Prevention of multiple pregnancies in ART and its influence on live birth rates

Prof. Dr. Diane De Neubourg Center for Reproductive Medicine, Antwerp University Hospital Faculty of Medicine, University of Antwerp Belgium

Why do we have to prevent multiple pregnancies?

Why do we have to prevent multiple pregnancies?

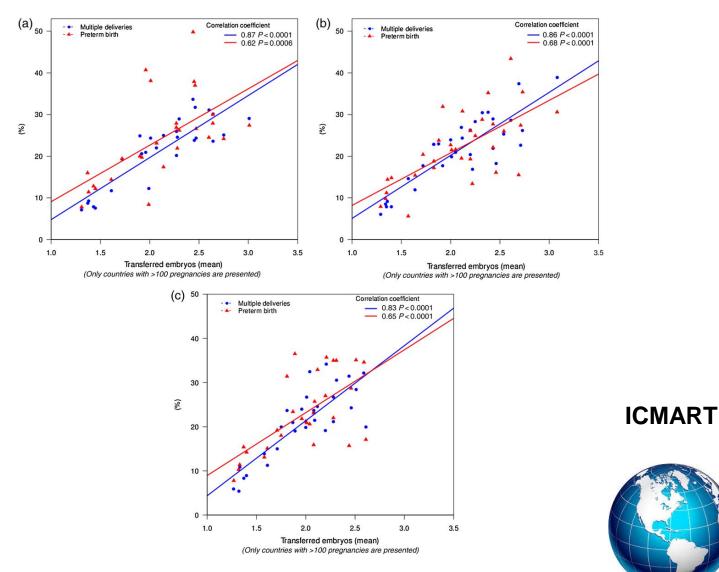
- = The most important complication of assisted reproduction technology (ART) with big differences between countries.
- **Obstetric**: Preterm delivery, hypertension, preecclampsia and higher risk for caesarean section
- **Neonatal and perinatal**: Neonatal mortality, low birth weight, respiratory distress syndrome, cerebral haemorrhage, necrotizing enterocolitis, visual complications,...
- **Economical**: parents, society, insurance
- **Psychosocial**: parents, children
- **Financial:** parents, society

Why do we have to prevent twin pregnancies?

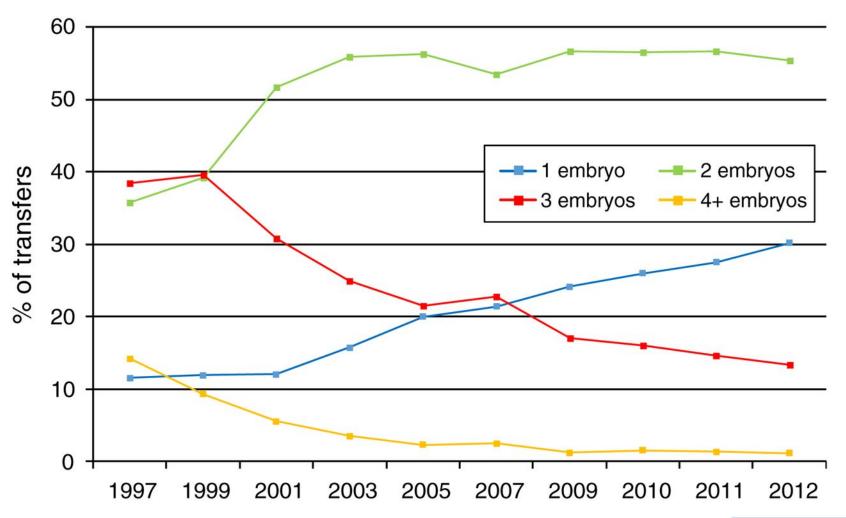
- Even twin pregnancies show adverse obstetric outcome:
 - ✓ Twins after ART are born 3 weeks earlier and have a birth weight of 1000 g less than dan ART singletons → perinatal morbidity and mortality.

v/1 0

x4.5


	Suiibirui	74. 0
•	Neonatal death	x5.9
•	Perinatal death	x4.9
•	Cerebral haemorrhage	x5.2
•	Respiratory distress syndrome	x6.4

Necrotizing enterocolitis


Stillhirth

The correlation between rate of multiple deliveries/preterm births and mean number of embryos transferred for year 2008 - 2009 - 2010.

