FEMALE GAMETES FROM STEM CELLS?

Prof. Carlos Simón

POOR OVARIAN RESPONSE - ESHRE CAMPUS 2010

Ana I Marques-Mari, PhD

E-learning objectives

- To know about *in vivo* germline differentiation and different strategies used for *in vitro* differentiation.
- To learn about the State of the Art in germline differentiation:
 - -From mouse and human ESC
 - -From mouse and human SC
- To understand the main limitations when differentiation is carried out *in vitro*.
- To discuss about the future of synthetically generated gametes.

Differentiation Potential

- Totipotent: - Zygote - Blastomeres
- Pluripotent: -<u>ESC</u>
 - GSC – iPS
- Multipotent: -<u>Somatic SC</u>

Mesoderm

Ectoderm

Endoderm

Germ cells

Epigenetics of the germline establishment

Critical step: Epigenetic modifications

Modified from Marques-Mari et al., Hum Rep Update 2009

Strategies for germline differentiation in vitro from ESC

- •Spontaneous differentiation in monolayer or through EBs
- Addition of growth factors.
- Co-culture with conditioned media or somatic cells.
- Direct transfection.
- •Transplant into in vivo systems.

State of the Art in Germline Differentiation

GERM CELLS DIFFERENTIATION FROM EMBRYONIC STEM CELLS						
Authors	Publication date	Source of SC	Cell type obtained	Viable offspring		
Hübner <i>et al</i> .	2003	mESCs – XX, XY	Oocytes	No, PB		
Clark <i>et al</i> .	2004	hESCs – XX, XY	Oocytes (although there was TEKT1 expression)	NT		
Lacham-Kaplan <i>et</i> <i>al.</i>	2006	mESCs - XY	Immature oocyte-like cells	NT		
Novak <i>et al</i> .	2006	mESCs - XY	Ovarian follicles	NT		
Kee et al.	2006	hESCs - XX	Oocyte-like cells	NT		
Chen <i>et al</i> .	2007	hESCs - XX	Oocyte-like cells	No, FD		
Qing <i>et al.</i>	2007	mESCs - XY	Oocytes	NT		
Park <i>et al.</i>	2009	hESCs - XX, XY hiPS - XY	PGCs	NT		
Kee et al.	2009	hESC – XX, XY	Haploid gamete-like cells	NT		
Nicholas et al.	2009	mESC - XX	Immature oocyte-like cells	NT		
Tilgner <i>et al.</i>	2010	hESC – XX	VASA+ Germ-like cells	NT		

NT: not tested; PB: parthenogenic blastocyst; OF: oocyte fertilization; FD: follicles degeneration; hESCs: human embryonic stem cells; mESCs: mouse embryonic stem cells; PGCs: primordial germ cells

Differentiation in adherent culture

Hübner et al., Science 2003

- Mouse ESC carrying a gcOct4-GFP reporter were differentiated in monolayer.
- Formation and characterization of follicle-like structures containing oocyte-like cells.
- Presence of meiotic proteins (SCP3) and specific oocyte markers (ZP1-3).
- Formation of pseudoblastocysts by parthenogenesis.

Novak et al., Stem Cells 2006

 Lack of some meiotic proteins as SCP1 and SCP2. No evidences of chromosomal synapsis formation: unsuitable meiosis.

Differentiation of hESC through EBs and addition of Growth factors

Clark et al., Hum Mol Genet 2004

Spontaneous differentiation through EBs formation to obtain germ cells. Establishment of a gene expression sequence during germline specification in human.

Modified from Clark et al. 2004

• Kee et al., Stem Cells Dev 2006

Addition of BMP4, 7 and 8 to the EBs medium increases VASA expression.

Differentiation through EBs in co-culture with CM or somatic cells

Lacham-Kaplan et al., Stem Cells 2006

- Co-culture of EBs with testicular cells conditioned medium to obtain oocyte-like cells in an early stage of development.
- Lack of zona pellucida, but expression of specific markers as ZP3.
- Qing et al., Differentiation 2007
 - Co-culture of EBs onto ovarian granulosa cells.
 - Presence of premeiotic (Mvh), meiotic (SCP3) and postmeiotic (GDF9) markers, as well as oocyte specific markers (Figα, ZP1-3).

Differentiation of hESC by co-culture with somatic cells

- Park et al., Stem Cells 2009
 - Co-culture of hESC with human fetal gonadal cells to obtain PGCs.
 - They also obtained PGCs from hiPS cells, although less efficiently.
 - Co-localization of the markers c-Kit/SSEA1 by FACS used as indicator or germ cell fate.
 - The obtained cells have initiated the imprinting erasure characteristic of germ cells.

Transfection of hESC lines + Adherent culture

- Tilgner et al., Stem Cells 2010
 - Generation of hESC lines carrying a VASA-EGFP promoter construct.
 - Differentiation induction in adherent culture. Green fluorescent cells obtained after 14 days are putative germ cells.
 - Sorted VASA-GFP positive cells are enriched in some PGCs markers such as Oct4, Stella, DAZL, SSEA1, SSEA4 and c-Kit. A small number of cells showed SCP3 staining within the nucleus: indicative of meiosis.
 - VASA-GFP cells showed reduced methylation similar to PGCs in vivo.

Transfection of hESC lines + Growth factors

• Kee et al., Nature 2009

- Differentiation of <u>haploid gamete-like cells</u> in vitro from hESCs expressing meiotic and postmeiotic markers.
- The authors transfected hESCs XX and XY lines with a VASA-GFP reporter and differentiated them in adherent culture with addition of BMP-4, BMP-7 and BMP-8b to the culture medium.
- The main limitation in *in vitro* differentiation of gametes is the meiosis.
 To induce entry and progression through meiosis of these cells, they genetically modified the hESC lines over-expressing the members of the DAZ gene family: DAZ, DAZL and BOULE.
- The results suggest that these genes modulate formation and maturation of the germ cells:

DAZL acts primarily in PGC formation. DAZ y BOULE in promoting progression to meiosis.

