

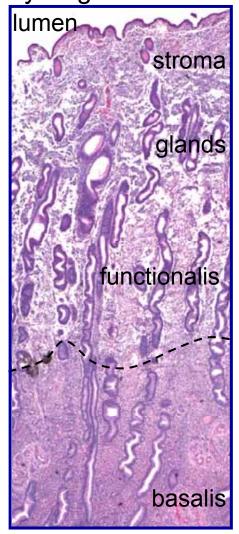
Evidence for Endometrial Stem/Progenitor cells

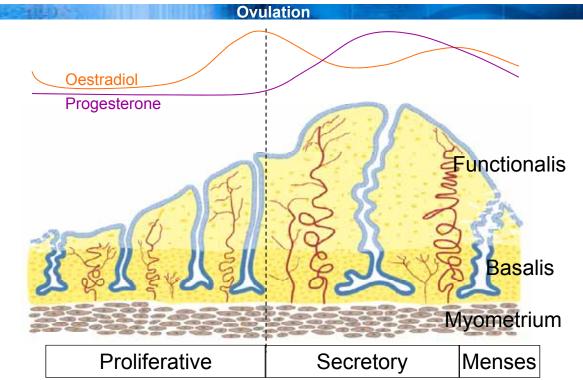
Caroline E Gargett

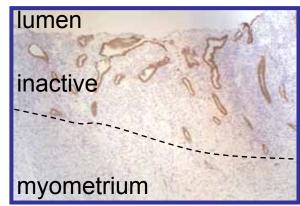
The Ritchie Centre Monash Institute of Medical Research

Monash University Department Obstetrics and Gynaecology

Presentation Plan

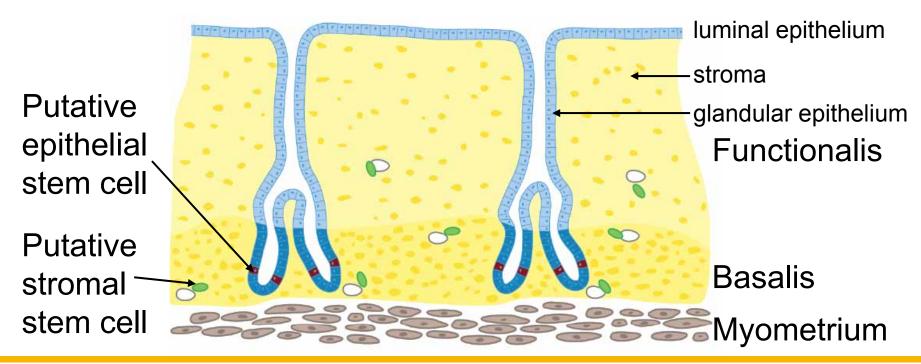

- Endometrial regeneration, the stem cell hypothesis and gynaecological disease
- Evidence for Stem/progenitor cell activity in human and mouse endometrium
- Markers of endometrial stem/progenitor cells
- Origin of endometrial stem/progenitor cells
- Endometrial cancer and evidence for cancer stem-like cells
- Endometrial Stem/progenitor cells in endometriosis




Regenerative Capacity of Human Endometrium

Cycling endometrium

- Menstrual cycle
- Parturition
- Resection
- Postmenopausal


Postmenopausal endometrium

Gargett et al 2008

Hypothesis

The endometrial basalis contains a small population of epithelial stem cells and stromal stem cells

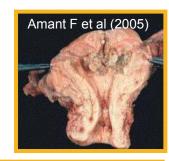
Endometrial Cancer

Mutated stem/progenitor cell → tumor responsible for progression, metastasis, recurrence

Endometriosis

Normal stem/progenitor cell shed into peritoneal cavity → ectopic implant

Adenomyosis


Normal stem/progenitor cells, abnormal niche, inappropriate differentiation → ectopic growth, SMC hyperplasia

