-Omics of Endometrial Receptivity

Prof. Carlos Simón MD; PhD Professor Obs/Gyn, University of Valencia. Scientific Director, Fundación I VI. Scientific Director, Centro de Envestigación Príncipe Felipe

Vniver§itat 🖗 🗈 València

✓ 15% of cycles end in implantation
failure of endometrial origin.

✓ 60%-90% of transferred embryos do not implant or die. "We cannot improve our future outcomes using the same concepts and techniques employed in the past"

Outline

Description of endometrial receptivity
Epigenomics
Genomics in natural and COS cycles.
Proteomics of Endometrial Receptivity
Secretomics of Endometrial Receptivity
Translational markers of endometrial receptivity

Human endometrial receptivity

Dating the endometrial biopsy¹

Randomized studies

- Interobserver and cycle-to-cycle (60%) variations²
- Endometrial dating is not related to fertility status³

Histological dating is not a valid method for the diagnosis of luteal phase deficiency neither guidance throughout clinical management in **infertility** 1. Noyes, et al. Fertil Steril 1950

2. Murray, et al. Fertil Steril 2004

3. Coutifaris, et al. Fertil Steril 2004

Single-molecule approach does not work

Giudice, et al. Trends Endocrinol Metab 1995

Epigenetics " ... the branch of biology wich studies the casual interactions between genes and their products wich bring the phenotype into being"

Conrad Waddington, 1940

Epigenetic landscape

Epigenetics "... the study of changes in gene function that are mitotically and/or meiotically heritable and that do not entail a change in DNA sequence"

Riggs et al, 1996

The same genetic information leads to different phenotypes

Epigenetic mechanisms that control gene expresion

(Epigenetics, David Allis et al, 2004)

- DNA methylation: DNA methylation at promoter associated CpG islands is linked to repression of transcription
- Chromatin modifications: Histone modifications include acetylation, methylation, phosphorilation, ubiquitylation...

Non coding RNA: Small RNAs that are associated with trasncriptional or translational repression

Decidualization:

TSA (histone deacetylase inhibitor) potentiates the decidualization process after E+P treatment (Sakai et al, 2003)

Implantation:

TSA enhances implantation steps by upregulation of glycodelin (Uchida et al, 2007). AZA (methylation inhibitor) increases implantation rates in epithelial cell lines (Rahnama et al, 2009)

Endometriosis:

Steroidogenic factor-1 (SF-1) is hipomethylated as the estrogen receptor (SR2) in endometriosis while the progesterone receptor is hypermethylated (Xue et al, 2007, Wu et al, 2006).

DNMTs expression during the menstrual cycle.

Inhibition of methylation increases endometrial receptivity. Endometrial epithelial cell line AN3-CA treated with AZA increases E-cadh expression.

miRNAs profile in midsecretory epithelium endometrium vs late proliferative

Down-regulated in late proliferative endometrium			Up-regulated in midsecretory endometrium				
miRNA gene	Accession no.ª	Fold change ^b	P value	miRNA gene	Accession no.ª	Fold change ^b	P value
MIR210	MIMAT0000267	7.1	0.0003	MIR214	MIMAT0000271	4	0.02
MIR193A-3P	MIMAT0000459	5.2	0.0002	MIR503	MIMAT0002874	3.6	0.007
MIR345	MIMAT0000772	3.3	0.002	MIR134	MIMAT0000447	3.1	0.03
MIR29B	MIMAT0000100	2.8	0.0007	MIR450	MIMAT0001545	3	0.003
MIR29C	MIMAT0000681	2.6	0.005	MIR382	MIMAT0000737	2.6	0.03
MIR30B	MIMAT0000420	2.6	0.01	MIR376A	MIMAT0003386	2.6	0.04
MIR204	MIMAT0000265	2.6	0.04	MIR369-5P	MIMAT0001621	2.4	0.006
MIR203	MIMAT0000264	2.5	0.000086	MIR222	MIMAT0000279	2.4	0.04
MIR582-5P	MIMAT0003247	2.3	0.01	MIR370	MIMAT0000722	2.3	0.01
MIR30D	MIMAT0000245	2.2	0.005	MIR 542-3P	MIMAT0003389	2.2	0.04
MIR200C	MIMAT0000617	2.1	0.004	MIR105	MIMAT0000102	2.1	0.01
MIR31	MIMAT0000089	2.1	0.02	MIR127	MIMAT0000446	2.1	0.01