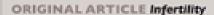
S. Dyer et al. Hum. Reprod. 2016;31:1588-1609

Number of embryos transferred in IVF/ICSI fresh cycles in Europe 1997–2012.

The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) et al. Hum. Reprod. 2016;31:1638-1652

N embryos transferred (fresh cycles)	1	2	3	4+
All	30.2%	55.4%	13.3%	1.1%
Range	9.1- 76.3 %	22.9 - 76.6 %	0 - 56.5 %	0 – 18.6 %

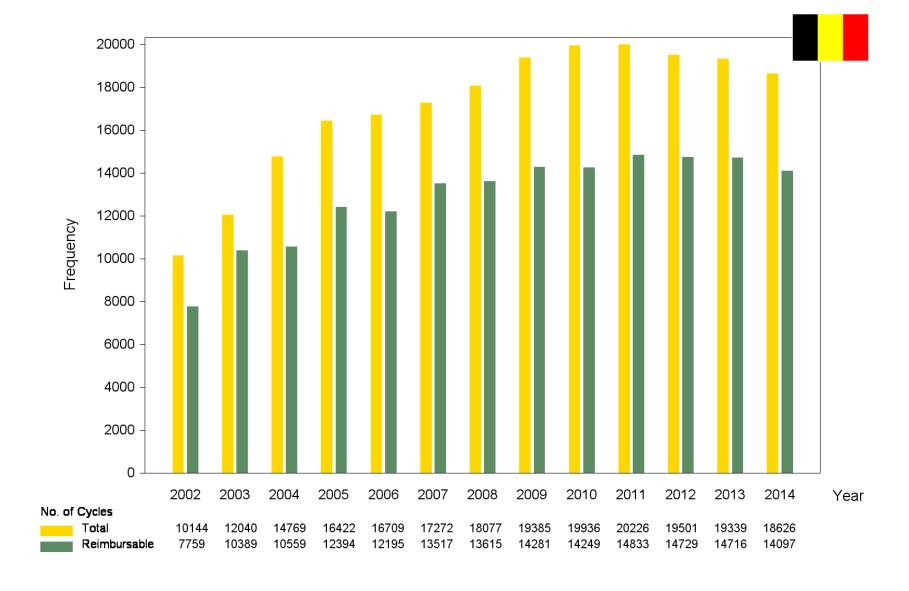
The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) et al. Hum. Reprod. 2016;31:1638-1652


Deliveries (fresh cycles)	fresh cycles)		Triplet	
All	82.1%	17.3%	0.6%	
Range	65.9 - 94.8 %	5.2 - 34.1 %	0 - 4.7 %	

The European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) et al. Hum. Reprod. 2016;31:1638-1652

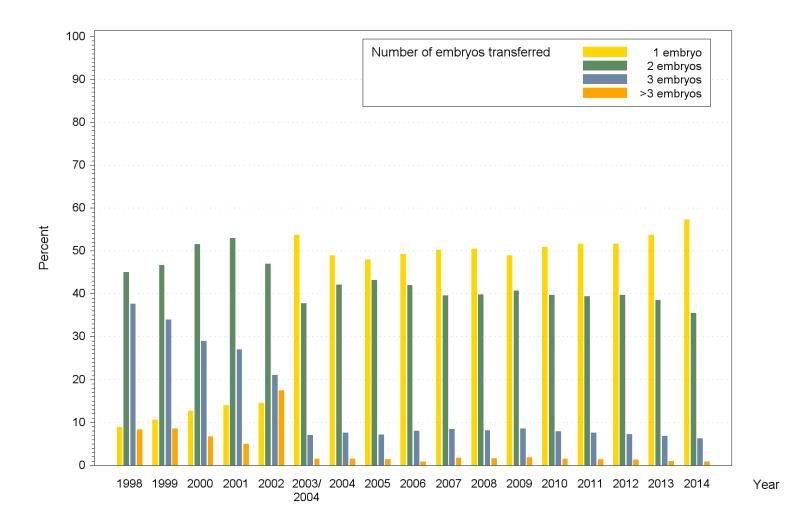
A case study of reducing the incidence of multiple pregnancy in Belgium

