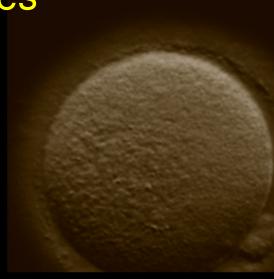
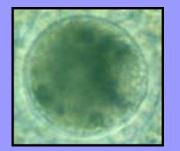
ESHRE Campus Symposium


Cryobiology and cryopreservation of human gametes and embryos

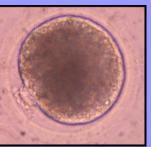
Athens, Greece 25-26 September 2009

"Cryopreservation of human oocytes with slow freezing techniques"

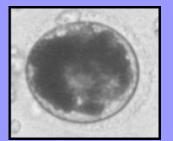
Giovanni Coticchio


Outline

- General principles
- Safety margins: reproducibility and consistency
- Theoretical models and margins for improvements
- Safety of liquid nitrogen storage
- > Overview of cryodamage
- Timeline of slow freezing: progressive improvement over time
- Clinical efficiency
 - How to measure clinical efficiency
 - Factors (age, protocol, processing timing)
 - Performance in vitro and in vivo of frozen oocytes (vs. frozen embryos and vitrified oocytes)


Health of children

Cellular differences make oocytes of various species differently amenable to cryopreservation


Lipid droplets, organelle aggregates

Bovine

Horse

Sheep

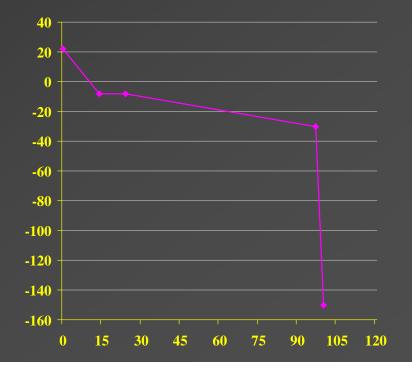
No inclusions

Humar

Mouse

General outlook to cryopreservation by slow freezing and vitrification

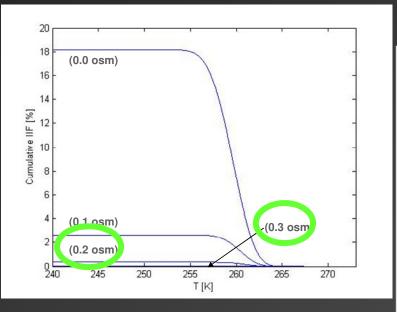
	Slow freezing	Vitrification
CPA toxicity	+	+++
Osmotic stress	+ +	+ + +
Solution effect toxicity	+++	
Intracellular ice risk	++	
Accidental thawing/devitrification risk	_	(++)
Technology dependence	+++	+
Costs	+ + +	+ + +
Operational times	+ +	+ +
Contamination risk	-	++



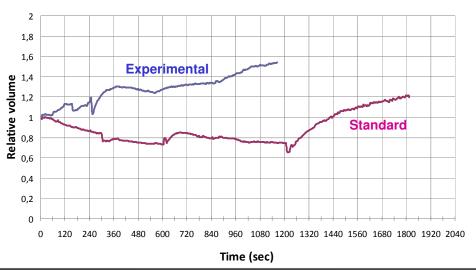
Technology

Robust

- Operator friendly
- Reproducible (well established in IVF labs for decades)
- Small variability
 - Intra-operatorIntra-laboratory
 - Inter-laboratory
- Allows monitoring of cooling process for quality assurance


Operational times of slow freezing vs vitrification

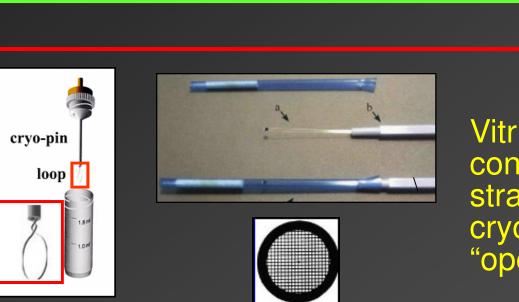
	Slow Freezing	Vitrification
Dehydration	10-15 min	10-15 min
Loading straw/cryotop	< 2 min	< 2 min
Seeding	1 min	
Cooling to LN2 temperature	90-100 min	
Storage in liquid nitrogen	5 min	5 min
Warming and rehydration	30-35 min	10-15
Oocytes from different patients	May be cryopreserved at the same time	Must be vitrified separately


Margins of improvement

... In the development of protocols to cryopreserve human occytes there is much room for improvement in several respects. Models based on basic principles have been developed they have enormous potential to improve recovery and reproducibility, faster processing and lower cost- all based on a fundamental understanding rather than empiricism.

