Cryobiology for Clinical Embryologists

S. P. Leibo, PhD

University of New Orleans

Audubon Center for Research of Endangered Species

During the past 37 years, cryopreserved oocytes and embryos used to produce ...

- Millions of cattle and other domestic animals
- Hundreds of thousands of lab animals
- Tens of thousands of children

1998 ART Results in the U.S.

ASRM/SART Registry 2002 Fert Steril 77:18

Domestic Offspring from ET with Cryopreserved Embryos

Horse Antelope Cat Mouse Cattle **Pig** Gerbil Rat Goat Sheep Rabbit Hamster

Non-Domestic Offspring from ET with Cryopreserved Embryos

BaboonMarmosetElandRed deerFallow deerWapitiCynomolgusRhesusAfrican Wildcat

Cryopreservation Methods

Category	CPA Concn.	Cooling Rate (°C/min)
Equilibrium Cooling	10% ≈ 1.5 M	~0.5
Non-Equilibrium Cooling	>40% ≈ 6 M	>>1,000

Generalized Approach to Cryopreservation

- Suspend cells in cryoprotectant (CPA)
- Cool cells to subzero temperatures,
 i.e. below -130°C
- Use conditions to dehydrate cells,
 i.e. minimize intracellular ice formation
- Store in LN₂ at -196°C
- Warm so as to avoid recrystallization

Basic Cryobiology

Equilibrium Cooling	
"Slow Cooling"	
10 to 15% CPA	
Cool at ~1°C/minute	
Cells dehydrate during freezing	
Little or no Intracellular Ice	

Fundamentals of Cryobiology

 What happens to solutions cooled to subzero temperatures?

 What happens to cells exposed to such solutions?

Glycerol solution at -196°C

Scanning electron micrograph by L. Bradley, 1999

SLU-AH SKU WAI MARE 18

Phase Diagram of Dimethyl Sulfoxide

data of Kleinhans & Mazur, 2007

Bovine morula suspended in PBS or sucrose solutions

Reprinted from The Journal of General Physiology, November 1963 Volume 47, Number 2, pp. 347-369 Printed in United States of America

Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing

PETER MAZUR

From the Biology Division, Oak Ridge National Laboratory, Oak Ridge

Mazur's Equations of Theoretical Cryobiology

 $L_p = L_p^* \exp(-E / R[1/T - 1/T^*])$

 Temperature affects cell's water permeability Mazur's Equations of Theoretical Cryobiology

dV / dt = {L_p A R T In P_e / P_i } / v^o

 When cell exposed to hypertonic solution, cell loses water as a function of time

Diagram of "Standard" Cooling/Warming Curve

Mazur's Equations of Theoretical Cryobiology

dT / dt = B

Solutions may be cooled at various rates

Frozen solutions of glycerol

Mazur's Equations of Theoretical Cryobiology

In $[V / V + Nv^{\circ}] = (L_f / R) (1/273 - 1/T)$

 If cell is cooled infinitely slowly, cell water volume will remain in equilibrium with extracellular solution

Mouse oocytes at 0°C

Mouse oocytes cooled at 1.7°C/minute to -5°C

Mouse oocyte at -10°C

Mouse oocyte at -20°C

Mouse oocytes cooled at 1.7°C/minute

Theoretical response of oocytes cooled at various rates

Theoretical analysis shows that ...

- Cells cooled slowly lose water at high subzero temperatures.
- Cells cooled rapidly do not dehydrate.
- Therefore, they freeze intracellularly!

Oocyte cooled at 32ºC/minute

Theory dictates that optimum cooling rate determined by ...

- Surface area to volume ratio
- Water permeability (Lp)

Blastocyst-stage Embryos

Embryo Characteristics

Species	Water Permeability (µm/min-atm)	Reference
Mouse	0.48	Hunter '92
Bovine	0.84	Agca '93

Embryo Characteristics

Species	Surface Area (µm) ²	Volume (µm) ³	SA / V
Mouse	1.7 x 10 ⁴	2.2 x 10 ⁵	0.08
Bovine	7.1 x 10 ⁴	17.7 x 10 ⁵	0.04

Comparison of mouse and bovine embryos

Water permeability coefficients of oocytes of various species

Species	Water
	Permeability
Human	0.40
Hamster	0.80
Monkey	0.23
Goat	0.97

Water permeability coefficients of individual human oocytes at 22°C (data of Van den Abbeel 2007)

in DMSO	In Propylene Glycol
0.24	0.68
0.52	0.71
0.56	0.75
0.63	0.78
0.65	0.86
0.66	0.92
0.69	1.14
0.74	1.18
0.77	2.15
0.87	2.18

Theory dictates that likelihood of intracellular freezing determined by ...

Constant nucleation temperature

Theoretical response of oocytes cooled at various rates

Nucleation of Intracellular Ice in Bovine Embryos

Basic Cryobiology

Equilibrium Cooling	Non-equilibrium Cooling
"Slow Cooling"	"Vitrification"
10 to 15% CPA	40 to 60% CPA
Cool at ~1°C/minute	Cool at >1000°C/minute
Cells dehydrate during freezing	Cells dehydrate <u>before</u> cooling
Little or no Intracellular Ice	Some intracellular ice

Comparison of "Slow Cooling" and "Vitrification"

Straws submerged in LN₂ at -196°C

3 M ethylene glycol

5 M ethylene glycol

8 M ethylene glycol

Conclusion

 Mazur's theoretical analysis (and derivative theories of others) describes generalized response of cells when frozen.

Limitations of Theoretical Analysis

- Water permeability of different oocytes
 & embryos vary
- Intracellular nucleation temperatures vary among oocytes & embryos
- Non-equilibrium cooling may avoid these differences

Final Conclusion

- Empirical analysis
- Imagination
- Creativity

can contribute to optimization of Cryopreservation of Oocytes and Embryos