The history of Belgian assisted reproduction technology cycle registration and control: a case study in reducing the incidence of multiple pregnancy

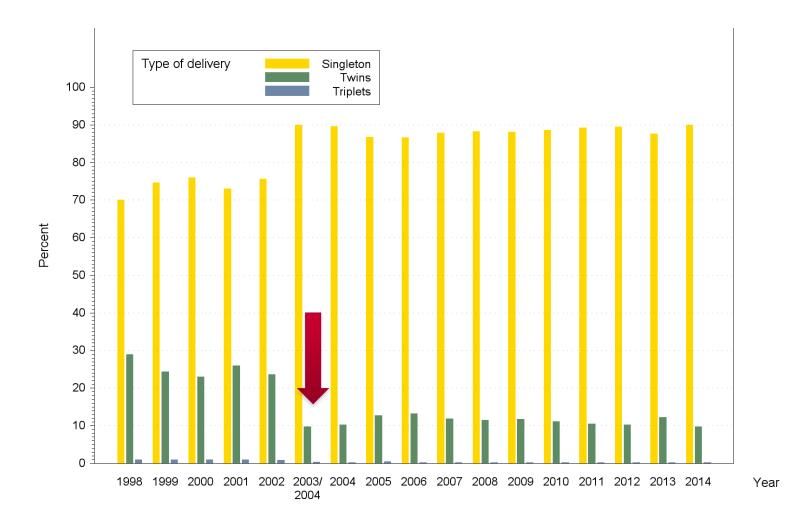

D. De Neubourg^{1,2,*}, K. Bogaerts³, C. Wyns⁴, A. Albert⁵, M. Camus⁶, M. Candeur⁷, M. Degueldre⁸, A. Delbaere⁹, A. Delvigne¹⁹, P. De Sutter¹¹, M. Dhont¹¹, M. Dubois¹², Y. Englert⁹, N. Gillain⁵, S. Gordts¹³, W. Hautecoeur¹⁴, E. Lesaffre¹⁵, B. Lejeune¹⁶, F. Leroy¹⁷, W. Ombelet¹⁸, S. Perrier D'Hauterive¹², F. Vandekerckhove¹¹, J. Van der Elst¹⁹, and T. D'Hooghe^{1,2}

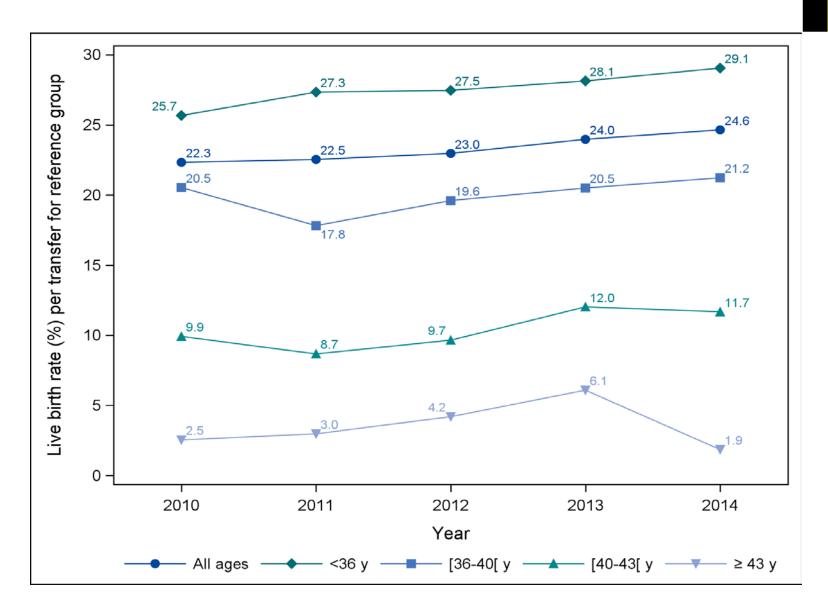
Maximal number of embryos for transfer	First cycle	Second cycle	Third-sixth cycle
In fresh cycles			
<36 years	1	1 (2) #	2
≥36 and <40 years	2	2	3
≥40 and <43 years	No limit	No limit	No limit

[#]Depending on embryo quality


[°] In frozen thawed cycles, a maximum of two embryos for transfer is allowed, regardless the age of the woman.