Kuokkanen et al, 2010

miRNAs profile changed in day 5 mouse pregnant uterus

Hu et al, 2008

miRNA regulatory functions during endometriosis lesion development

Ohlsson Teague et al, 2010

This unidirectional and rigid point of view has been challenged by the induction of pluripotent stem cells (IPS)

The maintenance of the pluripotent state requires a specific epigenetic status

Genomics

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

CURRENT CONCEPTS

Microarray Analysis and Tumor Classification

John Quackenbush, Ph.D.

NA MICROARRAY ANALYSIS WAS FIRST DESCRIBED IN THE MID-1990S AS a means to probe the expression of thousands of genes simultaneously^{1,2} and was quickly adopted by the research community for the study of a wide range of biologic processes. Most of the early studies had a simple and powerful design: to compare two biologic classes in order to identify the differential expression of the genes in them — genes with potential relevance to a wide range of biologic processes, such as the progression of cancer,³⁻⁶ the causes of asthma,⁷⁻⁹ heart disease,¹⁰⁻¹² and neuropsychiatric disorders,¹³⁻¹⁷ and the analysis of factors associated with infertility.¹⁸⁻²¹

Soon after microarrays were introduced, many researchers realized that the technique could be used to find new subclasses in disease states^{22,23} and identify biologic markers (biomarkers) associated with disease²⁴ and that even the expression

J.A.Horcajadas, A.Pellicer and C.Simón

Table I. Summary of studies performed in human endometrium using microarray analysis

Process studied	Microarray	Company	Number of gene targets	Study	-
Decidualization	Clontech Atlas array	Stanford University	588	Popovici et al. (2000)	
Decidualization	Incyte human GEM-V	Incyte Genomics	6918	Brar et al. (2001)	
Endometrial cancer	Hu6800	Affymetrix	6000	Mutter et al. (2001)	
WOI	HG-U95A	Affymetrix	12 686	Kao et al. (2002)	
WOI	HG-U95A	Affymetrix	12 686	Carson et al. (2002)	
Endometriosis	Human gene genefilter GF211	Research Genetics	4133	Eyster et al. (2002)	
Endometriosis	Atlas human cDNA expression Array	Clontech	597	Lebovic et al. (2002)	
Endometrial cancer	Oncochip	Centro Nacional de Investigaciones Oncológicas	6386	Moreno-Bueno et al. (2003a)	
WOI	Human cytokine expression array	R&D Systems	375	Dominguez et al. (2003)	JC
Decidualization	HU-95A	Affymetrix	12 686	Tiemey et al. (2003)	
Endometriosis	Home-made	University of Tokio	23 040	Arimoto et al. (2003)	
WOI	HG-U95A-E	Affymetrix	>60 000	Borthwick et al. (2003)	
WOI	HG-U95A	Affymetrix	12 686	Riesewijk et al. (2003)	
RU486	Home-made	University of Cambridge	-1000	Catalano et al. (2003)	
Endometriosis	HG-U95A	Affymetrix	12 686	Kao et al. (2003)	
Endometrial cancer	Home-made	National Cancer Institute	9984	Risinger et al. (2003)	
Progesterone effect	Human Chip 1K set 1	Takara Shuzo	1000	Okada et al. (2003)	
Endometriosis	Atlas human 1.2 cDNA expression array	Clontech	1172	Matsuzaki et al. (2004)	
Endometrial cancer	GEMarray clones	Incyte Genomics	18 098	Cao et al. (2004)	
Endometrial cancer	Home-made	University of Cambridge	1056	Saidi et al. (2004)	
Endometrial cancer	U133A	Affymetrix	>22 000	Ferguson et al. (2004)	
Stimulated cycles	HG U95Av2	Affymetrix	12 686	Mirkin et al. (2004)	
Menstrual cycle	Home-made	Peter MacCallum Cancer Institute	10 500	Ponnampalam et al. (2004)	
Endometrial cancer	U133A	Affymetrix	>22 000	Ferguson et al. (2005)	
N OI	HG-U95Av2	Affymetrix	12 686	Mirkin et al. (2005)	
Proliferative phase	BD Atlas nylon cDNA expression array	BD Biosciences Clontech	1200	Yanahiara et al. (2005)	
Stimulated cycles	HG U133A	Affymetrix	>22 000	Horcajadas et al. (2005)	
Stimulated cycles	HG U133A	Affvmetrix	>22 000	Simón et al. (2005)	
Menstrual cycle	HGU133 Plus 2.0	Affymetrix	54 600	Talbi et al. (2005)	
Menstrual cycle	HU-133A	Affymetrix	>22 000	Punyadeera et al. (2005)	
RU486	Home-made	University of Cambridge	>15 000	Sharkey et al. (2005)	
Endometriosis	Atlas human 1.2 cDNA expression array	Clontech	1172	Matsuzaki et al. (2005)	
IUD	Home-made	University of Cambridge	>16 000	Horcajadas et al. (2006)	

