

Endometriosis and risk of ectopic pregnancy

Lucky Saraswat

MBBS, MS, MRCOG Consultant Gynaecologist, Aberdeen, UK

Disclosures

- Grants from the Chief Scientist Office, Scotland for research in endometriosis
- No other conflict of interest

Endometriosis

- Complex, chronic inflammatory condition
- Link with infertility well recognized
 - 2 fold higher risk of infertility after adjusting for age (*Prescott et al.2016*)
 - Increased requirement for medically assisted reproduction
- Altered peritoneal and endometrial milieu (Giudice and Kao. 2004)
- Molecular and functional aberrations in the eutopic endometrium

Effect of endometriosis on reproductive function

- ovarian response and oocyte quality (Harlow et al. 1996)
- endometrial receptivity and implantation (Harb et al. 2013)
- trophoblast invasion and placentation (Brosens et al. 2012)
- may predispose to adverse pregnancy outcomes?

Impact on pregnancy

- A surge in studies over the last 5 years exploring the impact of endometriosis on pregnancy
- Preliminary data from studies in infertile women
- Lately, an increase in number of studies using population based data
- Evidence suggestive that endometriosis has an adverse effect on pregnancy

Ectopic pregnancy

- Prevalence of 11 per 1000 pregnancies
- Maternal mortality of 0.2 per 1000 estimated ectopic pregnancy
- Significant physical and emotional morbidity
- A knowledge of risk factors is important
 - For surveillance of high risk women
 - To allow early identification and timely intervention

Known risk factors for ectopic pregnancy

- Pelvic inflammatory disease
- Tubal infertility
- Assisted reproductive techniques
- Smoking
- intrauterine device usage
- Is endometriosis an independent risk factor for ectopic pregnancy?

Relative scarcity of population based data

A systematic review of literature identified

- Two cohort studies (Hjordt Hansen et al. 2014, Saraswat et al. 2016)
- Four case control studies (Job-Spira et al. 1993, Bunyavejchevin et al 2003, Brodowska et al. 2005, Hwang et al. 2016)

Cohort studies

Study	Participants	Exposed cohort	Unexposed cohort	Ectopic RR (95% CI)
Hjordt Hansen et al. 2014 Denmark	Women aged 15-49 years during1977- 1982 followed until 2009	Women with a history of endometriosis (n=24,667)	Age matched women in 1:4 ratio (n=98,688)	1.9 (1.8, 2.1) ART 2.7 (1.4, 5.0)
Saraswat et al. 2016 Scotland	Pregnant women between 1981 and 2010	Pregnant women with a surgical diagnosis of endometriosis (n=5,375)	Pregnant women with no previous diagnosis of endometriosis (n=8,710)	2.7 (1.1, 6.7)

Meta-analysis

Cohort studies

Ectopic pregnancy: pooled Relative Risk (RR) and 95% Confidence Interval (CI) of 2.13 (1.62, 2.80)

Case control studies

Study	Participants	Cases (Ectopic)	Controls	Endo- metriosis OR (95% CI)
Job-Spira et al. 1993 France	Pregnant women from 15 maternities in Rhone Alps between1988 and 1991	Women with ectopic pregnancy (n=624)	Postnatal women (1:2) delivered immediately after the case was identified (n=1,247)	5.3 (2.4,11.5)
Bunyavej- chevin et al. 2003 Thailand	Pregnant women attending the hospital between 1999 and 2000	Women with ectopic pregnancy (n=208)	Women delivered on randomly selected days (n=781)	18.9 (0.9, 395.7)

Case control studies

Study	Participants	Cases (Ectopic)	Controls	Endo- metriosis OR (95% CI)
Brodowska et al. 2005 Poland	Women aged 18-44 attending gynaecology department (1993-2002)	Women with ectopic pregnancy (n=214)	Women attending outpatient 1993-2002 (n=215)	1.6 (0.7, 3.5)
Hwang et al. 2016 Taiwan	Women from general population between 2003 and 2013	Women with ectopic pregnancy (n=6,637)	Age-matched women to cases in 1:2 ratio (n=13,270)	8.8 (5.1, 15.2)

Meta-analysis

Case-control studies

Ectopic pregnancy: pooled Odds Ratio (RR) and 95% CI of 4.82 (1.89, 12.31)