Asherman's Syndrome, Ablation

Damage/loss of normal stem/progenitor cells

Inadequate endometrium for IVF

Diminished activity of normal stem/progenitor cells

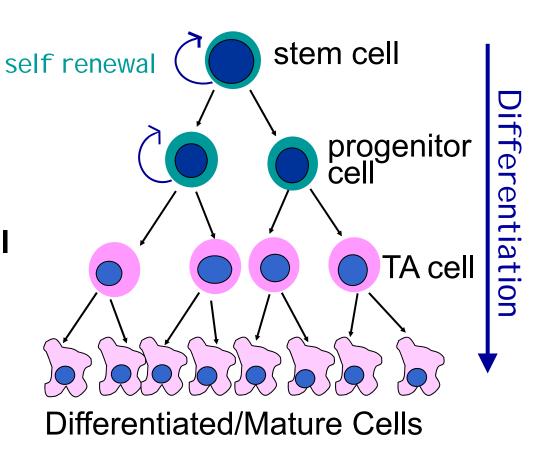
Gargett ,2007 13: 87-101

Adult Stem Cells - Properties

There are no specific markers for adult stem cells

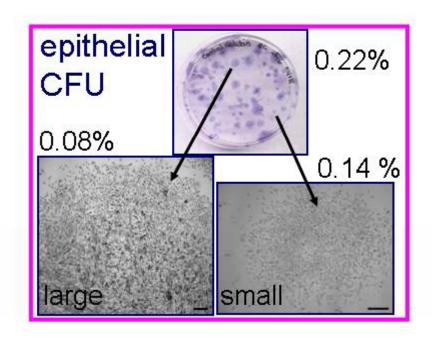
Rare cells in tissues

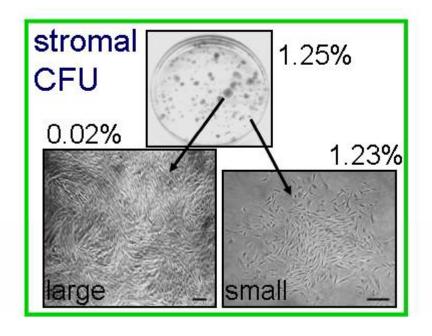
Undifferentiated


Self renew

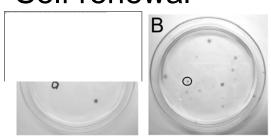
Differentiation capacity

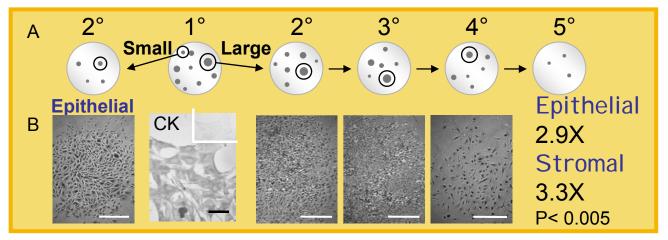
High proliferative potential

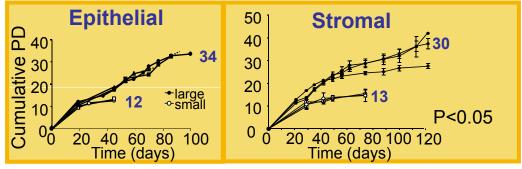

Quiescent


Clonogenic in vitro (CFU)

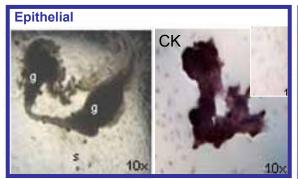
CFU Activity of Human Endometrial Cells

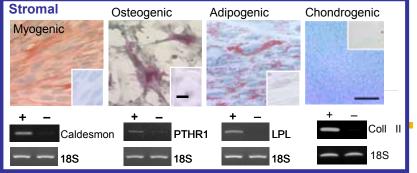

- CFU are present in inactive endometrium
- CFU activity similar for proliferative and secretory stages




Stem/Progenitor Cell Activity in Normal Human Endometrium (CFU)

