Erasmus MC

Trafung

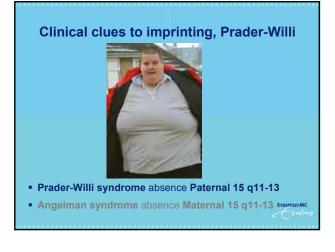
EPIGENETICS AND GENOMIC IMPRINTING

Hikke van Doorninck, PhD Dpts Obstetrics & Gynaecology and Clinical Genetics Erasmus Medical Centre, Rotterdam, The Netherlands j.vandoorninck@erasmusmc.nl

Clinical clues to imprinting

 Crossing different species horse X donkeys →mule or hinny

 \bigcirc lion x \bigcirc tiger = <u>Liger</u>

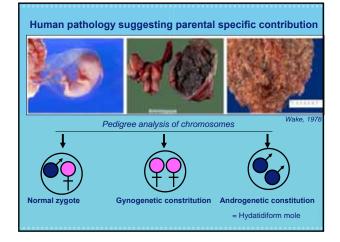


(♂ tiger x ♀lion = Tion)

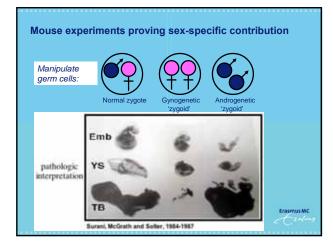
Clinical clues to imprinting

- Crossing different species
- Uniparental disomy/Deletions/Triploidy:
- Prader-Willi syndrome absence Paternal 15 q11-13
- Angelman syndrome absence Maternal 15 q11-13

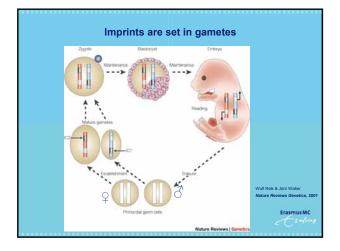
Erasmus MC

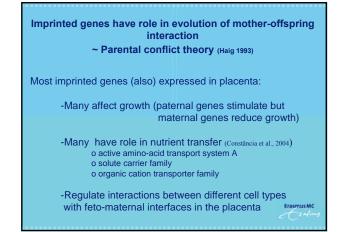


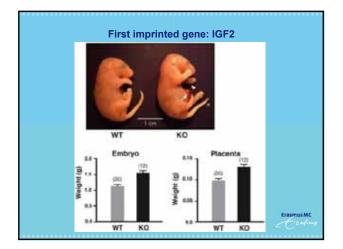
Clinical clues to imprinting, Angelman

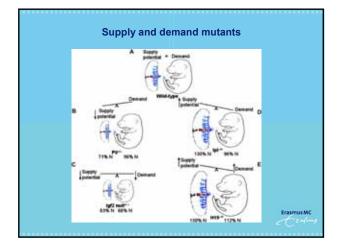


- Prader-Willi syndrome absence Paternal 15 q11-13
- Angelman syndrome absence Maternal 15 q11-13 Erasmus MC

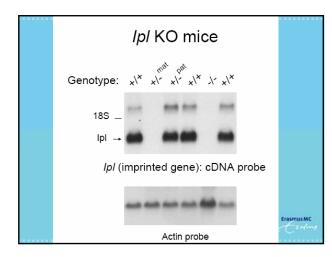


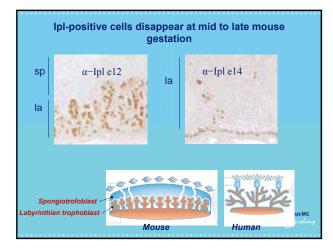

Conclusion

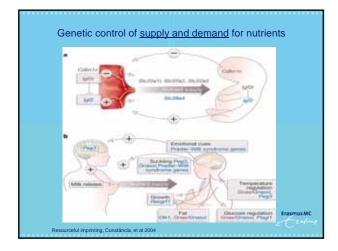

Imprinting is


Epigenetic marking in a sex-specific manner resulting in monoallelic expression of imprinted genes:

- Embryonic growth
- Placental function
- Behavioral processes
 - ~ Paternal genes important in placentation
 - ~ Maternal genes important in embryogenesis







More then 100 imprinted genes known (www.geneimprint.com/site/genes-by-species)

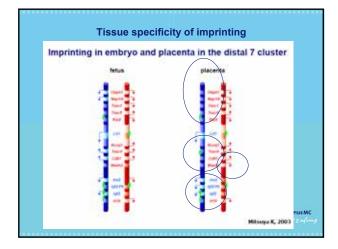
Imprinted genes that affect growth

Gene	Loss of function in mice	
Ipl	↑ placental growth	
Mash2	placental differentiation - lethal	
Igf2r	↑ fetal & placental growth - lethal	
Grb10	↑ fetal growth	
Gnas/GnasXI	↑ ↓ growth & post-natal behaviour; energy metabolism	
Cdkn1c	↑ placental growth; proliferation defects - lethal	
Igf2		
Peg1	fetal growth; nurturing	
Peg3	↓ fetal growth; nurturing	
Rasgrf1	postnatal growth; long term memory	