	Ectopic pregnancy		Control		Odds Ratio			Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	om, 95% Cl	
2.1.2 Case control studies										
Brodowska	15	214	10	215	29.1%	1.55 [0.68, 3.52]		_	├ ╋───	
Bunyavejchevin S	2	208	0	781	7.6%	18.92 [0.90, 395.67]				
Hwang	70	6637	16	13270	33.4%	8.83 [5.13, 15.21]				
Job-Spira	23	624	9	1247	29.9%	5.26 [2.42, 11.45]				
Subtotal (95% CI)		7683		15513	100.0%	4.82 [1.89, 12.31]				
Total events	110		35							
Heterogeneity: Tau ² = 0.61; Chi ² = 12.68, df = 3 (P = 0.005); I ² = 76%										
Test for overall effect: Z = 3.29 (P = 0.0010)										
Total (95% CI)		7683		15513	100.0%	4.82 [1.89, 12.31]				
Total events	110		35							
Heterogeneity: Tau ^z = 0.61; Chi ^z = 12.68, df = 3 (P = 0.005); I ^z = 76%						01	1 10	100		
Test for overall effect: Z = 3.29 (P = 0.0010)					0.01	Higher in control	Higher in ectonic	100		
Test for subgroup differences: Not applicable										

UNIVERSITY OF ABERDEEN

ART pregnancies

- Ectopic risk in ART pregnancies varies depending on
 - ART techniques
 - Hormonal milieu
 - Fresh vs frozen cycle
 - No. of embryos transferred
 - Innate characteristics of women e.g. tubal infertility
- Limited data regarding association of endometriosis with ectopic pregnancy
- Extreme heterogeneity amongst studies comparison groups, study design, primary or secondary infertility, no. of embryos transferred etc.

UNIVERSITY OF ABERDEEN

ART pregnancies

- Most studies in infertile women
 - did not evaluate association of endometriosis with ectopic pregnancy
 - Relatively small sample sizes
- Few studies found a positive association
 - Clayton et al. 2006
 - Malak et al. 2011
 - Hjordt Hansen et al. 2014 (subset analysis)
 - Weiss et al. 2016
- No significant association reported by
 - Santos-Ribeiro et al. 2016

- Consistent evidence that endometriosis increases the risk of ectopic pregnancy irrespective of mode of conception
- Existing data not without limitations
- Only two large cohort studies *(Hjordt Hansen et al. 2014, Saraswat et al. 2016)* and one large case control study *(Hwang et al. 2016)*

Limitations of existing literature

- Misclassification bias
 - Lack of laparoscopic diagnosis of endometriosis in 5/6 studies included in the meta-analysis
 - Undiagnosed cases of endometriosis in the unexposed cohort/control group
- Lack of temporal association
 - Danish study (*Hjordt Hansen et al. 2014*) included pregnancies up to 3 years prior to the diagnosis of endometriosis
- Clustering of outcomes
 - Danish study evaluated outcomes per pregnancy allowing each woman to be counted more than once

Limitations of existing literature

- Mixture of women with spontaneous conception and ART pregnancies amongst cases and controls
- Small sample size of most case control studies *(except Hwang et al. 2016)* and poor quality.

Plausible explanation

- Distortion of pelvic anatomy
 - Stage III and IV endometriosis
 - associated subclinical tubal infertility (Matallaiotakis et al. 2007)

- Altered uterine activity
 - Abnormal frequency and amplitude of uterine contractions
 - Dysperistalsis promotes abnormal implantation

Plausible explanation

- Abnormal endometrial milieu for implantation
 - Impaired endometrial growth in both proliferative and secretory phase (Bromer et al. 2009, Jones et al. 2009)
 - Structural and molecular alterations in eutopic endometrium altered glycosylation – attachment of the blastocyst depends on the interaction with the glycocayx of the luminal epithelium – contributory to implantation failure (*Miller et al. 2010, Brosens et al.2012*)
 - Progesterone resistance with aberration of progesterone dependent genes in the eutopic endometrium (Burney et al. 2007, Aghajanova et al. 2009)

Conclusions

- Endometriosis increases the risk of ectopic pregnancy
- Improve awareness amongst health professionals
- Counseling of women with endometriosis regarding early pregnancy complications
- Increased surveillance with ultrasound scans during pregnancy in women with endometriosis
 - Early ultrasound at 6 weeks recommended in both spontaneous and ART pregnancies

Barriers to research

- Defining the population with the disease true prevalence unknown
- Need for an invasive procedure
 - Laparoscopy +/- histology Gold standard for diagnosis
 - Beset by lack of standardization (EPHect initiative)
- Identifying the best 'comparison' group
- Problems with standardization of treatment or exposure

Challenges

Poorly understood natural history

- Is the disease progressive?
- Timeframe for disease development
 - is there a window that could be targeted for prevention and/or progression?

Is endometriosis a single entity?

Do different phenotypes and sites (peritoneal, ovarian, rectovaginal) behave differently?

Research opportunities

Impact of site and stage of endometriosis on pregnancy

- Does surgical treatment of endometriosis improve pregnancy outcomes?
 - Best surgical treatment?