Note: Cancelled cycles are not included in the figure.





Cumulative live birth rates since the reduction in the number of transferred embryos

What is already known?

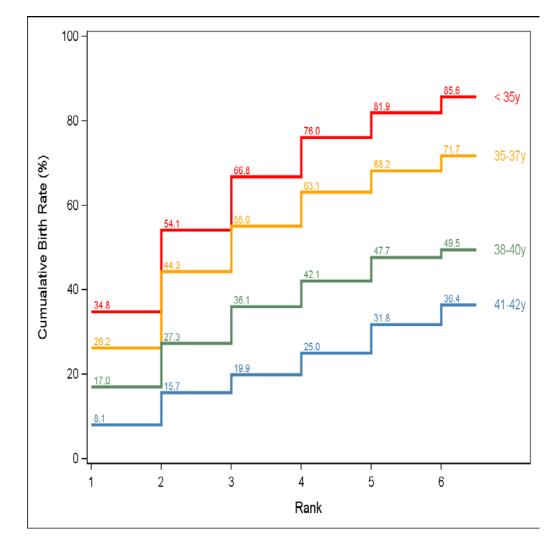
- Reduction in the number of embryos for transfer leads to a reduction in the multiple live birth rate.
- Live birth rate per cycle remained stable for the whole IVF patient population.
- per cycle analysis

Does this strategy affect the chances for the individual patient?

- -> Calculation of the cumulative live birth rate and cumulative multiple live birth rate (per patient)
- Retrospective cohort
- All patients with a Belgian insurance number who started a first fresh IVF cycle
- Between 1 July 2009 until 31 December 2011
- Follow up until 31 December 2012
- Registration by Belrap (Belgian registry for Assisted procreation)
- Maximum of 6 fresh cycles with corresponding frozen cycles.

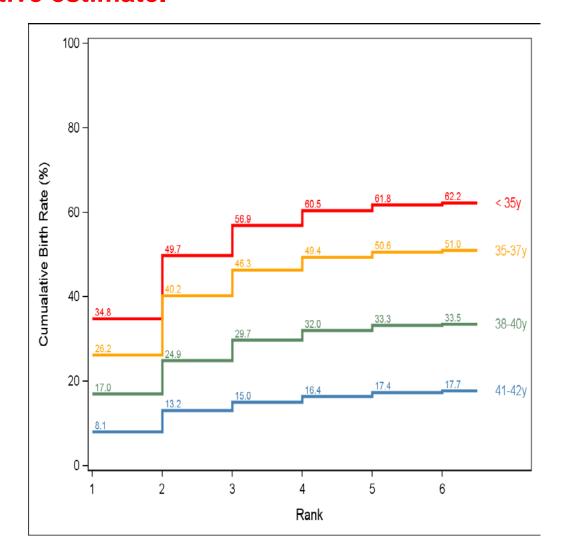
Patients

- Female age <43 years
- Cycles with own oocytes
- Non-cancelled cycles (fresh and frozen-thawed)
- Exclusion: PGD cycles, cycles after a live birth, more than 6 fresh IVF cycles
- ➤ 12 869 patients and 38 008 cycles (fresh and frozenthawed).
- Age categories: <35; 35-37; 38-40; 41-42 years</p>



Method of analysis

- Conservative estimates of cumulative live birth assumed that patients who did not return for treatment had no chance of achieving an ART related live birth.
- Optimal estimates assumed that women discontinuing treatment would have the same chance of achieving a live birth as those continuing treatment.



Cumulative birth rate by age group: For each course of treatment the results of fresh and frozen-thawed embryo transfer cycles following an oocyte recovery are included. Optimal estimate.

