Ovarian Stimulation in Poor Responders: Protocols that do not help and may help

B.C. TARLATZIS MD PHD

Unit for Human Reproduction 1st Dept of Obstetrics and Gynaecology Aristotle University of Thessaloniki`

Background

Incidence of poor ovarian response : 9-24% (Surrey et al., 2000)

 Possible association with: Advanced age (Akande et al., 2002) Previous ovarian surgery (Nargund et al., 1995) High BMI (Crosignani et al., 1994; Loh et al., 2002) Early ovarian ageing (Nikolaou & Templeton, 2003)

□ Unexpected poor ovarian response (Keay et al., 1997)

Management of poor responders

Treatment of poor responders has been attempted with various methods in retrospective ,prospective, studies

using comparative and non-comparative designs

Most studies are underpowered and solid, useful conclusions are difficult to be drawn

There is a need for an evidenced based approach in the problem of treament of poor responders

Search strategy:

- MEDLINE (1966 to November 2006)
- EMBASE (1988 to November 2006)
- Cochrane Central Register of Controlled Trials (Cochrane Library Issue 1, 2007)
- Keywords : ("poor" OR "low" OR "slow" OR "inadequate" OR "suboptimal") AND ("response" OR "responder" OR "ovarian reserve")
- No language limitations
- Hand-searching

Data extraction

Demographic

type of study number of patients included definition of poor ovarian response

Methodological

randomization method allocation concealment

Procedural

type of intervention examined

type and protocol of ovarian stimulation

Outcome data

clinical or ongoing pregnancy rate live birth

Inclusion criteria:

- a) **Prospective parallel two -arm**
- b) Randomized controlled trial
- c) Full manuscript

Exclusion criteria:

- a) Quasi-randomization methods (sequential numbers, date of birth, allocation by week day)
- a) Participation of patients more than once in studies

Definition of poor ovarian response:

- Variable
- <u>Retrospective</u> vs. Prospective

Interventions to enhance IVF outcome in poor responders

- Addition of :
- 1. Growth hormone (GH) or GH-releasing factor (GHRF)
- 2. Pyridostigmine
- 3. Transdermal testosterone
- 4. Aspirin
- 5. L-arginine
- 6. Aromatase inhibitors
 - Modifications of the long GnRH-a protocol
 - Short versus long GnRH agonist protocol

Interventions to enhance IVF outcome in poor responders

GnRH antagonist protocol versus:

- 1. GnRH –a protocols
- 2. No pituitary suppression
- 3. Natural cycle

Modifications of ovarian stimulation
Intracytoplasmic sperm injection (ICSI)

Addition of Growth Hormone (GH) or GH-releasing factor (GHRF) Background

GH enhances:

gonadotrophin effects on granulosa cells (Lanzone et al., 1992)

GHRF enhances :

 gonadotrophin-induced steroidogenesis
cyclic adenosine monophosphate formation (cAMP)

(Doldi et al., 1996)

Growth hormone for in vitro fertilization

(Harper et al. , 2003)

Study	N	Intervention	Outcome
Bergh et al.,1994	18	Addition of GH	Live birth
Dor et al., 1995	14	Addition of GH	Live birth
Owen et al., 1991	25	Addition of GH	Live birth
Suikkari et al.,1996	22	Addition of GH	Live birth
Zhuang et al.,1994	27	Addition of GH	Live birth
Howles et al.,1999	196	Addition of GHRF	Live birth

Growth hormone for in vitro fertilization (Harper et al., 2003)

GH Addition and live birth

Study	Growth Hormone n/N	Placebo n/N	Odds Ratio (Fixed) 95% Cl	Weight (%)	Odds Ratio (Fixed) 95% Cl
01 Growth Hormone Owen 1991	4/13	0/12		6.0	11.84 [0.57, 247.83]
🗙 Suikkari 1996 12 IU	0/8	0/3		0.0	Not estimable
Suikkari 1996 4 IU	2/10	0/3		9.7	2.06 [0.08, 54.80]
Zhuang 1994	4/12	2/15		20.4	3.25 [0.48, 22.00]
Subtotal (95% CI) Total events: 10 (Growth H Test for heterogeneity chi- Test for overall effect z=2.	41 ormone), 2 (Placebo) square=0.71 df=2 p=0 04 p=0.04	33).70 l ⁼ =0.0%		36.2	4.37 [1.06, 18.01]

OR: **4.37** (CI 95% 1.06 to 18.01)