Consensus genes: >3.0-fold change

Accession number (Function)	Gene name	Riesewijk	Kao	Carson	Borthwick			
UP-REGULATED GENES PRESENT IN THE FOUR WORKS								
AF052124 (Structural protein)	Osteopontin	\checkmark	\checkmark	\checkmark	\checkmark			
J02611 (Transporter)	Apolipoprotein D	\checkmark	\checkmark	\checkmark	\checkmark			
AB020315 (Signalling)	Dickkopf/DKK1 (hdkk-1)	\checkmark	\checkmark	\checkmark	\checkmark			
UP-REGULATED GENES PRESENT IN THREE OUT OF FOUR WORKS								
J04129 (Secretory protein)	Placental protein-14/Glycodelin	\checkmark	\checkmark		\checkmark			
M31516 (Immunomodulator)	Decay-accelerating factor for complement (CD55, Cromer blood group system)	\checkmark	\checkmark		\checkmark			
M84526 (Complement protein)	Adipsin/complement factor D	\checkmark	\checkmark		\checkmark			
M55543 (GTP-binding protein)	Guanylate-binding protein 2, interferon-inducible	\checkmark		\checkmark	\checkmark			
AB000712 (Receptor)	Claudin 4/CEP-R	\checkmark	\checkmark	\checkmark				
AA420624 (Signalling)	Monoamine oxidase A (MAOA)	\checkmark	\checkmark		\checkmark			
M60974 (Regulatory protein)	Growth arrest and DNA- damage-inducible protein (gadd45)	\checkmark	\checkmark		\checkmark			
AB002365 (Cell death factor)	Nip2	\checkmark		\checkmark	\checkmark			
TOTAL GENES ANALYSED		153	60	120	85			
DOWN-REGULATED GENES PRESENT IN THE FOUR WORKS								
U79299 (Secretory protein)	Olfactomedin-related ER localized protein	\checkmark	\checkmark	\checkmark	\checkmark			
TOTAL GENES ANALYSED		58	87	153	40			

Horcajadas/ Simón, J Reprod I mmunol 2004

J.A.Horcajadas, A.Pellicer and C.Simón

Table I. Summary of studies performed in human endometrium using microarray analysis