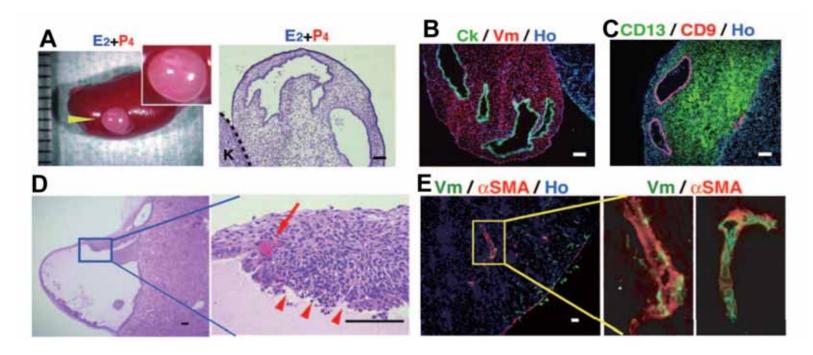
Self renewal


High proliferative potential

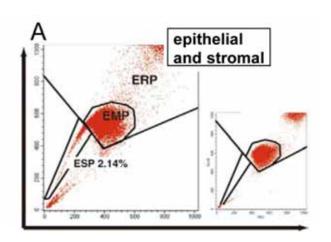


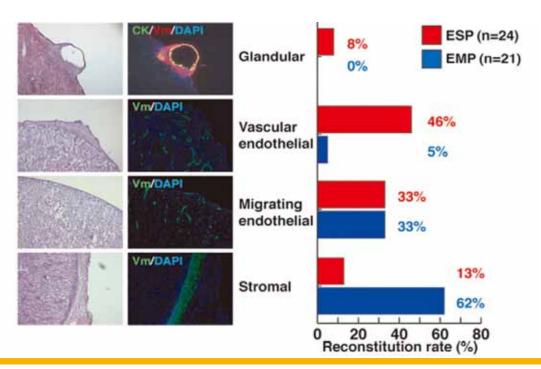
Differentiation

Gargett et al 2009

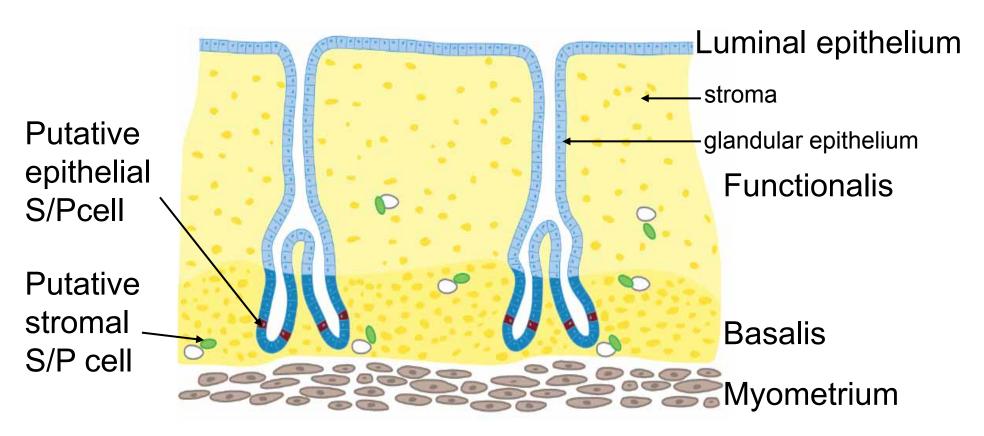


Reconstruction of human endometrial like tissue from transplanted human endometrial cells


Hormone-dependent functional changes of reconstructed endometrium



Side Population (SP) Cells in Human Endometrium


- Endometrial SP cells are heterogeneous
- Kato K et al 2007 Tsuji S et al 2008
- Endothelial, Epithelial, Stromal cells
- Express ABCG2/Brcp1, telomerase, OCT-4, c-KIT Cervello I et al. 2010
- Clonogenic
- Differentiate
- Reconstruct endometrial tissue components

The search for endometrial stem/progenitor cell markers

Gargett, 2007

Mouse Endometrial Epithelial and Stromal Stem/Progenitor Cells - Label Retaining Cells (LRC)

