Ovarian tissue freezing: slow freezing versus vitrification

Claus Yding Andersen, Professor, MSc, DMSc Laboratory of Reproductive Biology University Hospital Copenhagen, University of Copenhagen Copenhagen, Denmark

E-mail: yding@rh.dk

"Cryobiology and cryopreservation of human gametes and embryos" ESHRE Campus workshop, Athens, Greece, September 25 - 26th 2009

Rationale and perspectives of cryopreserving and transplanting ovarian tissue

- Fertility can be maintained after curing disease where treatment may harm ovarian function
- And will lead to menstrual cycles and an endogenous hormone production in contrast to other fertility preserving methods

Chemotherapy and gonadotoxicity

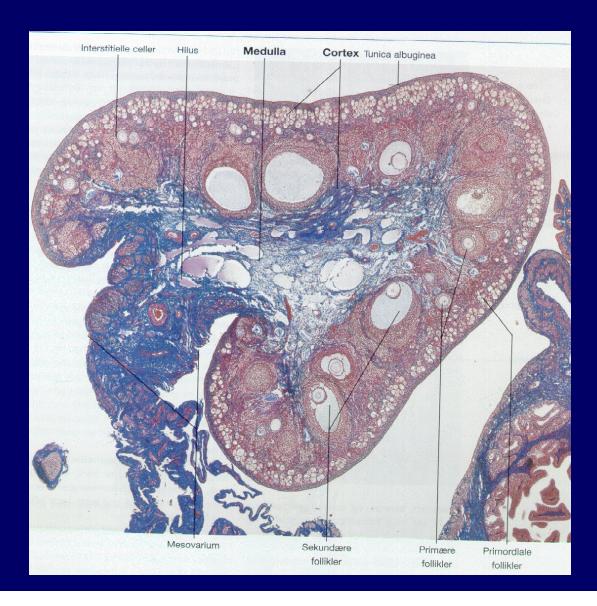
Risk of inducing detrimental effects on the gonad

- The specific chemotherapeutic drug used
- Dose of chemotherapy
- Duration of chemotherapy
- Age of woman

Candidate diseases for ovarian cryopreservation

Cancer patients

Breast cancer Cervical cancer Hodgkin's lymphoma Non-Hodgkin's lymphoma Osteosarcoma **Ewing's sarcoma** Wilm's tumor **Bone marrow transplant patients** Leukemia (?) Aplastic anemia Sickle cell anemia

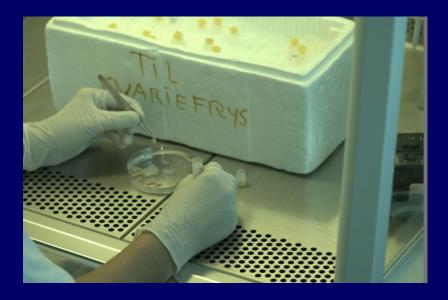

Adjunctive oophorectomy

Endometriosis

Autoimmune diseases Collagen vacular diseases (SLE) Acute Glomerulonephritis Behcet's disease

Ovarian diseases BRCA-1 and -2 mutations Turner's Syndrome

Only the ovarian cortex is cryopreserved



Preparation of human ovarian tissue for cryopreservation

CRYOPRESERVATION PROTOCOL

(KLT. Schmidt et al., Hum Reprod. 2003)

Cryoprotectant: 1.5 mol/l Ethyleneglycol 0.1 mol/l Sucrose 10 mg/ml HSA

Temperature profile:

•

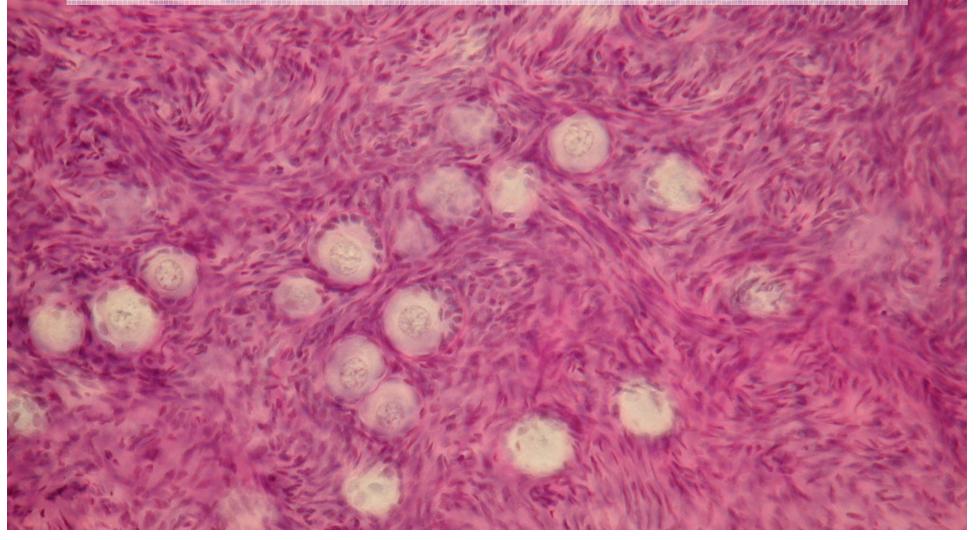
•

- 1. Equilibration rotation (1-2 °C in 30 min)
- 2. $-2 \, {}^{\circ}C/min indtil 9 \, {}^{\circ}C.$
- 3. Manuel seeding
- 4. $-0,3 \,^{\circ}C/min until 40 \,^{\circ}C$
- 5. -10 °C/min until 140 °C
- 6. Liquid nitrogen (– 196 °C)

Percentage of morphological healthy follicles before and after cryopreservation 6 ovaries in each group

Cryopreservation media:

- I : Leibowitz medium, 10 % FCS & 1.5 M DMSO
- II : Leibowitz medium, 10 % FCS & 1.5 M Ethyleneglycol


III : PBS, 0.1 M sucrose & 1.5 M DMSO

IV: PBS, 0.1 M sucrose & 1.5 M Ethyleneglycol

	I	Ш	III	IV
BEFORE	97 ± 0.5	97 ± 0.7	97 ± 0.8	97 ± 1.3
AFTER	32 ± 11	31 ± 11	47 ± 11	63 ± 8

Freeze-thawed mouse ovary implanted under the kidney capsule of an ovariectomized mouse for 2 weeks

Primordial follicles in the ovarian cortex from a 12 year old girl

Human ovarian tissue transplanted under the skin of immunodeficient ovarieectomised mice for 4 weeks

Transplanting ovarian cortical tissue to ovariectomised immunodeficient nude mice for four weeks

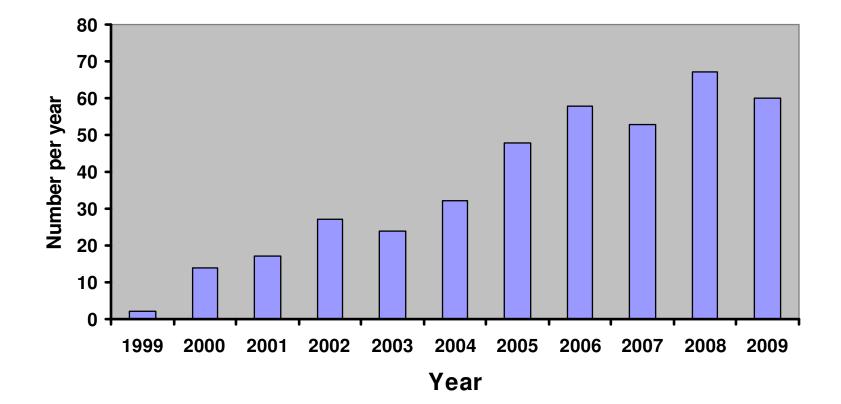
Tissue from 42 women (49 transplantations) showed surviving follicles and resulted in no apparent disease development in all cases