Process studied	Microarray	Company	Number of gene targets	Study
Decidualization	Clontech Atlas array	Stanford University	588	Popovici et al. (2000)
Decidualization	Incyte human GEM-V	Incyte Genomics	6918	Brar et al. (2001)
Endometrial cancer	Hu6800	Affymetrix	6000	Mutter et al. (2001)
WOI	HG-U95A	Affymetrix	12 686	Kao et al. (2002)
WOI	HG-U95A	Affymetrix	12 686	Carson et al. (2002)
Endometriosis	Human gene genefilter GF211	Research Genetics	4133	Eyster et al. (2002)
Endometriosis	Atlas human cDNA expression Array	Clontech	597	Lebovic et al. (2002)
Endometrial cancer	Oncochip	Centro Nacional de Investigaciones Oncológicas	6386	Moreno-Bueno et al. (2003a)
WOI	Human cytokine expression array	R&D Systems	375	Dominguez et al. (2003)
Decidualization	HU-95A	Affymetrix	12 686	Tierney et al. (2003)
Endometriosis	Home-made	University of Tokio	23 040	Arimoto et al. (2003)
WOI	HG-U95A-E	Affymetrix	>60 000	Borthwick et al. (2003)
WOI	HG-U95A	Affymetrix	12 686	Riesewijk et al. (2003)
RU486	Home-made	University of Cambridge	-1000	Catalano et al. (2003)
Endometriosis	HG-U95A	Affymetrix	12 686	Kao et al. (2003)
Endometrial cancer	Home-made	National Cancer Institute	9984	Risinger et al. (2003)
Progesterone effect	Human Chip 1K set 1	Takara Shuzo	1000	Okada et al. (2003)
Endometriosis	Atlas human 1.2 cDNA expression array	Clontech	1172	Matsuzaki et al. (2004)
Endometrial cancer	GEMarray clones	Incyte Genomics	18 098	Cao et al. (2004)
Endometrial cancer	Home-made	University of Cambridge	1056	Saidi et al. (2004)
Endometrial cancer	U133A	Affymetrix	>22 000	Ferguson et al. (2004)
Stimulated cycles	HG U95Av2	Affymetrix	12 686	Mirkin et al. (2004)
Menstrual cycle	Home-made	Peter MacCallum Cancer Institute	10 500	Ponnampalam et al. (2004)
Endometrial cancer	U133A	Affvmetrix	>22 000	Ferguson et al. (2005)
WOI	HG-U95Av2	Affymetrix	12 686	Mirkin et al. (2005)
Proliferative phase	BD Atlas nylon cDNA expression array	BD Biosciences Clontech	1200	Yanahiara et al. (2005)
Stimulated cycles	HG U133A	Affymetrix	>22 000	Horcajadas et al. (2005)
Stimulated cycles	HG U133A	Affvmetrix	>22 000	Simón et al. (2005)
Menstrual cycle	HGU133 Plus 2.0	Affymetrix	54 600	Talbi et al. (2005)
Menstrual cycle	HU-133A	Affymetrix	>22 000	Punyadeera et al. (2005)
RU486	Home-made	University of Cambridge	>15 000	Sharkey et al. (2005)
Endometriosis	Atlas human 1.2 cDNA expression array	Clontech	1172	Matsuzaki et al. (2005)
IUD	Home-made	University of Cambridge	>16 000	Horcajadas et al. (2006)

PATHWAYS STATISTICALLY OVER-EXPRESSED IN THE SHIFT FROM PRE- TO RECEPTIVE ENDOMETRIUM

<u>Category</u>	F Term	RT	Genes	<u>Count</u>	¢ <u>%</u>	♦ <u>P-Value</u> ♦
KEGG_PATHWAY	COMPLEMENT AND COAGULATION CASCADES	<u>RT</u>		10	2.1%	2,1E-3
KEGG_PATHWAY	FOCAL ADHESION	<u>RT</u>	=	19	4.0%	3,8E-3
KEGG_PATHWAY	ANTIGEN PROCESSING AND PRESENTATION	<u>RT</u>	•	10	2.1%	5,3E-3
KEGG_PATHWAY	ADHERENS JUNCTION	<u>RT</u>	a	10	2.1%	5,7E-3
KEGG_PATHWAY	GAP JUNCTION	<u>RT</u>		11	2.3%	6,8E-3
KEGG_PATHWAY	HISTIDINE METABOLISM	<u>RT</u>	2 - C	7	1.5%	2,0E-2
KEGG_PATHWAY	NATURAL KILLER CELL MEDIATED	<u>RT</u>	•	12	2.5%	2,1E-2
KEGG_PATHWAY	TGF-BETA SIGNALING PATHWAY	<u>RT</u>	a	9	1.9%	2,6E-2
KEGG_PATHWAY	ARGININE AND PROLINE METABOLISM	<u>RT</u>	i	7	1.5%	3,1E-2
KEGG_PATHWAY	CYTOKINE-CYTOKINE RECEPTOR INTERACTION	<u>RT</u>	=	17	3.5%	6,7E-2
KEGG_PATHWAY	CELL ADHESION MOLECULES (CAMS)	<u>RT</u>		10	2.1%	9,3E-2

