

Cryopreservation of human embryos: the embryo or the procedure?

David Edgar

Reproductive Services/Melbourne IVF, Royal Women's Hospital and

Department of Obstetrics & Gynaecology, University of Melbourne Victoria, Australia

the women's the royal women's hospital worder australia

Why do we need to cryopreserve human embryos?

- 1. Optimal ART requires embryo selection
- 2. Embryo selection requires multiple oocytes/embryos

3. Transferring multiple embryos is contraindicated

VS

Consequently

4. Responsible ART requires embryo cryopreservation

12 month period of ET's (day 2) at Melbourne IVF

- 60% Single Embryo Transfer
- 77% Single Embryo Transfer in women <36</p>
- 1345 babies in total
- 618 from thawed embryos (46%)
- 80% of all women giving birth from a fresh cycle have stored embryos

Factors impacting on the clinical outcome from embryo cryopreservation

Characteristics (quality) of embryos prior to freezing

Biological consequences of freezing/thawing

Efficiency of methodology

Is there a significant difference in the outcome from fresh and cryopreserved embryos?

SET's in women under 36

Embryos	No of SET's	Implantation Rate	
Fresh	2524	31.1% *	
Cryopreserved	3020	24.1% *	

* p<0.001

Is this difference due to differences in the embryos or the impact of cryopreservation?

Importance of developmental rate on day 2 (42 hpi)

Fresh vs <u>Equivalent</u> Stored Embryos

	Embryos transferred	FH's	Implantation Rate
4 cells* Fresh	1567	260	16.6%
4 cells* Thawed Intact	794	134	16.9%
2 cells* Fresh	899	58	6.5%
2 cells* Thawed Intact	401	29	7.2%

* 40 – 42 hpi

Edgar et al (2000) Human Reproduction 15, 175

Implantation rates from SET's in women under 36

No of cells	Fresh	Cryopreserved
< 4	11.0%	10.6%
	(91)	(94)
4	31.6% *	28.6% *
	(748)	(807)
> 4	15.3%	16.4%
	(59)	(213)

* Not significant

Additional markers of embryo quality

Early events 23/24hr post-insemination

2 pronuclei (PN) 1 cell embryo (Syngamy/NEBD) 2 cell embryo (early cleavage/ EC)

Implantation rates in fresh SET's (n) Women <36

23/24 hpi	I.R.
EC	35.7%
	(325)
NEBD	28.8%
	(400)
PN	19.5%
	(215)

Embryo morphology/fragmentation

Embryo Grade
1
2
3
4&5

Fragmentation
0%
1-10%
11-30%
>30%

Implantation rates in fresh SET's (n) Women <36

Grade	I.R.
1	31.5% (276)
2	31.2% (484)
3	21.3% (183)

4 cell embryo/ EC/ Grade 1 Implantation rate (no of SET's)

	All ages	< 36	
Fresh	34.9% (567)	42.5% (334)	
Cryopreserved	36.4% (66)	45.2% (31)	

Conclusions

- 1. Embryo quality before freezing is strongly associated with post thaw implantation potential
- 2. Thawed embryos can have similar implantation potential to **EQUIVALENT** fresh embryos

Possible biological consequences of embryo cryopreservation

Cell loss
Arrested/compromised development
Altered function/metabolism

Cell loss (1.5M $PrOH_2 + 0.1M$ sucrose)

* + 10.1% with no surviving blastomeres

Biological impact of blastomere loss

Does blastomere loss in stored embryos :

Impair preimplantation development ?

Result in reduced cell numbers at the blastocyst stage ?

Surplus cryopreserved day 2 embryos - thawed and cultured to the blastocyst stage

Development of Intact and Partially Intact Thawed Cleavage Stage Embryos In Vitro

Development to
blastocystMean cell number
in blastocysts

Intact	92/225 (40.9%) ^a	58.4 ^b
Partial	41/167 (24.6%) a	45.0 ^b
	^a p < 0.01	^b p < 0.05

Archer et al, Hum Rep, <u>18</u>, 1669-73 (2003)

Clinical significance of blastomere loss

Outcome from SCETs in relation to survival (4 cell embryos) Women <36

Prefreeze blastomeres	Post thaw blastomeres	SCETs	FHs	Implantation rate
4	4	722	179	24.8%
4	3	146	40	27.4%
4	2	92	8	8.7%

Edgar et al, Rep BioMed Online, <u>14</u>, 718-23 (2007)

Conclusions

- 1. Embryo quality before freezing is strongly associated with post thaw implantation potential
- 2. Thawed embryos can have similar implantation potential to **EQUIVALENT** fresh embryos
- 3. Blastomere loss can reduce implantation potential

Post thaw resumption of mitosis

Outcome from SCETs in relation to resumption of mitosis

Blastomere	Resumption	SCETs	FHs	Implantation
survival	of mitosis			rate
4 of 4	YES	641	165	25.7%
4 of 4	NO	81	14	17.3%
3 of 4	YES	113	34	30.1%
3 of 4	NO	33	6	18.2%
2 of 4	YES	68	7	10.3%
2 of 4	NO	24	1	4.2%