GH in IVF: *Clinical Pregnancy Rate*

Kolibianakis et al, Hum Reprod Update, 2009

		GH Control			Risk Difference	Risk Difference	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Bergh et al., 1994	3	10	2	10	12.2%	0.10 [-0.28, 0.48]	
Dor et al., 1995	0	7	0	7	8.5%	0.00 [-0.24, 0.24]	
Kucuk et al., 2007	10	31	5	30	37.2%	0.16 [-0.06, 0.37]	
Owen et al., 1991	4	13	1	12	15.2%	0.22 [-0.07, 0.52]	
Suikkari et al., 1996	2	16	0	6	10.6%	0.13 [-0.13, 0.38]	
Zhuang et al., 1994	5	12	2	15	16.3%	0.28 [-0.04, 0.61]	
Total (95% CI)		89		80	100.0%	0.16 [0.04, 0.28]	•
Total events	24		10				
Heterogeneity: Chi2 =	2.71, df =	5 (P = 0	0.75); I ² =	0%			
Test for overall effect:	Z = 2.65 (P = 0.0	08)				-0.5 -0.25 0 0.25 0.5 Favours control Favours GH addition

Rate Difference +16% 95% CI +4 to +28

GH in IVF: *Clinical Pregnancy Rate*

Kolibianakis et al, Hum Reprod Update, 2009

Growth Hormone in ovarian stimulation: increased pregnancy and live birth rate in poor responders

Rate Difference +16% 95% CI +4 to +28

Growth hormone for in vitro fertilisation (Harper et al., 2003)

GHRF Addition:

- Single study (Howles et al., 1999)
- Addition of GHRF vs. No addition

Live birth rate: 5.2% vs. 4.0% *Rate difference:* 1.2% (95% CI: -5.3 to +8.1)

Growth hormone for in vitro fertilisation (Harper et al., 2003)

Conclusions

■ GH Addition: Beneficial effect on the probability of live birth

GHRF Addition: No beneficial effect

Addition of Pyridostigmine

Background

Acetylcholinesterase inhibitor

Increase GH secretion by enhancing the action of acetylcholine

(Delitala et al., 1988)

Addition of Pyridostigmine

Relevant study: Kim et al., 1999

- N: 70 patients
- Protocol: GnRH agonist protocol and gonadotrophins
- Definition of poor response : < 3 oocytes retrieved and/or a minimum requirement of 50 ampoules of gonadotrophins in a previous failed IVF attempt
- Outcome: ongoing pregnancy / delivery rate

Addition of Pyridostigmine (*Kim et al., 1999*)

Addition of pyridostigmine vs. no addition:

Ongoing pregnancy/delivery rate: 8.6% vs. 22.9%

Rate difference : -14.3% (95% CI:-31.4 to +3.2)

Addition of Pyridostigmine (*Kim et al., 1999*)

Conclusion:

Addition of pyridostigmine

does not improve the ongoing pregnancy / delivery rate

in poor responders undergoing IVF

Background

- Identification of androgens receptors by immunochemistry in the human ovary (Suzuki et al., 1994)
- Androgens play a critical role on follicular growth (Ryan et al., 1968)
- Convertion of androgens into estrogens by the aromatase activity of the granulosa cells (Harlow et al., 1988; Shaw et al., 1989)

Rationale:

- beneficial effect on the number of small antral follicles
- improve the ovarian sensibility to FSH

- Relevant study: Massin et al.,2006
- N: 53 patients
- Protocol: GnRH-a/recombinant FSH (rFSH)
- Definition of poor response :E2 <1200 pg/ml on the day of HCG administration, < 5 follicles retrieved, FSH > 12 IU/L, E2 > 70 pg/ml and inhibin B < 45 pg/ml on day 3 of a spontaneous cycle.
- Outcome : Delivery rate

Massin et al.,2006

Addition of transdermal testosterone vs. placebo

Delivery rate: 11.1% vs. 3.8%

*Rate difference:*7.3% (95% CI:-9.4 to +24.5)

Massin et al.,2006

Conclusion:

Testosterone addition

in poor responders treated by IVF

does not appear to result in an increased probability of pregnancy

Addition of Aspirin

Background:

Beneficial effect of the addition of low-dose in:

 patients with low uterine blood flow undergoing thawed ET (Wada et al., 1994)
oocytes donation recipients with a thin endometrium (Weckstein et al., 1997)

Rationale:

impaired ovarian blood flow

(Battaglia et al ., 2000)