TGF-BETA PATHWAY: MOLECULES OVER-EXPRESSED

INTHE RECEPTIVE HUMAN ENDOMETRIUM

Natural/LH vs IVF across the WOI

MOST DIFFERENTIATED FUNCTIONALITIES IN RECEPTIVE ENDOMETRIUM IN NATURAL versus STIMULATED CYCLES

NATURAL CYCLE	STIMULATED CYCLE				
GO biological process	GO biological process				
GO terms over-expressed: 1. antigen processing, endogenous antigen via MHC class I 2. antigen presentation, endogenous antigen 3. complement activation, classical pathway 4. response to drug 5. regulation of DNA metabolism 6. mitosis 7. DNA replication 8. small GTPase mediated signal transduction 9. cell division 10. negative regulation of progression through cell cycle 11. skeletal development 12. DNA repair 13. amino acid metabolism 14. cytoskeleton	GO terms over-expressed: 1. mitotic checkpoint 2. antigen processing, endogenous antigen via MHC class I 3. spindle organization and biogenesis 4. antigen presentation, endogenous antigen 5. mitotic sister chromatid segregation 6. regulation of DNA metabolism 7. microtubule-based movement 8. cell division 9. phosphoinositide-mediated signaling 10. DNA-dependent DNA replication 11. regulation of development 12. nucleotide metabolism 13. DNA repair 14. cell proliferation 15. regulation of signal transduction 16. carboxylic acid metabolism 17. positive regulation of cellular process 18. negative regulation of cellular physiological process				

JCEM

THE JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM

EQUIPO

Volume 93 • Number 11 • November 2008 • jcem endojournais.org

Proteomic of Endometrial receptivity

Proteomic of Endometrial receptivity

Human Reproduction, Vol.24, No.10 pp. 2607-2617, 2009

270 Advanced Access publication on June 25, 2009 doi:10.1093/humrep/dep230

human reproduction

ORIGINAL ARTICLE Reproductive endocrinology

proteome • research

Subscriber access provided by UNIV DE VALENCIA

281

Article

REG

Proteomic Characterization of Midproliferative and Midsecretory Human Endometrium

Jenny I-C. Chen, Natalie J. Hannan, Yunxian Mak, Peter K. Nicholls, Jin Zhang, Adam Rainczuk, Peter G. Stanton, David M. Robertson, Lois A. Salamonsen, and Andrew N. Stephens *J. Proteome Res.*, Article ASAP • DOI: 10.1021/pr801024g • Publication Date (Web): 17 February 2009

Downloaded from http://pubs.acs.org on March 25, 2009

Conclusions

We identified 32 proteins with different expression between pre-receptive endometrium and refractory.

These proteins appear to be disregulated in refractory endometrium induced by the IUD insertion.

The application of proteomics technology can potentially be used for:

- Search for new biomarkers to determine the endometrial receptivity.
- Identify key molecules to improve implantation in infertile patients.
- Investigate interceptive molecules to prevent implantation of the embryo.

Secretomics of endometrial receptivity Non-invasive diagnosis

Aspiration of endometrial secretion does not affect pregnancy rates Van der Gaast et al. RBmOnline 2002

Glycodelin levels correlate with menstrual cycle phase on endometrial aspirations

Van der Gaast MH, et al. BJOG 2009

The profile of cytokines can be determined in endometrial secretions

Simón C, et al. J Reprod Immunol 1996 Boomsma CM et al. RBmOnline 2009

Proteomics

Comprehensive Proteomic Analysis of Human Endometrial Fluid Aspirate

Juan Casado-Vela,^{†,#} Eva Rodriguez-Suarez,^{†,#} Ibon Iloro,^{†,#} Amagoia Ametzazurra,[‡] Nere Alkorta,[†] Juan Antonio García-Velasco,[§] Roberto Matorras,^{11,1} Begoña Prieto,^{11,1} Sandra González,¹ Daniel Nagore,[‡] Laureano Simón,[‡] and Felix Elortza^{*,†}

Lipidomics

http://www.etegritytest.com.

