%)	39/40 (97.5)
Clinical pregnancy rate per cycle (%)	15/40 (37.5)
Clinical pregnancy rate per transfer (%)	15/39 (38.5)
Ongoing pregnancy rate per cycle (%)	12/40 (30.0)
Ongoing pregnancy rate per transfer (%)	12/39 (30.8)
Implantation rate (%)	19/93 (20.4)
Ongoing implantation rate (%)	16/93 (17.2)

CCOC, cumulus corona oocyte complex; MII, metaphase II.

Rienzi et al., (2010) Embryo development of fresh 'versus'vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum.Rep., 25: 66–73

TABLE 2			
Oocyte distribution, survival,	and fertilization.		
	Vitrif	ied	Fresh
MII oocytes No. (%) MI oocytes No. (%) GV oocytes No. (%) Survival No. (%) No. of injected oocytes Normal fertilization No. (%) Abnormal fertilization No. (%) Degenerated oocytes No. (%)	231 19 15 224/731 224 171 9 7	(87.2) (7.2) 5 (5.7) (96.9) (76.3) 9 (4.0) 7 (3.1)	219 (89.7) 11 (4.5) 14 (5.7) 219 180 (82.2) 12 (5.4) 6 (2.7)
Cobo. Clinical outcome of oocyte vitrification. Fer	rtil Steril 2008.		
TABLE 4			
TABLE 4 Clinical results.			
TABLE 4 Clinical results.	Vitrified	Fresh	Mixed
TABLE 4 Clinical results. No. of transfers No. of embryos transferred (mean ± SD) Pregnancy rate per transfer Implantation rate (No. of sacs/ No. of embryos transferred) Multiple pregnancy rate (twin) Miscarriage rate	Vitrified 23 49(2.1 ± 1.2) 15/23 (65.2) 20/49 (40.8) 5/15 (23.8) 3/15 (20)	Fresh 1 2 (2 ± 0) 1 (100) 2/2 (100) 1 (100) 0	Mixed 4 8 (2.1 ± 0.1) 2 (50) 2/8 (25) 0 0 0

Note: Numbers in parentheses are percentages.

Cobo. Clinical outcome of oocyte vitrification. Fertil Steril 2008.

Cobo et al., (2008) Clinical outcome of oocyte vitrification. Fertil. Steril. 89:1657-1664

Is oocyte cryopreservation still experimental?

In a recent ASRM publication (June 2008), the Society defined an "experimental" procedure, indicating that one should be designed as such until "there is adequate scientific evidence of safety and efficacy from appropriately designed peer-reviewed published studies by different investigator groups".

The most recent ASRM Practice Committee statement acknowledges that oocyte cryopreservation offers "great promise for application in oocyte donation and fertility preservation".

ASRM Practice Commitee (2009).

CRYOPRESERVED EMBRYOS

IR 2.6 %

P<0.001

Slow-freezing or vitrification?

Vitrification seems to be a very promising method, but we have to keep in mind:

Longer learning curve

Inter-operator variability

Possible Liquid N₂ contamination using open-sistems (performance with closed systems is not as good as using open systems)

Slow-freezing or vitrification?

The most exciting data in literature are on young or fertile patients

Pregnancy Follow up (5% malformation rate according to Cobo at "Updates in infertility treatment" – January 2010 – Seville, Spain)

Conclusions

- Oocyte cryopreservation is a promising method expecially using vitrification procedures
 To determine efficacy and safety of oocyte cryopreservation there is still the need
 - ➤ to verify the performance on infertile patients in all age categories (both young and old patients)
 - > to verify the pregnancy follow up.

Conclusions

Despite these queries, oocyte cryopreservation

is a valid option that will have a significant impact on the practice of human IVF in the near future, in particular in the case of medical indication.

maybe is not a preventive tool for patients at risk of POR (Poor Ovarian Response) or DOR (Desperate Ovarian Response) because the number of oocytes needed to get a pregnancy is still too high.

POOR OVARIAN RESPONSE (POR)

IS OOCYTE CRYOPRESERVATION A PREVENTIVE TOOL FOR PATIENT AT RISK OF POR?

L. Gianaroli, S. Resta, M.C. Magli, A.P. Ferraretti

S.I.S.Me.R. Reproductive Medicine Unit – Via Mazzini, 12 – 40138 Bologna, Italy

www.iiarg.com

www.sismer.it