Prediction of intracellular ice formation as a function of temperature with different sucrose concentration

" ... the entire process of cryoprotectant addition and removal could be shortened"



Oocyte volume changes as a function of time with different rehydration protocols

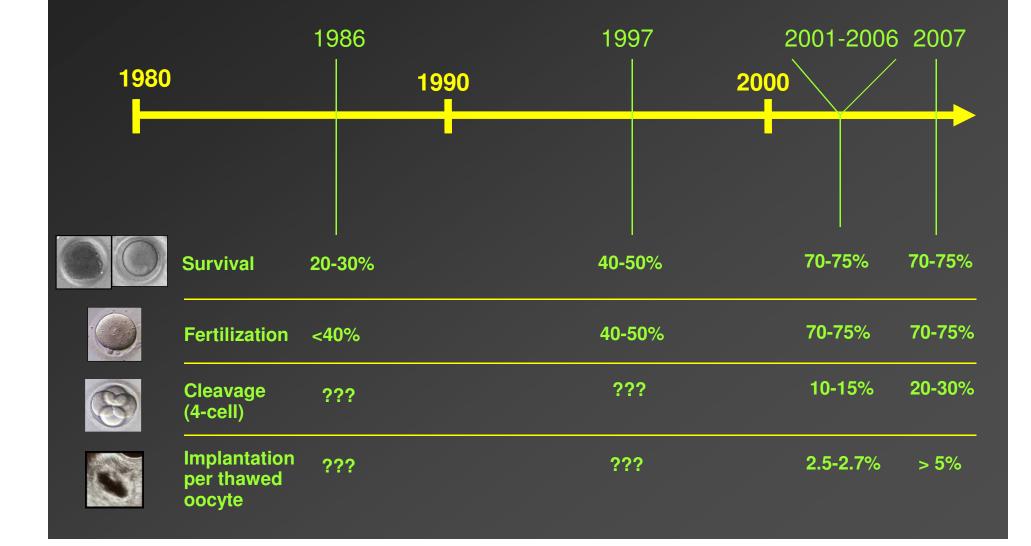
J. Mc Grath, 2009. In "Preservation of Human Oocytes" Borini & Coticchio Eds.

Cross contamination - Containment

CBS high security straws (used in controlled slow cooling), if sealed correctly, may be stored without danger of leakage

Vitrified samples, if not contained (open pulled straws, cryoloops, cryotop, cryoleaf, grids etc), are "open" to liquid nitrogen

All "open systems" are potential risk


Cell damage from cryopreservation

Protocols

		Slow fi	reezing	Vitrific	ation
		0.3M/0.3M	0.2M/0.3M	Cryoleaf	Cryotop
	Ultrastructural damage (vacuolisation)	+ +	+	+	n. a.
• • •	Cortical granules loss	+ +	+ +	+	n.a.
	MII spindle damage	-/+	_	+ +	_

Coticchio et al., 2006; Nottola et al., 2007; Nottola et al., 2008; De Santis et 2008; Cobo et al., 2008; Bromfield et al., 2009; Coticchio et al., 2009

Steady outcome improvement by slow freezing over time

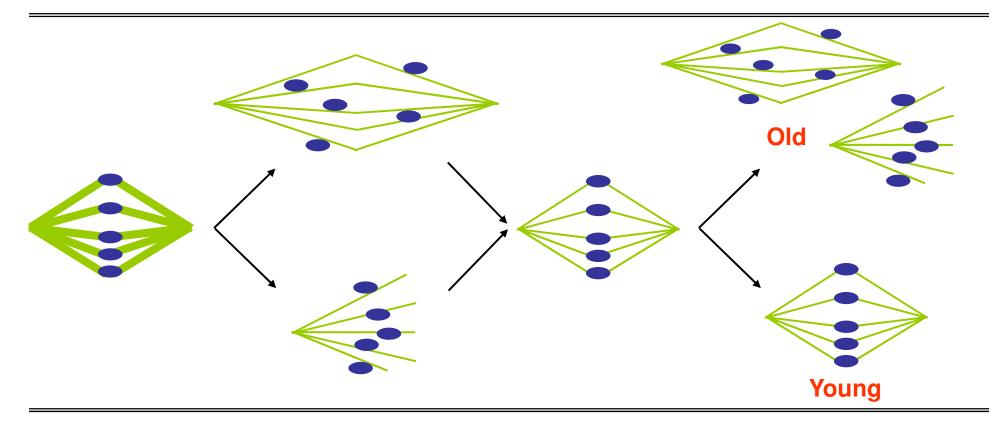
Clinical efficiency of oocyte cryopreservation

Comparisons of techniques or approaches should ideally be made by comparing relevant outcomes in <u>women of equivalent age within the</u> <u>same clinic</u>."