Addition of Aspirin

- Relevant study: Lok et al., 2004
- N: 60 patients
- Protocol: GnRH-a/HMG
- **Definition of poor response :** recruitment of fewer than 3 mature follicles (≥17mm) in previous IVF attempt or presence of repeated high basal levels of FSH (>10IU/L)
- Outcome : clinical pregnancy rate

Addition of Aspirin (Lok et al., 2006)

Addition of Aspirin vs. placebo

Clinical pregnancy rate: 3.33% vs. 6.77%

Rate difference: -3.33% (95% CI:-18.24 to +10.85)

Addition of Aspirin (Lok et al., 2006)

Conclusion

A beneficial effect of low-dose aspirin

in poor responders undergoing IVF

is not currently supported

Background

Increased vascularization appears to play a critical role in the selection, growth and maturation of follicles in both natural and IVF cycles

(Weiner et al.,1993)

NO might participate in periovulatory vasodilatatory modulation of the ovarian blood flow in the rat (Ben-Shlomo, 1994)

Background

■ NO play a role in follicular maturation and ovulation.

(Anteby et al., 1996)

L-arginine is involved in the formation of NO either by a calcium dependent or a cytokine-inducible NO synthase.

(Moncada et al., 1991)

- Relevant study: Battaglia et al.,1999
- N: 34 patients
- Protocol: flare-up GnRH-a/pFSH
- Definition of poor response : at least one previous cycle cancellation due to E2<1100 pmol/l and/or < 3 follicles recruited by day 8</p>
- Outcome : cumulus-oocyte complexes (COCs) pregnancy rate

Battaglia et al.,1999

Addition of L-arginine vs. placebo

• *COCs rate*: 4.1 ± 1.9 vs. 1.6 ± 0.5

WMD: 2.5 (95% CI: 1.53 to 3.47)

Pregnancy rate : 17.6% vs. 0%

Rate difference: 17.6% (95% CI: -4.0 to +45.0)

Battaglia et al.,1999

Conclusion

Addition of L-arginine: no beneficial effect

Addition of aromatase inhibitors

Background:

The selective inhibition of aromatase:

 prevents the overall production of estrogens their negative feedback effects on the hypothalamus- hypophysis axis
results in an increase of pituitary production of FSH Simpson et al .,2000)

-may increase the production follicular androgens, which might improve follicular sensitivity or stimulate IGF- 1

(Giudice et al., 1992; Palter et al., 2001)

Addition of aromatase inhibitors

-induces ovulation in anovulatory PCOS women

(Mitwally and Casper, 2000)

-increases ovarian sensitivity to gonadotrophins rendering it an attractive option for poor responders

(Mitwally and Casper, 2002)

Addition of aromatase inhibitors

- Relevant study: Goswami et al .,2004
- N:38 patients
- Protocol: long GnRH-a/rFSH protocol
- Definition of poor response : No clear definition
- Outcome : pregnancy rate
Addition of aromatase inhibitors

Goswami et al .,2004

Addition of aromatase inhibitors vs.placebo

Pregnancy rate/ cycle: 23.1% vs. 24.0%

Rate difference: -0.9% (95% CI -25.4 to +29.0)

Addition of aromatase inhibitors

Goswami et al .,2004

Conclusion

Letrozole addition does not improve clinical pregnancy rate in poor responders undergoing IVF

Background:

different dosages of GnRH agonist different protocols for GnRH agonist administration

have been used to enhance pregnancy rates in patients with poor ovarian response.

- Relevant study:
 Dirnfeld et al.,1999
- N:63 patients
- Protocol: standard long luteal protocol versus a stop agonist long protocol.

In the stop agonist protocol administration of GnRH-a was initiated in the midluteal phase and was stopped upon adequate downregulation.

- Relevant study:
 Garcia-Velasco et al.,2000
- N: 70 patients
- Protocol: "stop" versus "non-stop" protocol

i) non-stop protocol: GnRH-a long protocol/high doses of FSH+HMG or (ii) stop protocol: GnRH-a initiated in midluteal phase of the previous cycle and was stopped with the onset of menses, FSH+HMG doses similar to the non stop protocol

Dirnfeld et al.,1999

Garcia-Velasco et al.,2000

- Definition of poor response
- Section 2.000 pmol/L
 ≤ 4 mature oocytes retrieved in at least one previous IVF cycle and/or a previous low response to COH, as evidenced by a peak E2 level of<2.000 pmol/L
- Definition of poor response:
- development of less than three follicles ≥18mm in diameter in a previous IVF attempt and presence of basal FSH concentration <12IU/ml