Sample Collection

Endometrial quality is identified during the window of implantation. It is crucial that the patient have a carefully timed endometrial biopsy. The specimen must be collected on cycle days 20-24 (7-11 days post LH surge).

Patterns of Integrin Expression

There are three typical patterns:

1. Beta-3 integrin POSITIVE with an "in-phase" endometrium from cycle days 20–24 (7–11 days post LH surge) is a normal pattern of expression.

2. Beta-3 integrin NEGATIVE with an "out-of-phase" endometrium occurs in a patient with Luteal Phase Defect; following treatment the patient is advised to undergo a repeat biopsy to confirm diagnosis.¹

3. Beta-3 integrin NEGATIVE in a patient with a normal "in phase" endometrium is associated with unexplained infertility,¹ minimal or mild endometriosis,² or hydrosalpinx. ³

The E-tegrity test:

- Identifies endometrial quality
- Determines Beta-3 integrin presence
- Provides a histologic evaluation of the endometrium

Endometrial Cycle

Positive

Negative

Endometrial Function Test® (EFT®) endometrialfunctiontest.com

The Endometrial Function Test[®] (EFT[®])

Figure 3. Panel of markers of endometrial development. Researchers have discovered many products that are made by the endometrium. The most important of these products are only made at particular times of the menstrual cycle. For example, progesterone receptor (PR), mouse ascites Golgi mucin (MAG) and cyclin E are normally only made during the proliferative and early secretory phases (cycle days 5 to ~19), while leukemia inhibitory factor (LIF), $\alpha \nu \beta 3$ integrin ($\beta 3$), HOXA-10 (HOX) and p27 are normally only expressed in the secretory phase (cycle days ~17 to ~28). Modified from Langman's Medical Embryology.

Endometrial Receptivity Array (ERA)

A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature

Patricia Díaz-Gimeno,^{a,b} José A. Horcajadas, Ph.D.,^c José A. Martínez-Conejero, Ph.D.,^c Francisco J. Esteban, Ph.D.,^d Pilar Alamá, M.D.,^{a,b} Antonio Pellicer, M.D.,^{a,b} and Carlos Simón, M.D.^{a,b,c}

^a Fundación IVI-Instituto Universitario IVI, University of Valencia, Valencia; ^b Instituto de Investigación, Sanitaria del Hospital Clinico de Valencia, Valencia University, Valencia; ^c iGenomix, Valencia; ^d Department of Experimental Biology, University of Jaén, Jaén; and ^e Centro de Investigación Principe Felipe, Valencia, Spain

Objective: To create a genomic tool composed of a customized microarray and a bioinformatic predictor for endometrial dating and to detect pathologies of an endometrial origin. To define the transcriptomic signature of human endometrial receptivity.

Design: Two cohorts of endometrial samples along the menstrual cycle were used: one to select the genes to be included in the customized microarray (endometrial receptivity array [ERA]), the other to be analyzed by ERA to train the predictor for endometrial dating and to define the transcriptomic signature. A third cohort including pathological endometrial samples was used to train the predictor for pathological classification.

Setting: Healthy oocyte donors and patients.

Patient(s): Healthy fertile women (88) and women with implantation failure (5) or hydrosalpinx (2). Intervention(s): Human endometrial biopsies.

Main Outcome Measure(s): The gene expression of endometrial biopsies.

Result(s): The ERA included 238 selected genes. The transcriptomic signature was defined by 134 genes. The predictor showed a specificity of 0.8857 and sensitivity of 0.99758 for endometrial dating, and a specificity of 0.1571 and a sensitivity of 0.995 for the pathological classification.

Conclusion(s): This diagnostic tool can be used clinically in reproductive medicine and gynecology. The transcriptomic signature is a potential endometrial receptivity biomarkers cluster. (Fertil Steril* 2010; ■: ■-■. ©2010 by American Society for Reproductive Medicine.)

Key Words: Endometrial receptivity, endometrial dating, microarray, transcriptomic signature, predictor, diagnostic tool

Endometrial Receptivity Array (ERA)

Agilent e-array: https://earray.chem.agilent.com/earray/

- -238 Genes
- -Probe selection: "Cross-linking"
- -569 probes
- -8 copies per probe
- -Controls

Customized microarray

Bioinformatic analysis of data obtained by the customized microarray

Classification and prediction from gene expression.