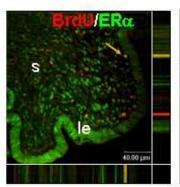
Epithelial LRC

3% of epithelial cells Luminal epithelium

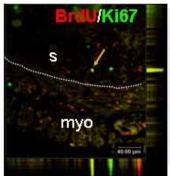
 $\mathsf{ER}\alpha^{-}$

Proliferate in response to E

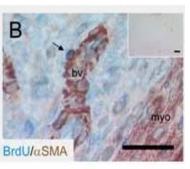
BrdU/ERax BrdU/Ki67


Stromal LRC

6% of stromal cells

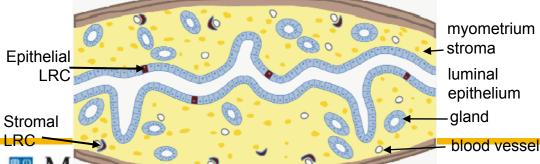

Perivascular

Most ER α^- , 16% ER α^+ ,


Some proliferate in response to E

Gargett, 2007

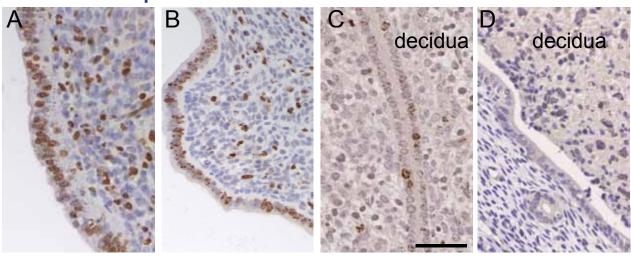
Chan & Gargett 2006

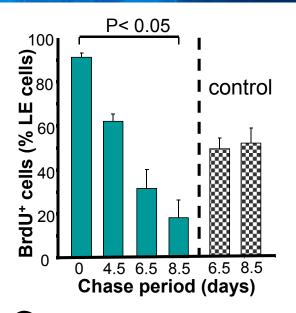

rium

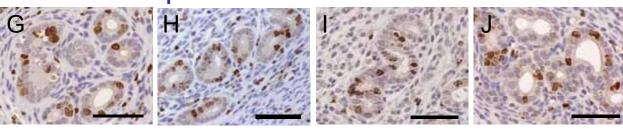
n

Stromal LRC

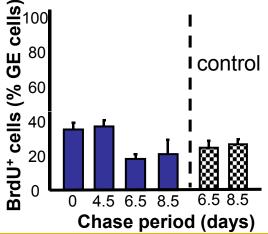
 α SMA^{+,}, CD45⁻


Some OCT4⁺ Cervello et al 2007

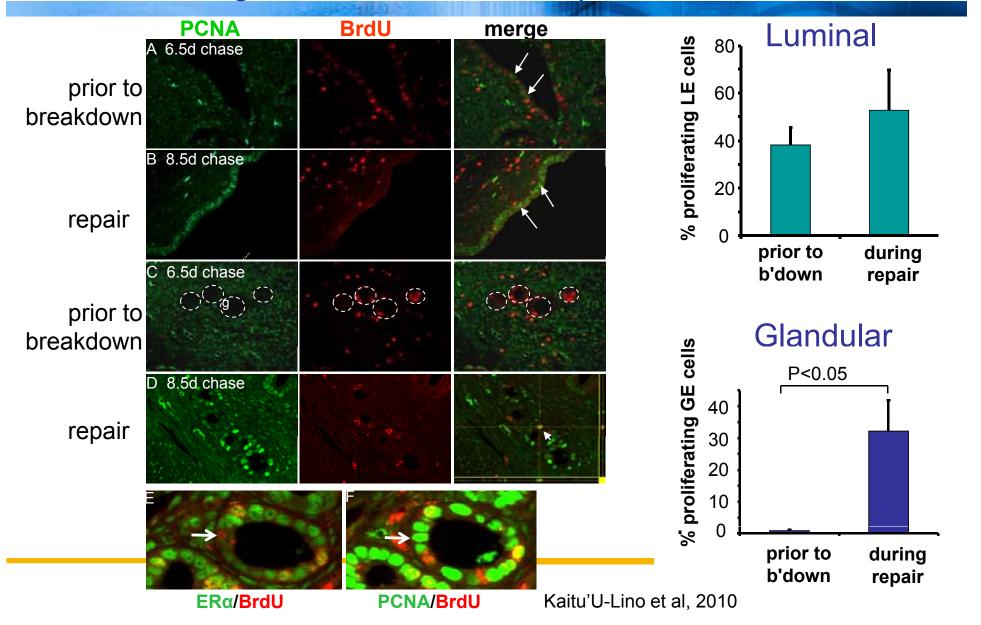



LRC in Mouse Model of Endometrial Breakdown and Repair

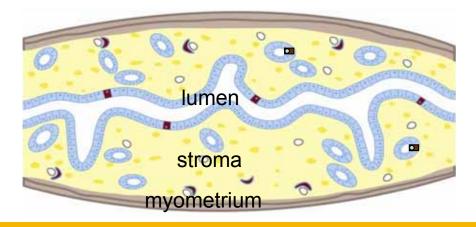
Luminal epithelium



Glandular epithelium


initial labeling after E2 decidualisation repair

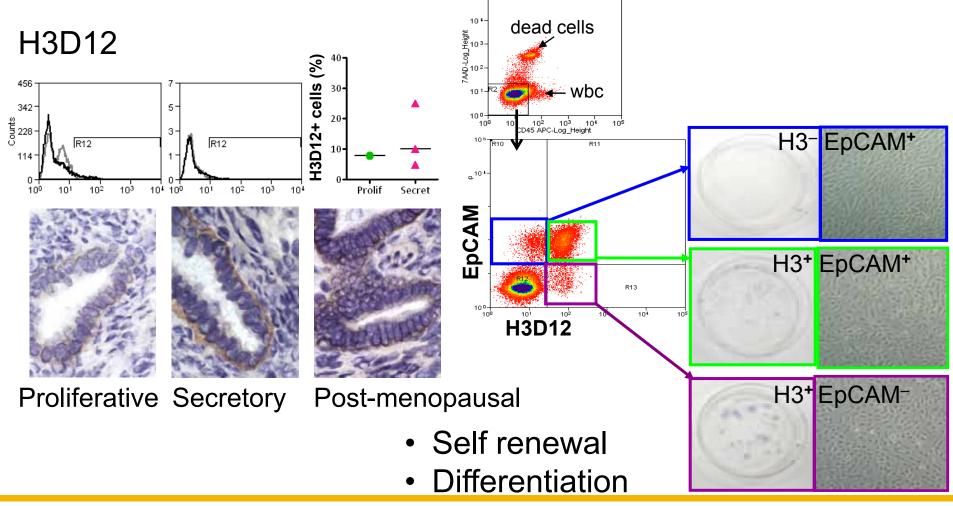
Differential Epithelial Proliferation During Breakdown and Repair