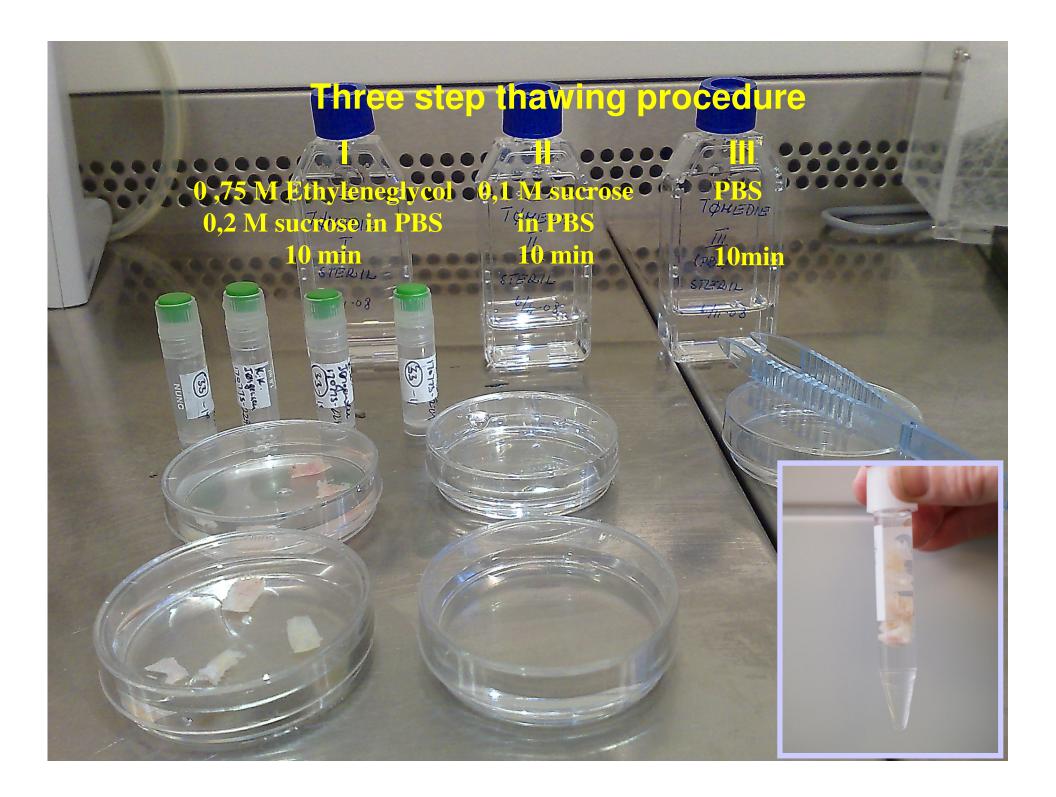
Frozen thawed human ovarian cortex implanted under the skin of ovariectomized SCID mice for 4 weeks

Transport of ovarian tissue – 6 year old girl 20 hours on ice prior to cryopreservation

Human ovarian tissue transplanted under the skin of ovariectomised SCID mice for 4 weeks

Equilibration in cryoprotectant for 30 min at 0 °C on a shaking table

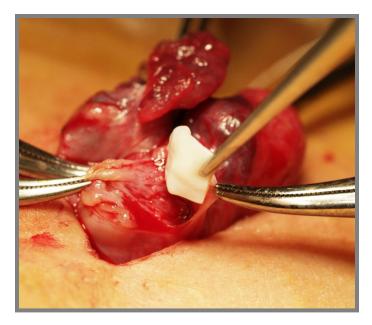

OVARIEFRYS Ryster

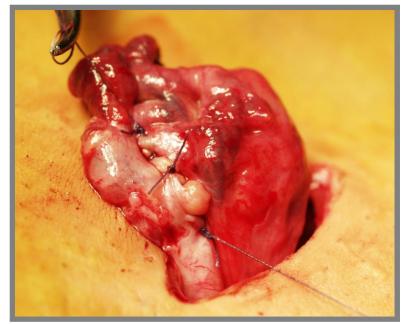

Lessions learned: temperature at equilibration

CHeidolph UNIMAX 2010

Number of patients with cryopreserved ovarian tissue at University Hospital of Copenhagen