"The quality of oocytes cryopreserved will impact on clinical efficiency. This serves to emphasize the importance of controlling for oocyte quality when determining the effects of cryopreservation, with parallel fresh controls being an ideal component of any study."

"Because different studies may or may not include selection of embryos developed from cryopreserved oocytes, <u>implantation rate should be</u> <u>calculated on the basis of thawed (or warmed, in the case of</u> <u>vitrification) oocytes</u>."

Edgar et al., 2007


Importance of the <u>age factor</u> to appraise clinical efficiency

Collective data from three different slow freezing protocols

		Female age		
	< 35	35 - 38	39 - 40	41 – 42
Cycles	474	376	163	126
Thawed oocytes	2469	1825	849	597
Survival (%)	1712/2469 (69.3)	1269/1825 (69.5)	707/849 (68.8)	425/597 (71.2)
Fertilization (%)	1001/1326 75.5	745/1013 (73.5)	359/442 (81.2)	254/335 (75.8)
Cleavage (%)	924/ 1001 (92.3)	684/745 (91.8)	342/359 (95.3)	235/254 (92.5)
Embryo transfers	423	325	145	114
Pregnancies/cycle (%)	80/474 (16.9)	55/376 (14.6)	29/163 (17.8)	6/125 (4.8)
Pregnancies/ET (%)	80/423 (18.9)	55/325 (16.9)	29/145 (20.0)	6/114 (5.3)
Implantations (%)	103/924 (11.1)	70/682 (10.3)	40/340 (11.8)	6/235 (2.6)
Implantations / thawed	103/2468 (4.2)	70/1825 (3.9)	40/849 (4.7)	6/579 (1.0)
oocytes (%)				
Abortions (%)	15 (18.8)	17 (30.9)	11 (37.9)	3 (50.0)

Borini et al., unpublished

Spindle and chromosome dynamics in oocytes of patients of different age after freezing-thawing