Location of LRC varies between Endometrial Regeneration and Repair Models

- 1. Endometrial growth during development Luminal epithelial LRC
- 2. Endometrial repair following breakdown Glandular epithelial LRC

Different mechanisms involved between growth and repair following tissue damage

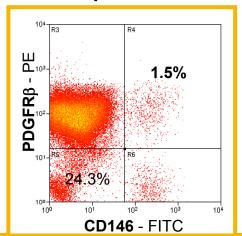


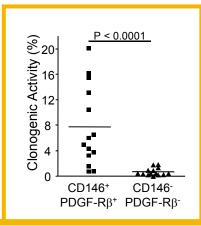
Searching for Human Endometrial Epithelial Stem/Progenitor Cell Markers

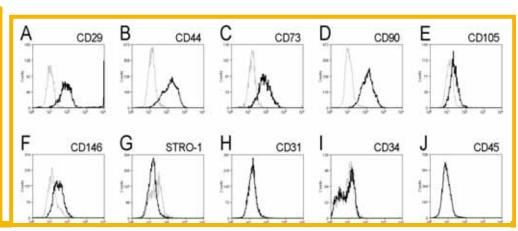
Screened with an antibody panel to 30 surface markers

In vivo reconstitution

Charmaine Tan



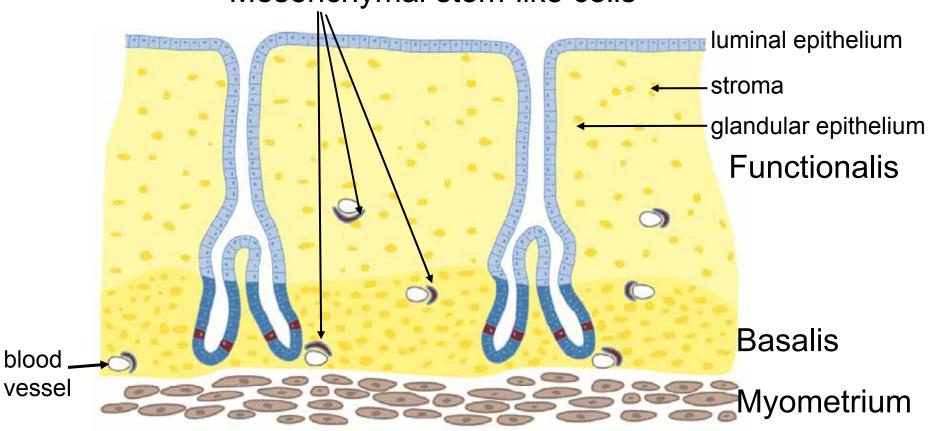

Markers to I solate Endometrial Mesenchymal Stem Cells


CD146

Co-expression of CD146 and PDGFR $\beta \rightarrow 8$ fold purification of MSC-like cells compared to freshly isolated stromal cells

- clonogenic
- Multipotent
 adipocytes, SMCs, chondrocytes, osteoblasts
- MSC surface phenotype
- perivascular location

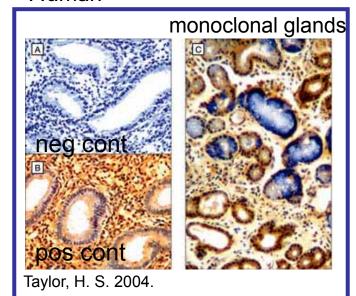
PDGF-Rβ

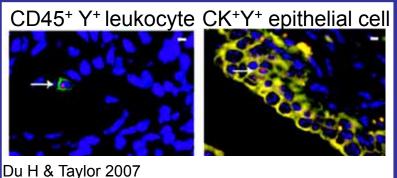

CD146/PDGFRB

Are Endometrial MSC-like cells in the Basalis or Functionalis?