Cumulative multiple LBR = 8%

Cumulative birth rate by age group: For each course of treatment the results of fresh and frozen-thawed embryo transfer cycles following an oocyte recovery are included. Conservative estimate.

Cumulative multiple LBR = 5%

Two types of analysis

- "European way": For each course of treatment the results of fresh and frozen-thawed embryo transfer cycles following an oocyte recovery are included ("cryoaugmentation" effect).
- "American way": all embryo transfers (fresh and frozen-thawed) are included in chronological order.

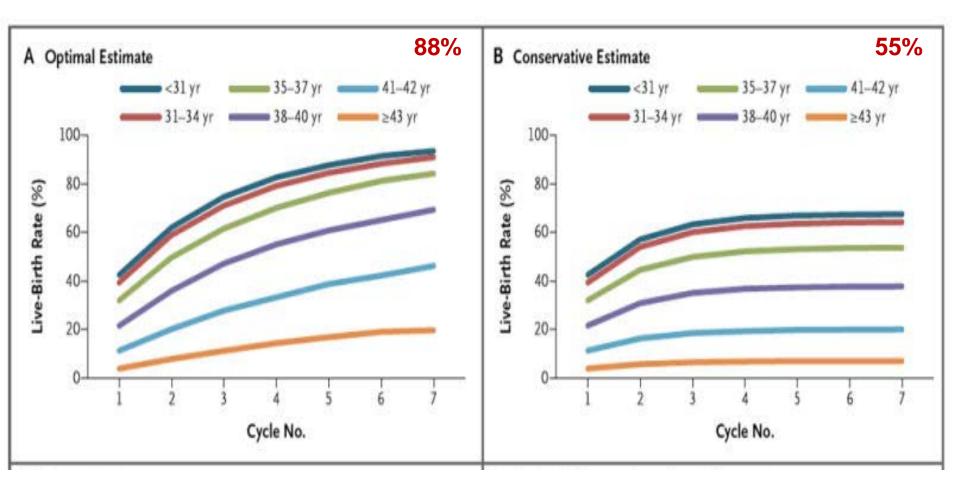
Cumulative live birth rate (all ages): For each course of treatment the results of fresh and frozen-thawed embryo transfer cycles following an oocyte recovery are included.

European way	Fresh (oocyte recovery) Cycle					
	1	2	3	4	5	6
Number of women	12869	6915	3783	1984	932	408
Number of live births	3804	1714	824	410	164	51
Conditional LBR (%)	29.6	24.8	21.8	20.7	17.6	12.5
Conservative CLBR (%)	29.6	42.9	49.3	52.5	53.7	54.1
SE conservative CLBR (%)	0.4	0.44	0.44	0.44	0.44	0.44
Optimal CLBR (%)	29.6	47	58.6	67.1	72.9	76.3
SE optimal CLBR (%)	0.4	0.47	0.51	0.56	0.61	0.7
Withdrawal (%)		23.7	27.3	33	40.8	46.9

Antwerpen

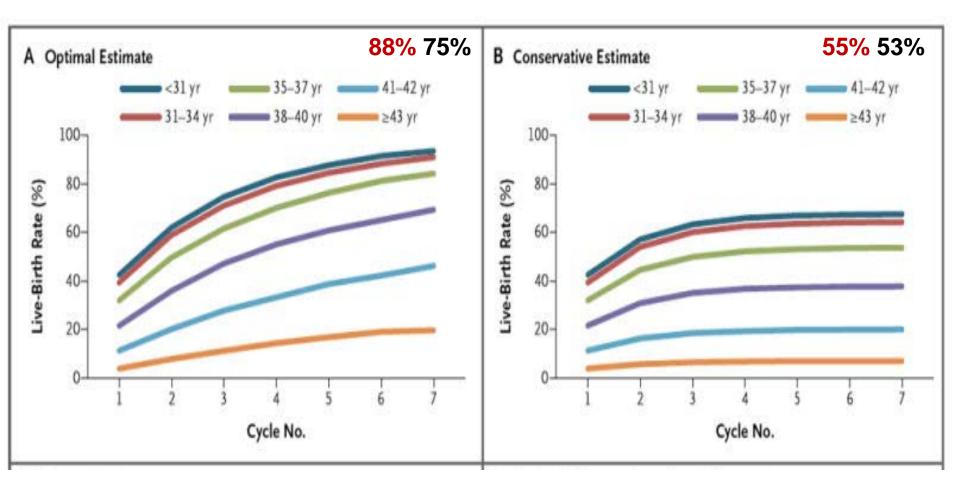
Cumulative live birth rate (all ages): all embryo transfers (fresh and frozen-thawed) in chronological order