Unfrozen

chromosomeshigh tubulin mass

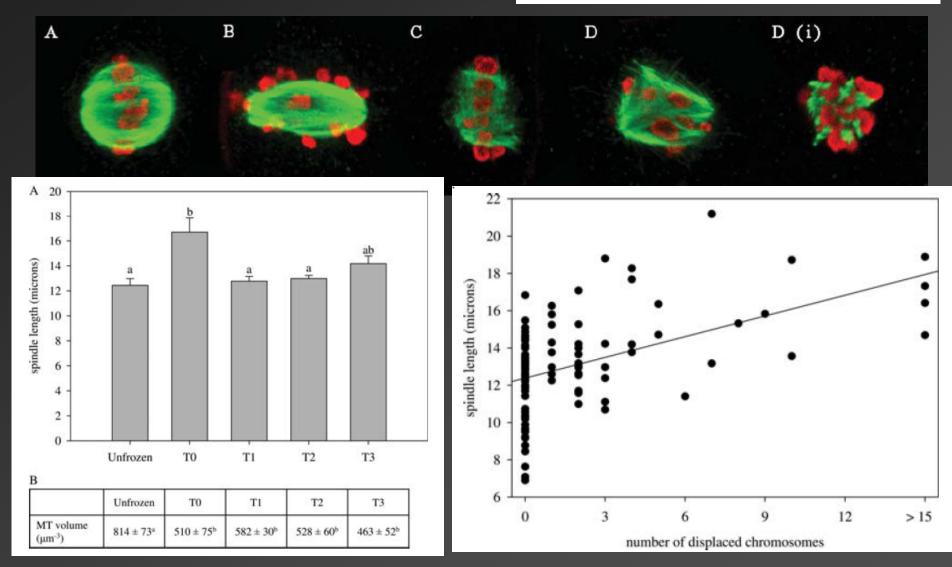
bipolar

• integrated

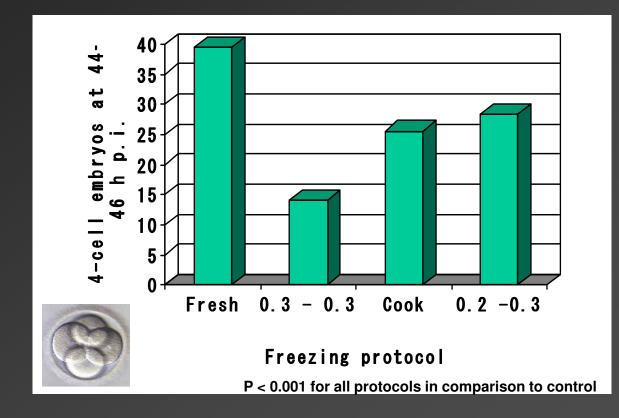
- 0 h
- partial loss of bipolarity
- spindle elongation
- chromosome
- migration/ detachment
- loss of tubulin mass

1 h

- recovery of bipolarity
- realignment/ integration •
- of chromosomes
- maintained low tubulin mass


2-3 h

- partial loss of bipolarity
- spindle elongation
- chromosome migration/ detachment
- · maintained low tubulin mass


Bromfield, Coticchio, Scjaino et al., 2009

Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation

J.J. Bromfield¹, G. Coticchio², K. Hutt¹, R. Sciajno², A. Borini², and D.F. Albertini^{1,3}

Impact of protocol: Performance in vitro of embryos from sibling fresh and frozen oocytes

Borini et al., unpublished

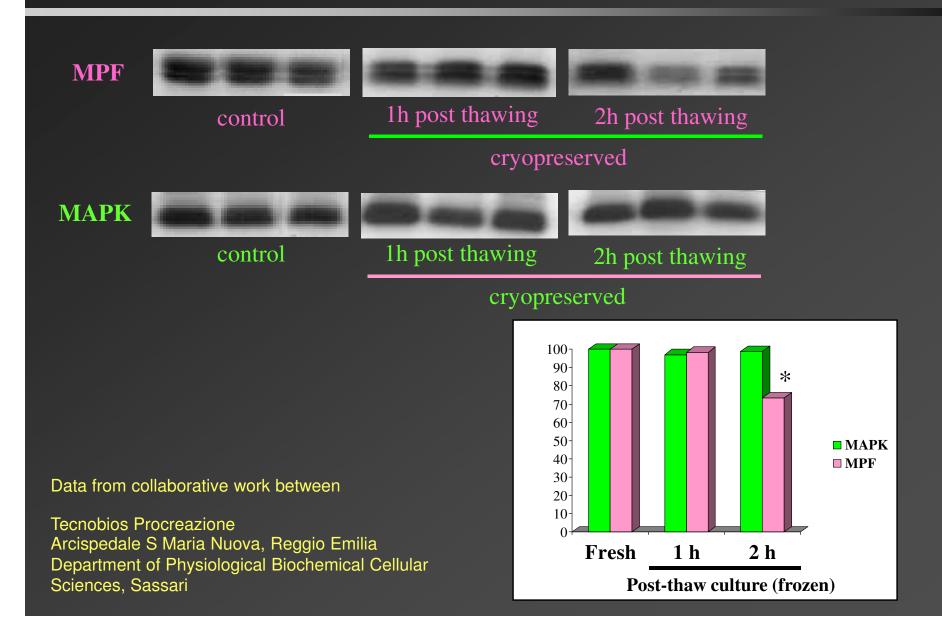
Impact of protocol

	Protocol					
	0.3 - 0.3	Cook	0.2 - 0.3			
Cycles	246	220	119			
Thawed oocytes	1193	1229	609			
Survival (%)	881/1193 (73.8)	772/1229 (62.8)	465/609 (76.4)			
Fertilization (%)	559/767 (72.9)	451/611 (73.8)	268/335 (80.0)			
Cleavage (%)	512/559 (91.6)	422/451 (93.6)	251/268 (93.7)			
Embryo transfers	227	191	109			
Pregnancies/cycle (%)	25/246 (10.2)	32/220 (14.5)	28/119 (23.5)			
Pregnancies/ET (%)	25/227 (11.0)	32/191 (16.8)	28/109 (25.7)			
Implantations (%)	28/512 (5.5)	40/420 (9.5)	40/249 (16.1)			
Implantations / thawed	28/1193 (2.3)	40/1229 (3.3)	28/609 (6.6)			
oocytes (%)						
Abortions (%)	4 (16.0)	5 (15.6)	8 (28.6)			

Female age < 35 years

Borini et al., unpublished

Culture time before AND after freezing/thawing: a casual chance for oocyte aging?