(Sep 2009: 385 patients)

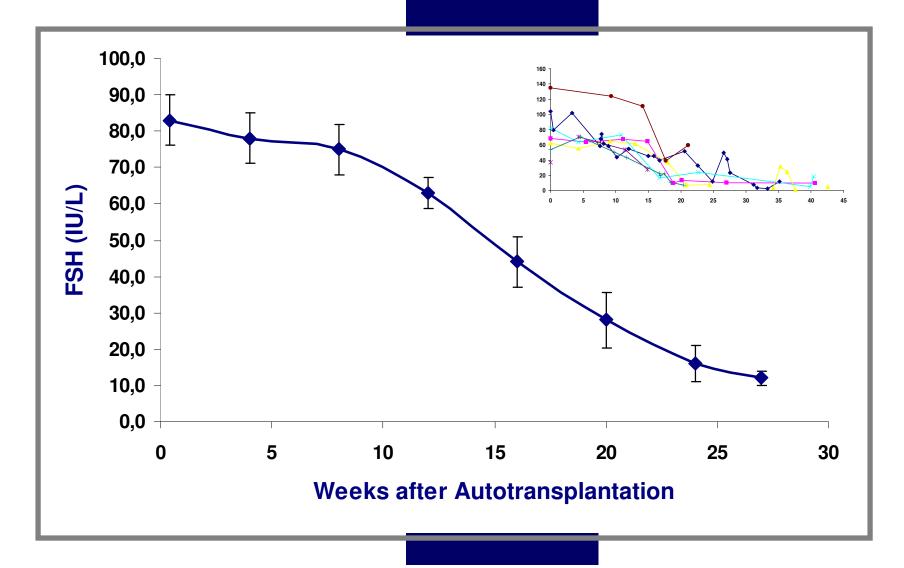




Orthotopic transplantation of ovarian tissue

Transplantation of frozen/thawed ovarian tissue: successful pregnancies

- ✤ Belgium 2004 ♀
- ♦ Israel 2005 –
- ♦ Denmark 2007 ♀
- ♦ Belgium 2007 ♀
- ♦ Denmark 2008 –
- ♦ Denmark 2008 ♀


All healthy babies

Transplantation of frozen/thawed ovarian cortex with cryopreservation immediately after recovery

Patient	Diagnosis	Age (years)	Proportion of tissue transplanted (%)	Lifespan (months)	No. remaining cryopreserved cortex
1	Non-Hodgkin's Lymphoma	32	A: 20 B: 35	A: 45 B: 21 →	15
2	Hodgkin's Lymphoma	28	A: 40 B: 30	A: 54 B: 6 →	7
3	Hodgkin's Lymphoma	25	A: 60 B: 40	A: 26 B: 37 →	0
4	Paroxymal Nocturnal haemogloburi	19	33	17 →	24
5	Aplastic anaemia	25	40	12 →	10

Mean and individual FSH concentrations following ovarian autotransplantation in 12 women

Overall results of assisted reproduction after transplantation of frozen/thawed ovarian tissue (September 2009)

Total

No. cycles

Follicles asp.