Mesenchymal stem-like cells

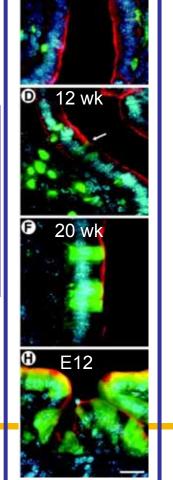
Endometrial MSC will be shed in menstrual blood




Mi Origin of Human Uterine Stem/Progenitor Cells

- Residual Müllerian duct fetal stem cells Gargett, Hum Reprod Update, 2007
- Circulating bone marrow (stem) cells
 - HLA or gender mismatch BMT recipients with donor HLA type or male glands, stroma


Human

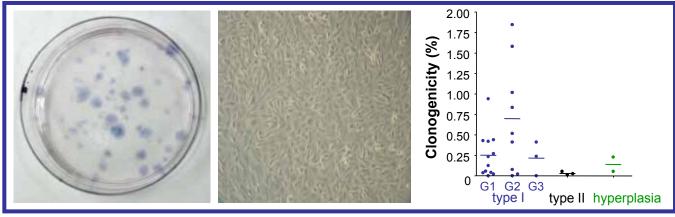


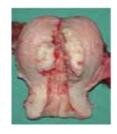
Mouse

Conditional expression of EGFP in CD45 expressing cells using CD45/Cre-Z/EG mouse (n=1)

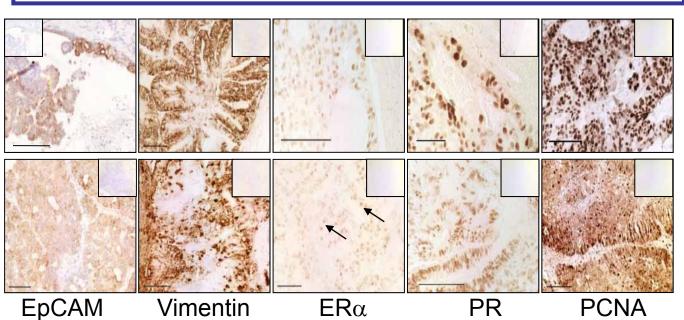
Cancer Stem Cells

Initiation, progression, metastasis, drug resistance, recurrence


Tissue hierarchy Normal tissue Cancer mutations Cancer Stem Cell stem cell progenitor cell cancer progenitor cell Cancer TA TA cell cell र्स सर्वसंस्थितं tumuor Differentiated/Mature Cells chemotherapy

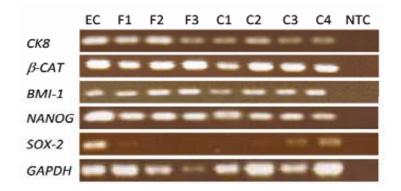


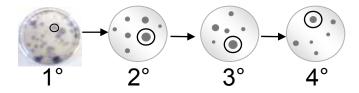
Cancer Stem Cells in Endometrial Carcinoma


- Clonogenic
- Tumorigenic
- Differentiate in vivo

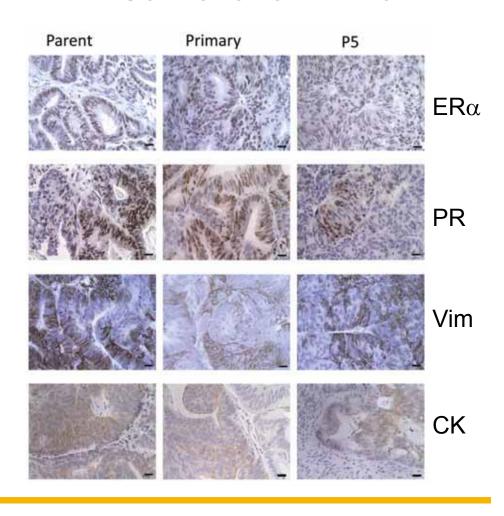
Transplant 125,000 endometrial cancer cells

Parent tumour Type 1 Grade 2

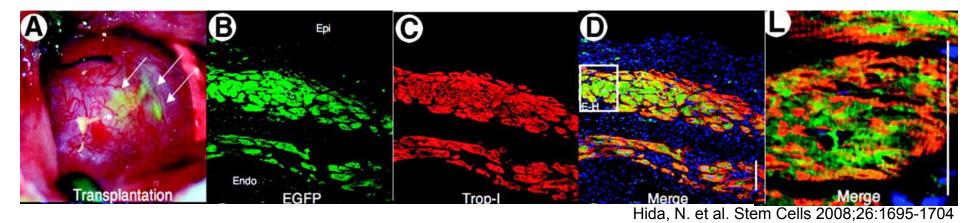




Cancer Stem Cells in Endometrial Carcinoma


Self renewal in vitro

Sample	Subclonings (M, range)	N
Hyperplasia	2.5 (2,3)	2
Grade 1	3 (1-5)	11
Grade 2	3 (3-4)	5
Grade 3	3.5 (3,4)	2
Type II	4 (1-4)	3