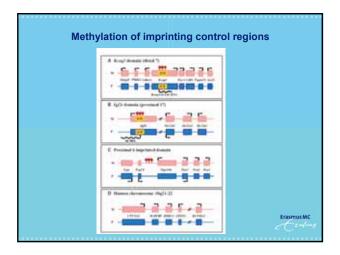
Human placenta imprinting

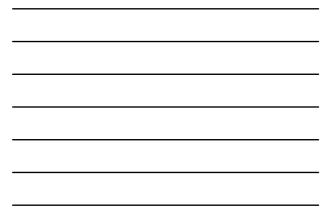
-Human and mice both similar genes imprinted but some exceptions:

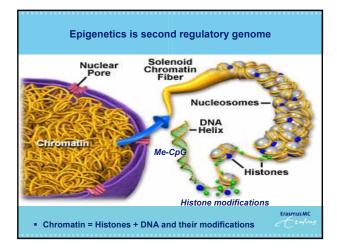
Limited evolutionary conservation of imprinting in the human placenta. Monk et al., 2006

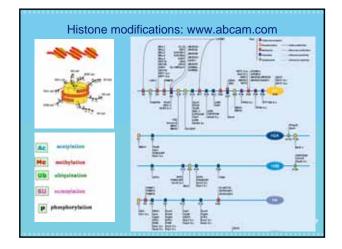

- Intra uterine growth retardation humans: Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. McMinn et al., 2006

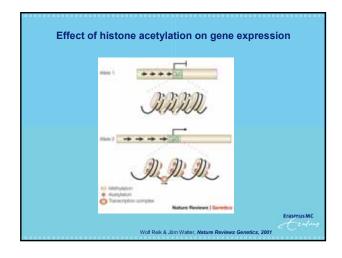
RNA expression microarray on human IUGR:

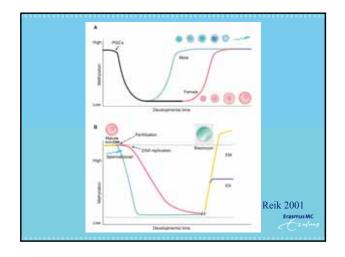

Increased PHLDA2

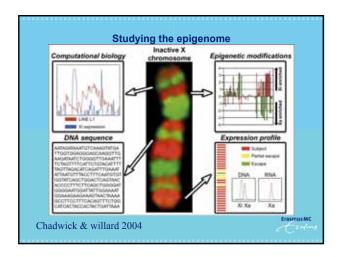

Decreased MEST, MEG3, GATM, GNAS and PLAGL1


Erasmus MC









DNA Methylation	Epigenetics	Imprinting
Methyl group on CpG	Methyl group on CpG AND/OR	Methyl group on CpG
Repressive mark	Histon modifications, histon code	+ Secondary histone modifications
Less in placenta then in embryonic tissues	Heritable, reversible + metastable (diet and environment)	Gamete specific, influenced by endocrine disruptors and methyl supplements
	Bi-allelic	Mono-allelic
	Adaptation~ Barker hypothesis	Haigs conflict theory
	Developmental plasticity	Developmental plasticity

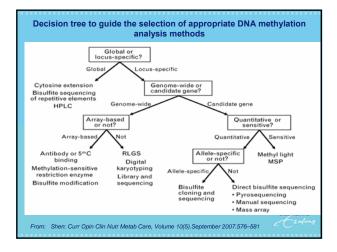
Epigenome study techniques

RNA Expression:

•RNA micro arrays •Candidate gene Q-RT-PCR •Illumina Golden Gate assay

DNA methylation:

- Bisulphite pyro-sequencing Genome wide Luminometric methylation assay (LUMA) Differential methylation hybridization (DMH) DNA adenine methyltransferase-Identification (Dam-ID)


(see epigenomics company site)

(Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: An emphasis on fetal-based adult diseases. Ho and Tanga, 2007)

Erasmus MC

Histone modifications:

Chromatin immune precipitation with PCR or with microarray= ChIP on chip

Study histone modifications

- ChIP-Seq combines chromatin immunoprecipitation with massively parallel sequencing for genome wide identification of binding sites of DNA associated factors and characterization of epigenetic modifications.
- Chip
- Special adapters solexa system
- Amplification
- Sequencing of 10⁸ bases
- Software analysis of gigabase

Future:

- Identification of novel placental-specific imprinted genes and epigenetically regyualetd genes

- Study of expression patterns of imprinted genes in extra-embryonic tissues; functional analysis

- Role of epigenetic "mutations" in placental dysfunction

- Causes for epimutations

Erasmus MC

Erasmus MC