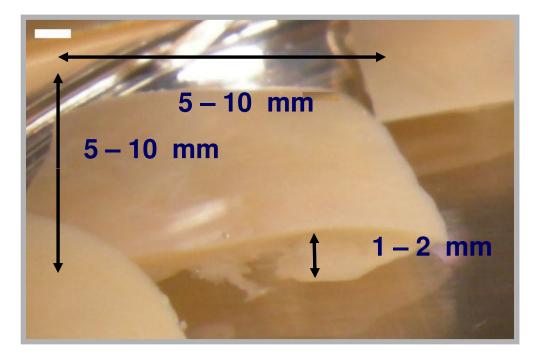
No. oocytes

No. Fertilized

No. transferred

Pos. hCG

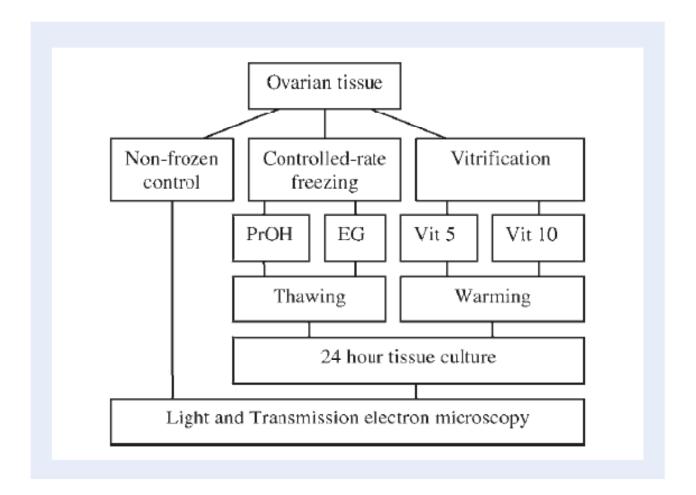
Children born


Vitrification of human ovarian cortical tissue

General considerations:

- The type and mixture of the cryoprotectants
- The size of pieces of tissue to be cryopreserved
- The speed of cooling (direct emission in liquid N₂)
- The need of clinical verification time period

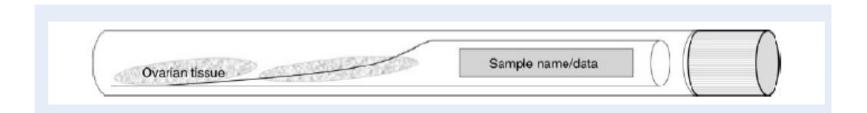
Diffusion distances of cryoprotectants in ovarian tissue Very different from conditions in oocytes and embryos


Slow freezing versus vitrification

Slow freezing and vitrification of human ovarian cortical tissue

General considerations:

- The texture of human cortical tissue is very different to most animal tissue
- which may affect the penetration rate of the cryoprotectants and optimal conditions
- and models developed by the use of animal tissue may not be used clinically in connection with human tissue and vice versa


Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue Experimental set-up

Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue

Step	DMSO (mol/l)	PrOH (mol/l)	Ethyleneglycol (mol/l)	PVP	Temp (^o C)
1	0.35	0.35	0.35	-	Room
2	0,7	0,75	0,75	-	Room
3	1,4	1,5	1,5	10 %	+ 4

Duration of each step was either 5 or 10 min

Controlled-rate freezing in cryopreservation of human ovarian tissue

PrOH-protocol
1,5 mol/l propanediol, 0,1 mol/l sucrose, 25 mg/ml
HSA in PBS

Equilibration at room temperature

Ethyleneglycol-protocol
1,5 mol/l ethyleneglycol, 0,1 mol/l sucrose, 10 mg/ml
HSA in PBS

Equilibration at +4 °C

Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue

Results:

- Based on tissue from 20 women and using morphological characteristics evaluated by light and electron microscopy
- The study concluded that vitrification was comparable to slow freezing in terms of preserving follicles in human ovarian tissue
- However, it appears that the ovarian stroma retained a better morphological integrity after vitrification

Clinical implication – Vitrification is not yet applied in a clinical setting

Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation

Step	DMSO (M)	PrOH (M)	Ethylene- glycol (M)	Acet- amide (M)	Temp (⁰ C)	Time (min.)
1	13	2,5 % of fi	nal concentra	ition	Room	5
2			25 %		Room	5
3			50 %		+ 4	15
4	2,62	1,31	0,0075	2,60	+ 4	15