 Multicenter prospective cohort with standardised data collection of exposure, outcomes and co-variates

Research opportunities

 Biological markers to stratify women at higher risk of pregnancy complications

 Ascertain target areas for interventions that would minimise the adverse impact of endometriosis

• Disentangle the role of subfertility in evaluating the influence of endometriosis on pregnancy

References

- Aghajanova, L., Hamilton, A., Kwintkiewicz, J., Vo, K.C., Giudice, L.C., and Jaffe, R.B. Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. *Biol Reprod*. 2009; 80: 105–114
- Brodowska A, Szydlowska I, Starczewski A, Strojny K, Puchalski A, Mieczkowska E & Wozniak W. Analysis of risk factors for ectopic pregnancy in own material in the years 1993-2002. Pol Merkur Lekarski. 2005; 18: 74-7.
- Bromer JG, Aldad TS, Taylor HS. Defining the proliferative phase endometrial defect. Fertil Steril. 2009; 91: 698-704.
- Brosens I, Brosens JJ, Fusi L, Al-Sabbagh M, Kuroda K & Benagiano G. Risks of adverse pregnancy outcome in endometriosis. Fertil Steril. 2012; 98: 30-5.
- Burney, R.O., Talbi, S., Hamilton, A.E., Kim, C.S., Nyegaard, M., Nezhat, C.R. et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. *Endocrinology*. 2007; 148: 3814-26
- Bunyavejchevin S, Havanond P & Wisawasukmongchol W. Risk factors of ectopic pregnancy. J Med Assoc Thai. 2003; 86 Suppl 2: S417-21.
- Giudice, L.C. & Kao, L.C. Endometriosis. Lancet. 2004; 364: 1789-99.
- Harb, H.M., Gallos, I.D., Chu, J., Harb, M. & Coomarasamy, A. The effect of endometriosis on in vitro fertilisation outcome: A systematic review and meta-analysis. BJOG. 2013; 120: 1308-20.
- Harlow CR, Cahill DJ, Maile LA, Talbot WM, Mears J, Wardle PG, Hull MG. Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. J Clin Endocrinol Metab. 1996; 81: 426-9.
- Hjordt Hansen, M.V., Dalsgaard, T., Hartwell, D., Skovlund, C.W. & Lidegaard, O.Reproductive prognosis in endometriosis. A national cohort study. Acta Obstet Gynecol Scand. 2014; 93: 483-9.

References

- Hwang A, Chou L, Islam MM, Li YC, Syed-Abdul S. Risk factors for ectopic pregnancy in the Taiwanese population: a retrospective observational study. Arch Gynecol Obstet. 2016; 294: 779-83.
- Job-Spira N, Collet P, Coste J, Bremond A & Laumon B. Risk factors for ectopic pregnancy. Results of a case control study in the Rhone-Alpes region. Contracept Fertil Sex. 1993; 21: 307-12.
- Jones CJ, Inuwa IM, Nardo LG, Litta P, Fazleabas AT.Eutopic endometrium from women with endometriosis shows altered ultrastructure and glycosylation compared to that from healthy controls a pilot observational study. *Reprod Sci.* 2009; 16: 559–572
- Malak M, Tawfeeq T, Holzer H, Tulandi T. Risk factors for ectopic pregnancy after in vitro fertilisation treatment. J Obstet Gynaecol Can. 2011; 33: 617-9.
- Matalliotakis IM, Cakmak H, Mahutte N, Fragouli Y, Arici A, Sakkas D. Women with advanced-stage endometriosis and previous surgery respond less well to gonadotropin stimulation, but have similar IVF implanatation and delivery rates compared with tubal factor infertility. Fertil Steril. 2007; 88: 1568-72.
- Prescott J, Farland LV, Tobias DK, Gaskins AJ, Spiegelman D, Chavarro JE, Rich-Edwards JW, Barbieri RL, Missmer SA. A prospective cohort study of endometriosis and subsequent risk of infertility. Hum Reprod. 2012; 27: 3622-31.
- Santos-Ribeiro S, Tournaye H, Polyzos NP. Trendsi ectopic pregnancy rates following assisted reproductive technologies in the UK: a 12-year nationwide analysis including 160 000 pregnancies. Hum Reprod. 2016; 31: 393-402.
- Saraswat L, Ayansina DT, Cooper KG, Bhattacharya S, Miligkos D, Horne AW, Bhattacharya S. Pregnancy outcomes in women with endometriosis: a national record linkage study. BJOG. 2016 Feb 16. [Epub ahead of print]
- Weiss A, Beck-Fruchter R, Golan J, Lavee M, Geslevich Y, Shalev E. Ectopic pregnancy risk factors for ART patients undergoing the GnRH antagonist protocol: a retrospective study._Reprod Biol Endocrinol. 2016; 23;14:12.

Thank you

D