American Way	Embryo transfer cycle						
	1	2	3	4	5	6	7
Number of women	12869	8725	6124	4108	2693	1657	869
Number of live births	2750	1412	1028	663	494	280	175
Conditional LBR (%)	21.4	16.2	16.8	16.1	18.3	16.9	20.1
Conservative CLBR (%)	21.4	32.3	40.3	45.5	49.3	51.5	52.9
SE conservative CLBR (%)	0.36	0.41	0.43	0.44	0.44	0.44	0.44
Optimal CLBR (%)	21.4	34.1	45.2	54	62.4	68.8	75.1
SE optimal CLBR (%)	0.36	0.43	0.48	0.51	0.54	0.57	0.62
Withdrawal (%)		13.8	16.3	19.4	21.8	24.6	36.9
Mean (SD) number of	1.2	1.6	1.7	1.8	1.8	1.8	1.8
embryos transferred	(0.45)	(0.57)	(0.59)	(0.63)	(0.70)	(0.66)	(0.62)


UZ4

Comparison with SART data

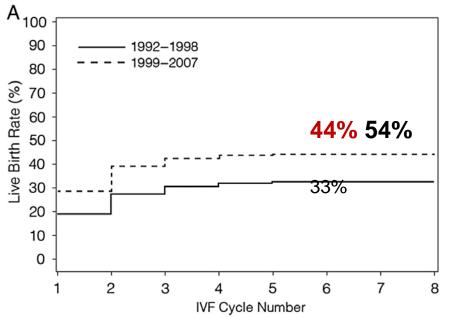
(Luke et al., NEJM, 2012)



multiple LBR per ET = 28% in 2011

Comparison with Australian-New Zealand ART data

- Comparison with the Australian New Zealand ART data as registered by the National Perinatal Epidemiology and Statistics Unit (NPESU, 2011)
- Analysis of patients that started their first autologous fresh ART treatment cycle during 2009-2011.
- After 7 consecutive cycles the cumulative live birth rate was 41.1% which was significantly lower (p<0.0001).
- Multiple LBR= 10.0% in 2007 en 6.9% in 2011.

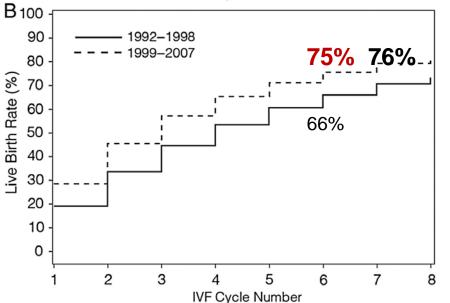


Comparison with HFEA data

(McLernon et al., Hum Reprod, 2016)

Cumulative live birth rate For each course of treatment the results of fresh and frozen-thawed embryo transfer cycles following an oocyte recovery are included.

Conservative estimate


Optimal

estimate

McLernon et al. Hum. Reprod. 2016

Cumulative multiple LBR = 26%!

Comparison with UK data 2003-2010

(Smith A et al., JAMA, 2015)

Figure 2. Cumulative Live-Birth Rate Across All Initiated IVF Cycles by Age and Oocyte Source

Donor oocytes, all ages Cumulative Live-Birth Rate Across Treatment Cycles, % Own oocytes and age <40 y Own oocytes and age 40-42 y Optimal estimate 78% Conservative estimate 47% Prognostic-adjusted estimate 65% of Cycle Number No. of women Donor oocytes, all ages Own oocytes and age <40 y Own oocytes and age 40-42 y Own oocytes and age >42 y

How does a reduction in the multiple pregancy rate affect ART related costs?