Transplant into in vivo systems

- Nicholas et al., Human Mol genetics 2009
 - Mouse ESC carrying an Oct4-GFP reporter were differentiated in EBs.
 - Cells displaying low intensity of GFP without SSEA1 expression were characterized as germ cells.
 - Markers of meiosis and oocyte maturation such as Stra8 and GDF9 were found in GFP+/SSEA1- cells. However, meiotic progression was incomplete as shown by abnormal alignment of SCP1 and SCP3.
 - DAZL is required for germ cell maturation *in vivo* as well as *in vitro* since DAZL null ESCs displayed a reduced percentage of differentiated GFP+/SSEA1- germ cells.
 - Co-aggregates of GFP+ germ cells and newborn ovarian tissue were transplanted into recipient mice. GFP+ oocytes arose from those grafts although with a very low efficiency (0.023%)

State of the Art in Germline Differentiation

GERM CELLS DIFFERENTIATION FROM <u>SOMATIC</u> STEM CELLS

Authors	Publication date	Source of SC	Cell type obtained	Viable offspring
Johnson <i>et al.</i>	2004	mGSCs in OSE	Ovarian follicles after transplantation	NT
Johnson <i>et al</i> .	2005	mGSCs in female BM and PB	Ovarian follicles after transplantation	NT
Dyce <i>et al</i> .	2006	Fetal porcine skin	Oocytes	PB
Zou <i>et al.</i>	2009	Ovarian mGSCs	Follicles with oocytes after transplantation	Yes
Linher <i>et al.</i>	2009	Fetal porcine skin	PGCs that give rise to oocyte-like cells	NT

NT: not tested; PB: parthenogenic blastocyst; mGSCs: mouse germ stem cells; hGSCs: human germ stem cells; OSE: ovarian surface epithelium; BM: bone marrow; PB: peripheral blood

GSC in Bone Marrow and Peripheral Blood

- Johnson et al., Nature 2004 Cell 2005
 - Suggested that GSCs in the adult mouse ovaries proliferate and restore the follicle pool: VASA+ cells in the ovary surface.
 - Proposed:
 - -GSC reside in the bone marrow: expression of germline markers. BM transplants rescue follicles population.
 - -Putative germ cells in peripheral blood: blood transfusions might collaborate in oocytes production.
- Arguments against this hypothesis:

Byskov et al., 2005. Crucial events in producing a functional oocyte has not been proven: meiosis and enclosure in a follicle.

Egan et al., 2006. Parabiotic mouse model. Failure of BM transplant and parabiosis to rescue ovulation.

Liu et al., 2007. No evidences of neo-oogenesis in the adult human ovary.

Differentiation of Oocyte-like cells from fetal porcine skin

Dyce et al., Nat Cell Biol 2006

- Obtaining of oocyte-like cells (OLC) from fetal porcine skin in coculture with follicular fluid and with addition of gonadotropin.
- Formation of follicular structures containing oocytes which underwent spontaneous cleavage forming pseudoblastocyst by parthenogenesis.
- Presence of premeiotic (VASA) and meiotic markers (SCP3) and oocyte specific markers (ZP).

Linher et al., Plos one 2009

 Characterization of the PGCs that give rise to OLC from fetal porcine skin: Oct4, Stella, Dazl and VASA expression.

Differentiation of oocytes from ovarian cells with viable offspring

Zou et al., Nature Cell Biology 2009

- Generation of GSC lines from VASA+ neonatal and adult ovarian cells.
- These cells were transfected with GFP and after transplantation into the ovaries of sterile mice generated follicles containing green oocytes (GFP +),
- The GFP + oocytes were fertilized and produced normal and fertile offspring carrying the GFP gene.

Gametes from Stem Cells:

Present and Future

- Generation of gamete-like cells from embryonic and somatic SCs.
- Completion of meiosis *in vitro*, production of haploid cells and obtaining of successful progeny.

. . .

• Creation of *in vitro* models for gametogenesis study.

- Generation of gametes by **direct reprogramming**.
- Development of new strategies for proper meiosis completion and epigenetic pattern establishment in culture.
- Synthetic gametes as a tool for basic research.
- Potential use of oocytes in regenerative medicine with therapeutic cloning and nuclear transference techniques.
- Potential use of obtained gametes for assisted reproduction.

References:

- Byskov et al., Differentiation 2005; 73:438–446.
- Clark et al., Hum Mol Genet 2004; 13-727-739
- Dyce et al., Nat Cell Biol 2006; 8:384–390
- Eggan et al., Nature 2006; 441:1109–1114.
- Hübner et al., Science 2003; 300:1251-1256
- Johnson et al., Nature 2004; 428:145–150
- Johnson et al., Cell 2005; 122:303–315
- Kee et al., Stem Cells Dev 2006; 15-831-837
- Kee et al., Nature 2009; 462:222-225
- Lacham-Kaplan et al., Stem Cells 2006; 24:266-273
- Linher et al., Plos One 2009; 4(12):e8263
- Liu et al., Dev Biol 2007; 306:112–120.
- Marques-Mari et al., Hum Rep Update 2009;15(3):379-390
- Nicholas et al., Human mol genetics 2009; 18:4376-4389
- Novak et al., Stem Cells 2006; 24:1931–1936
- Park et al., Stem Cells 2009; 27:783-795
- Qing et al., Differentiation 2007; 75:902-911
- Tilgner et al., Stem Cells 2010; 28:84-92
- Zou et al., Nature Cell Biology 2009; 11:631–636