Outcome: ongoing pregnancy rate

Outcome pregnancy rate

-Dirnfeld et al.,1999 Stop agonist protocol vs. standard long protocol Ongoing pregnancy rate : 5.0% vs. 2.6% Rate difference: 2.4% (95% CI -9.1+14.1)

-Garcia-Velasco et al.,2000 Non- stop vs. stop protocol Pregnancy rate : 13.9% vs. 17.6% Rate difference: 3.7% (95% CI -21.4 to +13.7)

Dirnfeld et al.,1999 Garcia-Velasco et al.,2000

Conclusion

The modifications of the long agonist protocol described do not enhance the probability of pregnancy over the conventional long protocol

Background:

Suppression of premature LH surge: A matter of debate

Short protocol:

promotes follicular growth by taking advantage of the flare-up effect of GnRH-agonist on pituitary gonadotrophin release

Long protocol:

results in a more coordinated follicular growth.

2 relevant studies

- Relevant study: Weissman et al .,2003
- N:60 patients
- Protocol:

<u>Short protocol</u>: a high dose of GnRH-a for 4 days, followed by standard GnRH-a dose

Long protocol: a standard GnRH-a dose was used until pituitary down-regulation, following by halving the GnRH-a dose

Definition of poor response: presence of fewer than 5 oocytes retrieved or three or fewer follicles of 16mm or larger developed on the day of cycle cancellation, or serum E2 level < 500pg/ml on the day of HCG administration</p>

Outcome:clinical pregnancy rate

- Relevant study: Dirnfeld et al.,1991
- N: 54 patients
- Protocol: short and long GnRH-a protocol
- Definition of poor response : at least one previous cancelled cycle due to a peak E2<300 pg/ml or early LH rise when the largest follicle had a diameter <16mm or serum progesterone <1.2 ng/ml during the follicular phase</p>
- Outcome : pregnancy /cycle

Weissman et al .,2003
 Mini-dose long protocol vs. modified short protocol

Clinical pregnancy rate/ started cycle: 22,6% vs 3,4% p=0.053

Dirnfeld et al.,1991
 Short vs.long protocol

Pregnancy rate/ started cycle: 7.69% vs. 28.57% *Rate difference:* -20.88% (95% CI: -40.18 to +0.3)

□Weissman et al .,2003

Dirnfeld et al.,1991

Conclusion

The two protocols appear to yield the same results

in poor responders undergoing IVF

GnRH antagonist (GnRH-ant) versus GnRH-a protocols

Background:

GnRH antagonist prevent the suppression of endogenous gonadotrophin secretion at the stage of follicular recruitment

(Craft et al., 1999; Tarlatzis et al., 2003).

Table 1. Main characteris	stics of ran	domized controlle	d trials (RCT) on patients	s with expected, or h	istory of, poor resp	onse.
Reference	Sample size (ITT)	<i>Randomization</i>	Criteria for 'poor response'	Agonist protocol	Antagonist protocol	Gonadotr- ophin type
Full publication						
Akman et al., 2001	48	True, allocation concealed	Previous cycle: bFSH >15 IU/l or E2 (dHCG) <500 pg/ml or COC <4 (leurrolide)	Short, flare-up pretreatment with OCP ^a	Flexible, multiple dose (cetrorelix)	HMG + uFSH
Martinez et al., 2003	44	True, allocation concealed	Previous 'poor response' (triptorelin),	Short, flare-up OCP pretreatment	Fixed, multiple dose (cetrorelix), OCP pretreatment	rFSH + HMG
Cheung et al., 2005	66	True, allocation concealed	Repeated bFSH > 10 IU/1 or previous cycle with <3 COC	Long, luteal (buserelin), OCP pretreatment	Fixed, multiple dose (cetrorelix), OCP pretreatment	rFSH
Marci et al., 2005	60	True, allocation concealed	Previous cycle: E2 (dHCG) <600 pg/ml and <3 COC	Long, luteal (leuprolide)	Flexible, multiple dose (ganirelix)	rFSH
Malmusi et al., 2005	60	True, allocation concealment unclear	Previous cycle: <5 COC or no ovarian response when ≥300 IU FSH for >15 days	Short, flare-up (triptorelin)	Flexible, multiple dose (ganirelix)	rFSH
Schmidt et al., 2005	48	True, allocation concealed	Previous cycle: E2 (dHCG) ≤850 pg/ml and/or ≤4 COC and bFSH <13 mIU/ml	Short, flare-up (leuprolide), OCP pretreatment ^a	Flexible, multiple dose (ganirelix)	rFSH + HMG
De Placido et al., 2006	133	True; allocation not concealed	≥37 yrs or bFSH ≥9 IU/l, regular cycle	Short, flare-up (triptorelin)	Flexible, multiple dose (cetrorelix)	rFSH + rLH
Abstract Mollo et al., 2005	116	Randomization method not described	bFSH >9 IU/1 and/or >37 yrs	Short, flare-up (decapeptyl)	Flexible, multiple dose (ganirelix)	rFSH + uHCG