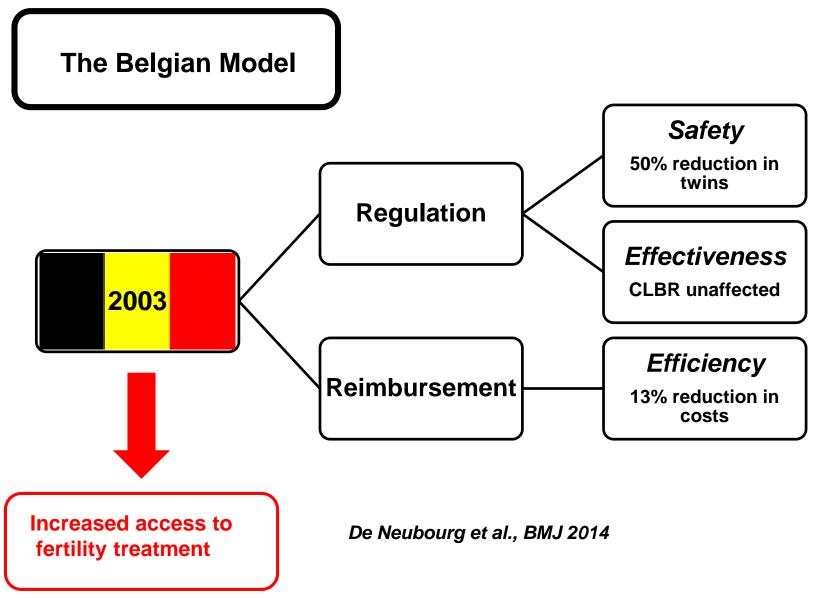
How did this affect ART related costs?

- Only patients that had their complete ART treatment, pregnancy follow up and delivery in UZ Leuven in order to obtain all hospital related costs.
- All costs for the mother (ART related, pregnancy & delivery) and child untill the age of two.
- All invoices related to hospital costs.

Peeraer et al., RBM online, accepted

Projected cost reduction per 100 patients since 2003

	Total cost €		Total Cost reduction (€)	Total Cost reduction (%)
100 patients before Belgian legislation: 76 singleton pregnancies; 76 singletons 24 twin pregnancies, 48 twins	2.399.344		206 272	12.00/
100 patients after Belgian legislation: 88 singleton pregnancies, 88 singletons 12 twin pregnancies; 24 twins	2.092.972		306.372	12.8%
	Total cost per mother €	Cost per mother (€)	Total Cost reduction (€)	Total Cost reduction (%)
100 patients before Belgian legislation: 76 singleton pregnancies 24 twin pregnancies	1.308.196	13.082	20.440	201
100 patients after Belgian legislation: 88 singleton pregnancies 12 twin pregnancies	1.270.048	12.700	38.148	3%
	Total cost per child €	Cost per child (€)	Total Cost reduction (€)	Total Cost reduction (%)
100 patients before Belgian legislation:76 singletons48 twins	1.091.124	8799	268.212	
100 patients after Belgian legislation: 88 singletons 24 twins	822.912	6745		Universi Antwerp


Projected cost reduction per 100 patients since 2003

	Total cost (€)	Total Cost reduction (€)	Total Cost reduction (%)
100 patients before Belgian legislation: 76 singleton pregnancies; 76 singletons 24 twin pregnancies, 48 twins	2.399.344	206 272	12.00/
100 patients after Belgian legislation: 88 singleton pregnancies, 88 singletons 12 twin pregnancies; 24 twins	2.092.972	306.372	12.8%

Peeraer et al., RBM online, accepted

Conclusion

- Since the introduction of the single embryo transfer strategy in 2003, cumulative live birth rates remain high when compared to other registries and publications
- AND with a low cumulative multiple live birth rate!
- The "Belgian model" coupling reimbursement of the majority of ART related costs to a reduction in the number of embryos transferred did and still does work out well.