Predictors: Characterization of transcriptome phenotype of normality

Diagnosis Report

Valencia, 27th May, 2010.

Diagnostic Report of Endometrial Receptivity based on Gene Expression

Report N#: Patient Name: Doctor Name:

Clinical History N#:

Dear Dr.

The endometrial biopsy sample you have sent meets all the minimum quality standards for ERA processing and evaluation. Below, you will find the results and interpretation of endometrial receptivity based on the expression of 238 genes.

Diagnosis Results:

 a) ERA analysis has determined that the endometrium has an genetic receptivity profile of: Implantation Failure (IF)
b) Diagnosis Probability: 0.78

Interpretation of Results:

Receptive (RE): The endometrium's genetic receptivity profile is compatible to a normal receptive endometrium. The diagnostic probability can be found in Part B of the results. This implies a high possibility of avoiding embrionary implantation failure due to endometrial causes. This diagnosis does not take into account failures attributed to other causes such as embryo quality or previous pathologies.

Unreceptive (UR): The endometirum's genetic receptivity profile is compatible to an endometrium out of the receptive phase. The diagnostic probability can be found in Part B of the results. It could be a normal profile compatible to others phases of the cycle or a distinct profile than those defined in this diagnostic method. There exists a higher possibility for embrinoary implantation failure.

Implantation Failure (IF): The endometirum's genetic receptivity profile demonstrates implantation failure. The diagnostic probability can be found in Part B of the report. It indicates a high possibility of embrionary implantation failure.

Sincerely,

Dr. Jose A. Horcajadas Scientific Director iGenomix SL

🖹 Endometrial Data Base - Home - Microsoft Internet Explorer Archivo Edición Ver Favoritos Herramientas Ayuda search.. Subscription Links Contact Us Home News Endometrial Data Base Home Monday, 22 September 2008 Popular 🕕 <u>Main Menu</u> Search > J Clin Endocrinol Metab 91:2366-2372 > Mol Hum Reprod 9:253-264 Home Gene Name.. Reproduction 130:721-729 > Molecular Human Reproduction 11:195-205 News > Mol Reprod Dev 70:455-463 > Human Reprod 20:2104-2117 > J Mol Diagn 7: 8-16 > J Clin Endocrinol Metabolism 88:1849-1857 Contact Us > Clin Cancer Res 12:1402-1411 > Cell Mol Life Sci 62:239-250 Links Search WELCOME TO ENDOMETRIAL DATA BASE! Webmail Written by EDB's management 🕕 <u>Data Base</u> VNIVER§ITATÖ®VALÈNCIA **VNIVERSITAT** Natural Cycles **DVALÈNCIA** Stimulated Cycle Contraception Endometriosis INSTITUT EDB is a service of Fundacion IVI, sponsored by University of Valencia (SPAIN), that includes over thousands of data from hundreds of UNIVERSITARI **Endometrial Cancer** publications. **VNIVERVITATÖDVALENCIA** In vitro models It contains links to MEDLINE and other life science journals for biomedical articles back to the 1950s. Animal models PubMed also includes links to full text articles and other related resources. Others Who's Online Syndicate COMING EVENTS Written by EDB's management SS 1.0 ASRM 2008 Annual Meeting **IVI GENÓMICA** OPML SHARE ど (Quedan 1 elemento) Descargando imagen http://www.endometrialdatabase.com/edb/images/M_images/opml.png... 🕝 Internet

Conclusions

Endometrial histology as a diagnostic tool is not useful. Single molecule approach is limited.

- The wide-genomic approach is increasing our knowledge on the genes governing endometrial receptivity being used as a new diagnostic technique.
- Secretomics of endometrial fluid is a potential non disruptive diagnostic tool for human endometrial receptivity.

Possible Clinical Improvements

1. Key points of established knowledge

Genomics of endometrial receptivity

2. Unresolved areas

Epigenomic

Secretomic

3. Further Research questions

Non-invasive diagnosis of human endometrial receptivity

C. Simón

A. Pellicer