Self renewal in vivo

Hubbard et al, Cancer Research 2009

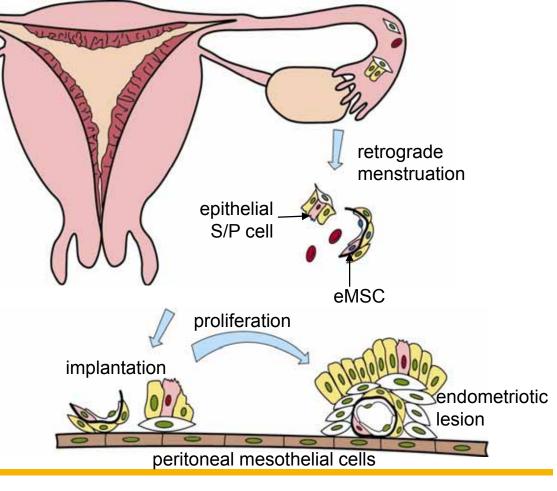
Cultured cells from menstrual blood contains MSC-like cells

- MSC cell surface phenotype
- Express OCT4, c-KIT, SSEA4 (pluripotency markers), telomerase
- Differentiate in vitro: cardiomyocytes, neural, hepatic, lung cells
- Differentiate in vivo: cardiomyocyts, skeletal muscle

Suggested as a source of cells for regenerative medicine

Cui et al 2007; Meng et al 2007; Patel et al, 2008

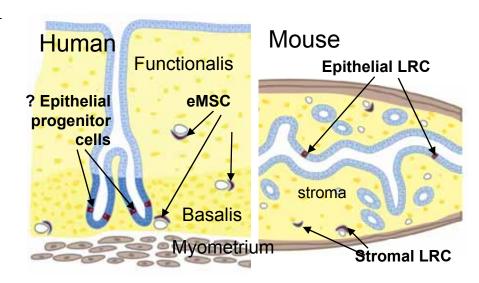
MI Endometrial stem/progenitor cells in Endometriosis


Endometrial stem/progenitor cells may

 be shed in menstrual blood

 gain access to the pelvic cavity by retrograde menstruation

 Establish endometriosis lesions in susceptible women


Human and Mouse Endometrium contains

Epithelial progenitor cells

- Clonogenic
- self-renew, high proliferative potential, differentiate
- SP cells
- Label retaining cells, ER α^-
- Markers unknown

Endometrial MSC-like cells

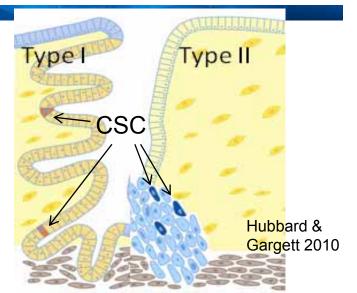
- Clonogenic
- self-renew, multipotent
- high proliferative potential
- Perivascular
- Purified in CD146+PDGFRβ+ stromal fraction
- Shed during menstruation
- Proposed to use in tissue engineering applications

Functional identity and differentiation capacity of human endometrial stem/progenitor cells

			Gargett & Masuda, 2010	
Stem/Progenitor Cell Type	Possible Commitment			
	epithelial cells	stromal cells	other cells	
Clonogenic epithelial cells (CFU)	+			
Clonogenic stromal cells (CFU)		+	adipocytes, osteocytes, SMC, chondrocytes	
CD146 ⁺ PDGF-Rβ ⁺ stromal cells		+	adipocytes, osteocytes, SMC, chondrocytes	
Endometrial tissue reconstituting cells	+	+	Endothelial cells (EC)	
Cultured endometrial stromal cells		+	chondrocytes, dopaminergic neurons	
SP cells	+	+	endothelial cells, SMC	
Bone-marrow derived cells	+	+		
Menstrual blood cells		+	cardiomyocytes, myocytes, adipocytes, osteocytes, SMC chondrocytes, neural cells	
Endothelial progenitor cells (bone marrow derived)		?	EC, perivascular cells	
Mouse LRC	+	+	perivascular cells	

Endometrial Stem/Progenitor Cells: Clinical relevance

CSC in Endometrial Cancer


- Clonogenic, Tumour initiating cells
- Self renew in vitro and in vivo
- Differentiate in vivo
- Derived from epithelial progenitor cells or their progeny
- CD133 may be a marker (Rutella et al 2009)
- Involved in progression, metastasis, recurrence, resistance
- Target for novel treatment

Normal Endometrial Stem/progenitor Cells may have roles in

- Endometriosis lesion development
- Adenomyosis
- Generating adequate endometrium for IVF after biopsy/injury

Potential endometrial stem/progenitor cell therapy Barash, Fertil Steril 2003

MSC for autologous cell-based therapy for pelvic organ prolapse

Unresolved questions in Endometrial Stem/Progenitor Cell Research

- 1. Markers to identify endometrial epithelial progenitors
- 2. Relationship between cultured endometrial stromal cells and endometrial MSC (CD146+PDGFRβ+)?
- 3. What is the relationship between
 - clonogenic cells
 - SP cells
 - Tissue reconstituting cells
 - LRC?
- 4. How many endometrial stem/progenitor cell types are there? One or more? ie epithelial, stromal (MSC), endothelial progenitor cells?
- 5. Endogenous &/or bone marrow origin of endometrial stem/progenitor cells?