Relevant studies:8

- Total N: 575 patients
- Protocols: 2 studies → long agonist protocol 6 studies → flare-up protocol

Definition of poor response:
 In the majority of studies → "inappropriate ovarian response" during a previous stimulated cycle.
 Only in two studies → age of the patients and the basal FSH concentrations used as criteria

□ Outcome: clinical pregnancy rate

COCs

						Favor agonists			Favor antagonists							
Agonistprotocol	Protocol	Citation	Year A	Antagonists	Aganists	0,1	0,2	0,5	1	2	5	10	Effect L	ower I	Upper P	v∀alue
long long	flexible fixed	Marci Cheung	2005 2005	5/30 5/33	2/30 3/33					0	0		2,80 1,79	,50 ,39	15,73 8,17	,23 ,45
long (2)				10/63	5/63			-					2,19	,70	6,81	,18
short short short	flexible fixed flexible	Akman Martinez Mollo	2001 2003 2005	4724 5721 15758	5/24 3/23 13/58				> 	•			,76 2,08 1,21	,18 ,43 ,51	3,26 10,07 2,83	,71 ,36 ,86
short short short	flexible flexible flexible	Schmidt Malmusi De Placido	2005 2005 2006	5724 3730 18768	4724 6730 12787	-				<u> </u>			1,32 ,44 1,47	,31 ,10 ,63	5,65 1,97 3,411	,71 ,28 ,37
short (6)				4BJ 223	43/226								1,17	,74	1,85	,51
Combined (8)				587286	48/289		_		╞	<u> </u>			1,28	.84	1,96	.25
							 Favor ac 	ionists		- Favor a	intadonista					

Agonist vs.antagonist Clinical pregnancy rate

OR=1.28

(95% CI: 0.84 -1.96)

Agonistprotocol	Protocol	Citation	Year	N1	N2	-2,00	-1,00	0,00	1,00	2,00	Effect	Lower	Upper	F∀alue
long long	flexible fixed	Marci Cheung	2005 2005	29 19	26 21				0		,67 ,07	,11 -,57	1,23 ,71	,01 ,82
long (2)				48	47			\vdash			,41	,00	,83	,05
short shurt	flexible fixed	Akman Martinez	2001 2003	20 21	20 23						-,41 - 55	-1,06 -1.17	,24 07	,20 07
short	flexible flexible	Malio	2005	58 18	58 24			<u> </u>	- -		,50 ,51 - 74	,13 -1.40	,88 ,88	,01 ,01
short	flexible flexible	Schmidt De Placido	2005	14 66	12 67			<u> </u>			-,09	-,90	,72 ,71	.81 .81
short (6)	TEXIDIE	De Flacibo	2000	197	204			ъ			,07 -,01	-,21	,4 1 ,1 9	,92
Combined (8)				245	251						,07	,11	,25	,44
						F	avor agoni	ists	Eavor antagor	nists				

 Long agonist group vs. GnRH-ant group COCs

SDF0.41 (95 % CI:0.0-0.83,P=0.05)

<u>Conclusion</u>

No difference in pregnancy rates appears to exist between GnRH analogues in poor responder patients

GnRH-ant versus no pituitary suppresion

Relevant study: Akman et al.,2000

- N: 40 patients
- Protocol: GnRH-ant/FSH+HMG vs FSH+HMG
- Definition of poor response : at least two previous IVF attempts with low response due to the one of the following reasons: baseline FSH concentrations >15mIU/ml, E2 on the day of HCG < 500pg/ml, or fewer than four oocytes retrieved
- Outcome : ongoing pregnancy rate

GnRH-ant versus no pituitary suppresion

Akman et al.,2000

GnRH antagonist group vs. control group

Ongoing pregnancy rate: 5.0% vs.15.0%

Rate difference: 10.0% (95% CI: -31.44 to +11.02)