The cortical tissue is plunged directly into liquid nitrogen

Isachenko V et al., Reproduction, 2009;138:319

Controlled-rate freezing in cryopreservation of human ovarian tissue

DMSO-protocol 1,5 mol/l, 0,1 mol/l sucrose, 10 % SSS in Leibovitz medium

Equilibration ice cold

Isachenko V et al., Reproduction, 2009;138:319

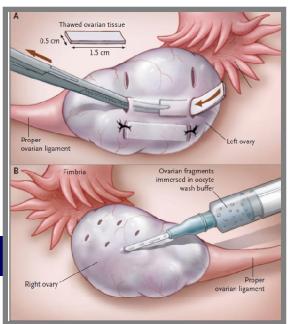
Human ovarian tissue vitrification versus conventionalfreezing: morphological, endocrinological, and molecular biological evaluation

During a 16 day long culture period there were no difference in oestradiol and progesterone secretion

Morphology:

**

PCR detection of GAPDH mRNA showed a significant reduced expression in the vitrified cortical tissue


Isachenko V et al., Reproduction, 2009;138:319

A number of other studies also suggest that there is not too big a difference between vitrification and slow-freezing

- The primordial follicle is pretty resistant to freezing (as is the mature oocyte and testicular tissue)
- The oocyte and the granulosa cells are metabolically relative inactive at the early resting stage
- Easy penetrable cryoprotectants is required at conditions which minimize toxicity (low temperature)

The size of the frozen/thawed cortical pieces used for transplantation

- Most vitrification studies use pieces of cortical tissue considerably smaller than those employed clinically
- Keros V et al. 2009 used pieces of: 1 x 1-2 x 5-8 mm
- Isachenko V et al. 2009 used pieces of 0,3 – 1 x 1-1,5 x 0,7 – 1 mm
- Small pieces of cortical tissue facilitate quick penetration of cryoprotectant and build on experience from oocytes and embryos, but

Vitrification of ovarian tissue: factors that needs clarification before implimentation in a clinical setting

The importance of the size of the cortical fragments for subsequent functioning of the tissue

How to obtain sufficient cooling rates in a clinical setting

Survival of primordial follicles after grafting fresh or frozenthawed cortical tissue from sheep ovaries to SCID mice

Slow-freezing protocol: 1,5 M DMSO, 10% FSC, Leibowitz medium

Graft type	Primordial follicles		
(group no.)	No. ± sem	% of control	
1) Control	192 ± 47		
2) Fresh	68 ± 11	35	
3) Frozen-thawed	54 ± 12	28	

The vast majority of follicles are lost following transplantation

Baird D et al. Endocrinology, 1999;140:462

Conclusions

Ovarian cryopreservation including transport of tissue prior to cryopreservation is now a clinical option

- In combination with ART results from Denmark suggests that ovarian cryopreservation do present a clinical relevant way of preserving fertility
- Efficacy of vitrification of ovarian tissue in a clinical setting still requires development
- Research to enhance transplantation efficiency is warranted

Collaborators

University Hospital of Copenhagen: Laboratory of Reproductive Biology:

Anders Nyboe Andersen Anne Loft The Fertility Clinic Lene Lundwald Christian Ottesen Department of Gynaecology

University Hospital of Aarhus:

Erik Ernst Margit Dueholm Ditte Trolle The Fertility Clinic Department of Gynaecology

University Hospital of Odense:

Lars Westergaard † Per Emil Rasmussen The Fertility Clinic Department of Gynaecology Anne Grete Byskov Mikkel Rosendahl Kirsten Tryde Schmidt Tiny Roed Inga Husum Marjo Westerdahl Stine Gry Kristensen Claus Yding Andersen

The Danish Medical Research Council

The Danish Cancer Foundation