Endometrial Stem Cell Group

Sonya Hubbard Hirotaka Masuda Gayathri Rajaraman

Charmaine Tan

Hong Nguyen

Louie Ye

Isabella Ciurej

Frances Walker

Pam Mamers

Anna Rosamilia

Gareth Weston

Past members

Rachel Chan Kjiana Schwab Rachel Zillwood

Erah Anwar

Tu'uhe Kaitu'u-Lino Anne Friel

Jyothsna Rao

Collaborators

Tübingen University

Hans-Jörg Bühring

Monash Medical Centre

Beena Kumar

Massachusetts General Hospital

Bo Rueda CSIRO

Ling Zhang Lerome Werkr

Jerome Werkmeister

Sharon Edwards

Funding

RISS

ASCC

NHMRC

Cancer Council Victoria

CASS Foundation

RANZCOG

Helen MacPherson Smith Trust

Victorian Cancer Biobank

References

Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, et al (2007) CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 25:2820-2826

Barash A, Dekel N et al (2003) Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilisation Fertil Steril 79: 1317-22

Cervello I, Martinez-Conejero JA et al (2007) Identification and characterization and co-localization of labelretaining cell population in mouse endometrium with typical undifferentiated markers, Hum Reprod 22:45-51

Cervello I, Gil-Sanchis C, Mas A et al (2010) Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells PLoS One 5:E10964

Chan RWS, Schwab KE and Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biology of Reproduction 70:1738-1750

Chan RWS, Gargett CE (2006) Identification of label retaining cells in mouse endometrium. Stem Cells, 24:1529-38 Cui CH et al (2007) Menstrual blood-derived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell 18:1586-94.

Du H, Taylor HS. (2007) Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells 2082-2086.

Gargett CE (2007) Uterine Stem Cells. What is the evidence? Human Reproduction Update 13: 87-101

Gargett CE, Chan RWS, Schwab KE (2008) Hormone and growth factor signalling in endometrial renewal: role of stem/progenitor cells. Molecular and Cellular Endocrinology 288:22-29

Gargett **CE**, Schwab KE, Zillwood RM, Nguyen HPT, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biology of Reproduction 80: 1136-45.

Gargett CE, Masuda H (2010) Adult Stem Cells in the Endometrium. Molec Hum Reprod 11: 818-834

Hida N, Nishiyama N, Miyoshi S, et al (2008) Novel cardiac precursor-like cells from human menstrual blood-derived mesechymal cells. Stem Cells 26: 1695-1704

Hubbard S, Friel A, Kumar B, Zhang L, Rueda B, Gargett CE. (2009) Evidence for cancer stem cells in human endometrial cancer. Cancer Research 69:8241-8248

References

Hubbard S, Gargett CE (2010) A cancer stem cell origin for human endometrial cancer? Reprod 140:23-32 Kaitu'u-Lino, TJ, Ye, L., Gargett, CE (2010). Re-epithelialization of the uterine surface arises from endometrial glands - evidence from a functional mouse model of breakdown and repair. Endocrinol 151:3386-95 Kato K, Yoshimoto M, Kato K et al (2007) Characterisation of side-population cells in human normal endometrium Hum Reprod 22:1214-23

Masuda H, Maruyama T, Hirtatsu T, et al. (2007) Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gcnull immunodeficient mice. PNAS 104:1925-1930.

Masuda H, Matsuzaki Y, Hiratsu E, Ono M, Nagashima T, Kajitani T, Arase T, et al (2010) Stem Cell-Like Properties of the Endometrial Side Population: Implication in Endometrial Regeneration. PLoS One 5:e10387.

Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW et al. (2007). Endometrial regenerative cells: a novel stem cell population. J Trans Med 5:57.

Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization and differentiation. Cell Transplant 17: 303-311.

Rutella S, Bonanno G, Procoli A et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15: 4299-311

Schwab KE, Chan RWS, Gargett CE (2005) Stem cell activity in human endometrial epithelial and stromal cells during the menstrual cycle. Fertility and Sterility 84:1124-1130

Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Human Reproduction 22: 2903-2911

Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Human Reproduction 23:934-943

Taylor HS. (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81-85

Tsuji S, Yoshimoto M, Takahashi K, et al(2008) Side population cells contribute to the genesis of human endometrium Fertil Steril 90:1528-37