Table 2. Efficiency of oocyte	Time of pre-freeze culture			
Parameter	All (510 cycles)	2 h Group A (162 cycles)	> 2 h Group B (348 cycles)	
Clinical pregnancy rate	72/2608 (2.76) ^a	46/832 (5.53) ^b	26/1776 (1.46)°	
Gestational sacs per thawed oocyte (%)	85/2608 (3.26) ^d	54/832 (6.49) ^e	31/1776 (1.75) ^f	
Clinical pregnancy rate per injected oocyte (%)	72/1379 (5.22) ^g	46/442 (10.41) ^h	26/937 (2.77) ⁱ	

Group A: freezing within 2 h of oocyte retrieval. Group B: freezing more than 2 h after oocyte retrieval. $a_{,b}P < 0.001$; $b_{,c}P < 0.001$; $d_{,c}P < 0.001$; $e_{,f}P < 0.001$; $a_{,b}P < 0.001$; $b_{,c}P = 0.007$; $d_{,f}P = 0.004$; $e_{,f}P = 0.008$.

In this study post thaw-culture varied between 2 and 5 hours. This may have a major impact on in vitro aging

"Activity of maturation promoting factor (MPF) decreases over time in frozen-thawed human oocytes"

Culture time before AND after freezing/thawing: a casual chance for oocyte aging?

0.2 M sucrose oocyte freezing protocol

	Pre-freeze + post-thaw culture time					
	< 7 h	7 – 8 h	> 8 h			
Mean age	36.0	35.3	35.4			
Cycles	22	54	137			
Thawed oocytes	108	266	686			
Survival (%)	88/108 (81.5)	210/266 (78.9)	539/686 (78.6)			
Fertilization (%)	49/62 (79.0)	129/155 (83.2)	330/402 (82.1)			
Cleavage (%)	47/49 (95.9)	127/129 (98.4)	310/330 (93.9)			
Embryo transfers	22	54	137			
Pregnancies/cycle (%)	7/22 (31.8)	15/54 (27.8)	22/137 (16.1)			
Pregnancies/ET (%)	7/22 (31.8)	15/54 (27.8)	22/137 (16.1)			
Implantations (%)	10/47 (21.3)	20/127 (15.7)	32/309 (10.4)			
Implantations / thawed	10/108 (9.3)	20/266 (7.5)	32/686 (4.7)			
oocytes (%)						

Borini et al., unpublished

Efficiency: slow freezing vs. vitrification

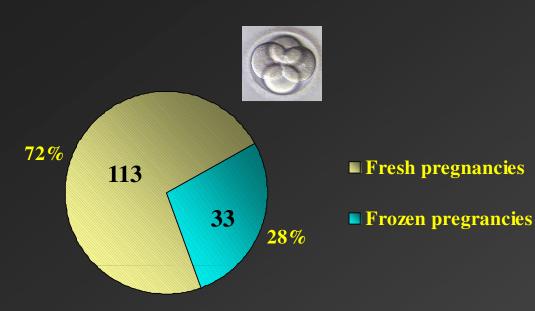
Kim, T. J., et al., 2009. Vitrification of oocytes produces high pregnancy rates when carried out in fertile women. Fertil Steril. In Press