GnRH-ant versus no pituitary suppresion

Conclusion

The addition of GnRH antagonists to ovarian stimulation

does not offer any benefit

in poor responder patients undergoing IVF

Background:

the use of natural cycle IVF in poor responder patients as alternative to COH and oocyte donation:

 \rightarrow less invasive \rightarrow less costly

- Relevant study: Morgia et al .,2004
- N: 129 patients
- Protocol: natural cycle versus a GnRH-ant protocol
- Definition of poor response : retrieval of three or fewer oocytes in a previous attempt or cancellation of the cycle because of no follicular development
- Outcome : pregnancy rate

Morgia et al .,2004

Natural cycle and the GnRH-ant group

Pregnancy rate: 1.7% vs. 2.86% *Rate difference*: 1.16% (95% CI: -8.3 to +6.4)

Morgia et al .,2004

Conclusion

No beneficial effect of natural cycle

High vs standard dose of FSH

High vs decremental dose of FSH

- Relevant study: Cedrin-Durnerin et al., 2000
- N: 96 patients
- Protocol: high fixed dose of gonadotropins versus a decremental dose in a short mini-dose GnRH-a protocol
- Definition of poor response : retrieval of fewer of five oocytes in a previous IVF cycle or elevated baseline FSH or E2 levels on cycle day 3
- Outcome : pregnancy rate

- Relevant study: Klinkert et al .,2005
- N: 52 patients
- Protocol: higher starting dose of gonadotrophins during a long GnRH –a protocol
- Definition of poor response : the presence of fewer than four oocytes retrieved or fewer than three follicles developed on the day of cycle cancellation
- Outcome :ongoing pregnancy rate

Cedrin-Durnerin et al., 2000
 Decremental group vs.high fixed dose group

Pregnancy rate: 6.25% vs. 8.33% *Rate difference*: 2.08 (95% CI: -14.03 to +9.64)

Klinkert et al .,2005
 Standard dose of FSH vs. double dose

Ongoing pregnancy rate: 7.69% vs. 3.85% *Rate difference:* 3.84 (95% CI: -12.19 to +20.60)

Cedrin-Durnerin et al., 2000

Klinkert et al .,2005

Conclusion

A high fixed-dose gonadotrophin regimen does not improve the pregnancy rate in poor responder patients

Background:

B) The antral follicles are present in late follicular phase of the ovarian cycle and initiation of their further development occurs under the action of the premenstrual FSH rise

(Gougeon et al, 1996)

Rationale:

Earlier administration of FSH might 个 the number of recruited follicles by opening the recruitment window in the late luteal phase of the preceding cycle

- Relevant study: Rombauts et al., 1998
- N:40 patients
- Protocol: initiating FSH during the luteal phase
- Definition of poor response : retrieval of three to six oocytes in the last FSH stimulated IVF or GIFT cycle.
- Outcome : COCs

Rombauts et al., 1998

Luteal initiation of FSH vs. follicular initiation of FSH
 Number of oocytes retrieved/cycle :

median: 4.5, range: 2-12 vs. median: 6, range: 1-10

Rombauts et al., 1998

Conclusion

The administration of FSH in the luteal phase

has no beneficial effect on the total number of oocytes retrieved

in poor responder patients

Intracytoplasmic sperm injection (ICSI)

Background

Available evidence is not able to demonstrate

whether ICSI is more efficacious than conventional IVF

in poor responder patients

(Van Steirteghem 1993)

Intracytoplasmic sperm injection (ICSI)

- Relevant study: Moreno et al.,1998
- N: 104 patients
- **Protocol**: long GnRH-a protocol/HMG+FSH.
- Fertization method: ICSI or IVF
- Definition of poor response: retrieval of six or fewer follicles in a previous cycle.
- Outcome : pregnancy rate
Intracytoplasmic sperm injection (ICSI)

Moreno et al.,1998

IVF vs. ICSI

Pregnancy rate : 17.3% vs. 21.1%

Rate difference: -3.8% (95% CI -18.9 to +11.4)

Intracytoplasmic sperm injection (ICSI)

Moreno et al.,1998

Conclusion

Pregnancy rates are not dependent on the fertilization method in poor responders, however more studies are necessary

CONCLUSIONS

- The management of poor responders still represents a challenge for the clinician, which is further complicated by the variations in the definition of poor ovarian response
- With the exception of GH co-administration, none of the examined approaches appears to be beneficial
- Due to the low incidence of poor ovarian response, evaluation of the interventions proposed is usually performed in single, underpowered studies, which might not allow the detection of the true effect of an intervention