Early events 23/24hr post-insemination

2 pronuclei (PN) 1 cell embryo (Syngamy/NEBD) 2 cell embryo (early cleavage/ EC)

Implantation rates in fresh SET's (n) Women <36

23/24 hpi	I.R.
EC	35.7%
	(325)
NEBD	28.8%
	(400)
PN	19.5%
	(215)

Post thaw resumption of mitosis in relation to timing of syngamy/first cleavage

23/24 hpi	Post thaw resumption of mitosis (n)
EC	92%
	(287)
NEBD	86%
	(652)
PN	70%
	(852)

The embryo or the procedure ?

The embryo +++

The procedure ???

Optimal outcomes from embryo cryopreservation

Standard dehydration for slow cooling

Permeating cryoprotectant (1.5M)

Non-permeating cryoprotectant (0.1M)

Differential sucrose concentration during dehydration and rehydration

- higher (0.2M) during initial post thaw rehydration steps

Vitrification

Very high concentrations of cryoprotectant

Ultra rapid drop in temperature

Table II. Outcomes of vitrification and slow freezing

Day 3 embryos – Balaban et al., 2008

	Vitrification	Slow freezing	<i>P</i> -value
Cryosurvival (%)	222/234 (94.8)	206/232 (88.7)	0.02
Embryos with 100% blastomere survival (%)	173/234 (73.9)	106/232 (45.7)	<0.01

Metabolic consequences ??

Pyruvate uptake by cryosurvived embryos

Copyright restrictions may apply.

? Optimal slow freezing

Variation in Membrane Hydraulic Permeability of Human Oocytes

Membrane hydraulic permeability Lp (µm/atm/min) measured in individual oocytes at 20° C

Oocyte	1	2	3	4	5	6	7	8
Lp	0.32	0.6	1.09	0.56	0.16	0.51	0.23	0.8

Hunter et al, 1992

Increased dehydration (0.2M sucrose) prior to slow cooling

Mature oocytesBiopsied embryos

 Further elevation of sucrose (0.3M) during initial rehydration

Cryopreserved biopsied embryos : impact of modified method

Embryos	Method	Embryo survival	Blastomere survival
		(>50%)	
Non biopsied	Standard	78.3%	70.3%
Biopsied	Standard	43.7%	46.0%
Biopsied	Modified	74.6%	66.8%
		· 1 · 1 TT - D	

Jericho et al, Hum Rep, <u>18</u>, 568-71 (2003)

Increased dehydration of non biopsied day 2 embryos ??

Edgar et al, RepBioMed Online (2009)

Single Step Freeze Method used at Melbourne IVF

Embryos dehydrated in a single step using 1.5M
 PROH plus 0.1M Sucrose prior to slow cooling

Embryos thawed and rehydrated using a 3-step method with decreasing concentration of sucrose

0.5M sucrose > 0.2M sucrose > 0M sucrose

Modified Freeze Method

Elevated sucrose concentration (0.2M) during dehydration and slow cooling

Embryo Survival I

	0.1 M Sucrose	0.2 M Sucrose
Embryos Thawed	474	471
Surviving embryos (≥ 50% of cells)	372	436
Embryo Survival	78.5% *	92.6% *

* p<0.02

Embryo Survival II

	0.1 M Sucrose	0.2 M Sucrose
Embryos Thawed	474	471
Fully Intact (100%)	259 (54.6%) ^a	379 (80.4%) ^a
50%-99% Intact cells	113 (23.8%)	57 (12.1%)
<50% intact	102 (21.5%) ^b	35 (7.4%) ^b

a : p<0.001 b: p<0.001

Blastomere Survival

	0.1 M Sucrose	0.2 M Sucrose
Embryos Thawed	474	471
Total Number of B;astomeres Thawed	1918	1870
Total Number of Surviving Blastomeres	1421 (74.1%)*	1704 (91.1%)*

* p<0.001

Resumption Of Mitosis

	0.1M	0.2M
Surviving cells	1421	1704
No of cells after overnight culture	2159	2560
% Increase in cells	51.9%*	50.2%*

* Not Significant

Clinical outcomes (< 36yrs)

	0.1 M Sucrose	0.2M Sucrose
Embryos Thawed	183	217
Embryos Transferred	139	193
FH	32	48
IR/Embryo Transferred	23.1%	24.8%
IR/ Embryo Thawed	17.5%	22.1%

Conclusions

- 1. Embryo quality before freezing is strongly associated with post thaw implantation potential
- 2. Thawed embryos can have similar implantation potential to **EQUIVALENT** fresh embryos
- 3. Blastomere loss can reduce implantation potential
- 4. Optimal procedures can minimise blastomere loss

Cryopreservation of human embryos: the embryo or the procedure?