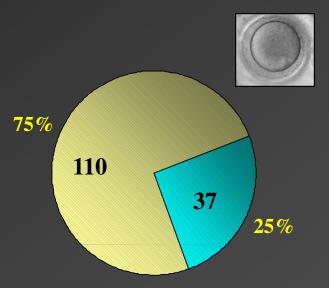
TABLE 1						
Clinical summary of thawing cyc vitrified oocytes.	0.2 M sucrose oocyte freezing protocol					
Age (y) (mean ± SD) FSH level (mIU/mL) (mean ± SD) No. of patients for warming cycles	$\begin{array}{r} 31.7 \pm 3.0 \\ 5.7 \pm 1.1 \\ 19 \end{array}$	Mean Age	31.2	36.4	39.6	41.4
No. of warming cycles ^a No. of vitrified oocytes	20 483	Thawing cycles	119	74	39	28
No. of warmed oocytes	395	Thawed oocytes	609	365	213	126
No. of survived oocytes (%)	320 (81.0)	Survived oocytes (%)	465 (76.4)	266 (72.9)	154 (72.3)	100 (79.4)
No. of MI and GV stage oocytes after warming	35					
No. of microinjected oocytes	285	Micr'ed oocytes (%)	335	191	113	76
No. of fertilized oocytes (%)	208 (72.3)	Fertilized oocytes (%)	268 (80.0)	152 (79.6)	95 (84.1)	52 (68.4)
No. of cleaved embryos (%)	185 (89.8)	Cleaved embryos (%)	251 (93.7)	140 (92.1)	92 (96.8)	51 (98.1)
No. of ET cycles	20	ET cycles	109 00 (00 5)	66	37	25
No. of clinical pregnancies/ warming cycle (%)	16/20 (80.0)	Preg / thaw cycle (%)	28 (23.5)	11 (14.9)	6 (15.4)	2 (7.1)
No. of clinical pregnancies/ patient (%)	16/19 (84.2)					
No. of implantations (%)	24 (45.3)	Implantations (%)	40 (16.1)	15 (10.7)	9 (9.8)	2 (3.9)
No. of implantation per warmed oocytes (%)	24/373 ^d (6.4)	Implantations (% per thawed oocyte)	40 (6.6)	15 (4.1)	9 (4.2)	2 (1.6)
				Borini	i et al., unp	ublished

Efficiency: slow freezing vs. vitrification

	Contro	lled rate fr	eezing	Controlled rate freezing				Vitr	ification	
Permeating	1	1.5M PROE	I	1.5M PI	ROH (Na d	epleted)	5M EG	2.7MEG+	2.7MEG+	*3.6MEG+
Cryoprotectant								2.1M DMSO	2.0M PROH	2.7M DMSO
										+0.1M Ficoll
Sucrose	0.1M	0.2M	0.3M	0.1M	0.2	0.3M	1.0M	0.5M	0.5M	1.0M
Survival	51%	71%	73%	52%	60%	70%	75%	83% #	80%	96%
(no. of thawed	(4027)	(1451)	(7595)	(127)	(815)	(890)	(838)	(1454)	(395)	(111)
oocytes)										
Fertilisation	54%	80%	73%	56%	66%	72%	74%	87%	70%	-
Cleavage	85%	93%	90%	100%	84%	88%	94%	93%	53%	76%
Embryos per 100	23	53	48	29	33	44	52	76	30	51
thawed oocytes										
Implantation rate	10%	17%	6%	21%	11%	13%	10%	16%	13%	61%
Implantations per	2.3	9.0	2.9	6.1	3.7	5.8	5.2	10.7	3.8	26
100 thawed										
oocytes										

D. Gook and D. Edgar, 2009. In "Preservation of Human Oocytes" Borini & Coticchio Eds.


Embryo vs. oocyte slow freezing


	Female age					
	< 35	35 - 38	39 - 40	41 – 42	>42	– Total
Cumulative pregnancy rates from frozen embryos (1992- 2004)	54	50	34	20	6	50
Cumulative pregnancy rates from frozen oocytes (different protocols, 2004-2008)	53	52	47	25	15	49
Cumulative pregnancy rates from frozen oocytes (0.2M sucrose protocol, 2006-2008)	63	65	40	28	17	57

Cumulative pregnancy rates analysed by female age from cycles in which embryos or oocytes were cryopreserved

Adapted from A. Borini and M.A. Bonu. 2009, In "Preservation of Human Oocytes" Borini & Coticchio Eds.

Cumulative pregnancy rate: Frozen Embryos vs Frozen Oocytes

Standard embryo freezing protocol

Retrievals211Patient age<39</td>Fresh preg. rate / cycle
53.5%Frozen preg. rate / cycle
37.1%Cumulative preg. rate
73.9%

0.2 M sucrose oocyte freezing protocol

Retrievals	226
Patient age	<39
Fresh preg. rate / cycle	
48.6%	
Frozen preg. rate / cycle	
27.6%	
Cumulative preg. rate	

Conclusions:

Controlled rate slow freezing of oocytes

- * "Application of fundamental cryobiological principles is leading to a gradual but consistent improvement in outcomes, and promises further advances if the scientific focus is maintained (Fuller, 2009)"
- Highly reliable, highly reproducible, more quality assurance friendly
- > No risk of contamination during storage in liquid nitrogen
- Efficiency (implantations per used oocytes) comparable to the one of frozen embryos
- The contest still open:
 - > The best slow freezing and vitrification results are similar
 - > No large/rigorous prospective trials have been conducted so far
- No increase in congenital abnormalities after the birth of approximately 600 babies