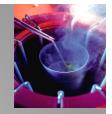


Cryobiology of vitrification

- PD Dr. med. vet., Dr. rer. biol. hum habil
 - ULRICH SCHNEIDER

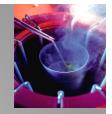
Dr. U. Schneider © 2009

Vitrification pushed in ART as new and as method that solves all problems with oocyte and embryo freezing


Impression that fancy and costly sets (Cryotip, Cryotop, Cryoleaf, etc.) are absolutely required to achieve good results.

Nonsense if you understand and follow the cryobiological principles

Question proprietary freezing media or patented methods


Scientists with important contribution to vitrification

Father Basile J. Luyet – active since 1937

- attempting to arrest life and then restart it
- 3 factors control the achievement of the vitreous state
 - velocity of crystallization
 - size of the zone of crystallization temperature
 - cooling velocity sufficient to prevent the formation of crystals
- > 1969 Luyet characterized his attempts of vitrification
- in retrospect as "mostly negative"

Scientists with important contribution to vitrification

Pierre Butron – active since 1978

- Studied kinetics of glass formation on cooling
- and devitrification on warming
- key discovery:
- propylene glycol vitrifies at 30-40 WT % depending on cooling rate

Grey Fahy – active since 1972

- organ preservation by vitrification
- problem of the CPA toxicity
- toxicity neutralizer, non penetrating CPA, exponential addition and wash out of CPA

Scientists with important contribution to vitrification

Bill Rall – active since 1980

- studying mammalian embryos under cryomicroscope
- defined homogenous nucleation temperature for embryos
- clearly demonstrated that during mod. 2step freezing embryos survive cryopreservation as a result of at least intracellular vitrification

Bill Rall and Greg Fahy – 1985

successful vitrification of 8-cell mouse embryos

Molarity

Osmolarity

Molality

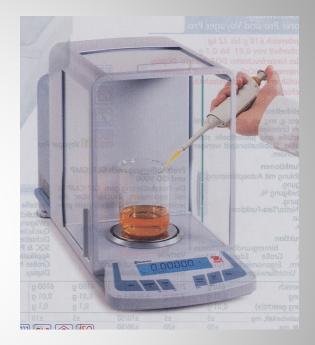
Osmolality

weight percent

molar solution 1 mol of solute in 1000 ml of solvent

EG MW 62.07

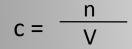
62.07 g + PBS up to the 1000 ml mark



molal solution1 mol of solute in 1000 g of solvent

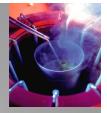
EG MW 62.07

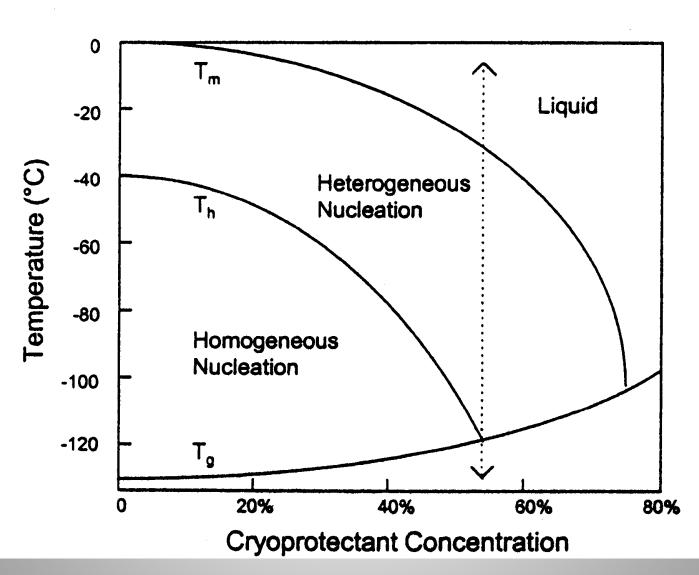
62.07 g + PBS up to 1000 g



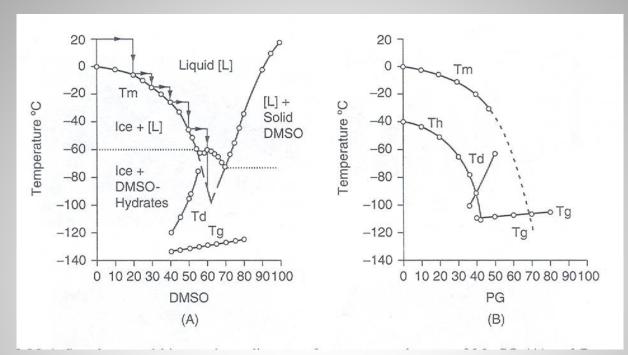
molar concentration or molarity c defined as:

where n is the amount of solute in moles present in volume V


 Vitrification = "turned into glass" defined as


conversion from fluid to a solid by an increase in viscosity without phase change (crystallization of water)

- This state is achieved in systems
- that are sufficiently concentrated or cooled rapidly
- where the increase in viscosity inhibits molecular rearrangement into a crystalline pattern



Dr. U. Schneider © 2009

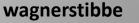
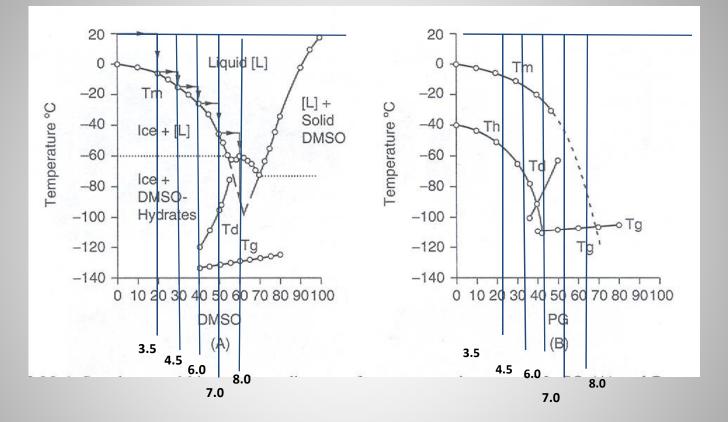
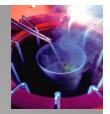
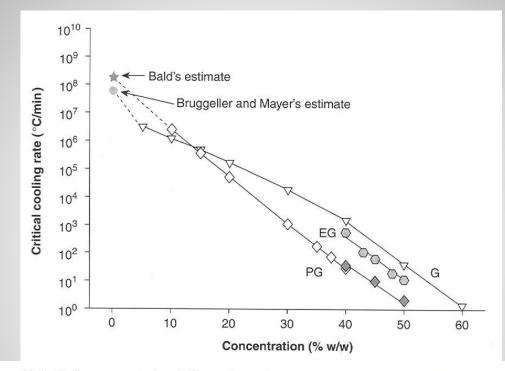


FIGURE 22.1 Supplemented binary phase diagrams for aqueous mixtures of Me₂SO (A) and Propane-1,2diol (B) showing the principal events and phase changes associated with cooling and heating. A supplemented phase diagram combines nonequilibrium data on a conventional equilibrium phase diagram and serves to depict the important transitions inherent in cooling and warming aqueous solutions of cryoprotective solutes. Details are described elsewhere (Fahy, 1998; MacFarlane, 1987; Rasmussen and MacKenzie, 1968; Taylor, 1987) and in the text. T_m , equilibrium melting point curve (liquidus curve); T_h , homogeneous nucleation curve; T_d , devitrification curve; T_g , glass transition curve. The stepped line above the Me₂SO–H₂O liquidus T_m curve represents a scheme for incremental equilibration of a tissue with sufficient cryoprotective additive such that the system does not freeze during cooling. (See text for details.)


Life in the Frozen State, Edt. By B.J. Fuller, N. Lane, E.E. Benson, CRC Press, 2004, p. 607





Life in the Frozen State, Edt. By B.J. Fuller, N. Lane, E.E. Benson, CRC Press, 2004, p. 607

Figure 1A.5 Cooling rate required to vitrify samples ranging in concentration from 0% to 60% w/w cryoprotectant. white points, unpublished calculations of Mehmet Toner⁸⁵ (published here by permission); star, estimate of Bald,⁸⁶ filled circle, high estimate of Bruggeller and Mayer (their low estimate is one order of magnitude lower);⁴⁶ gray diamonds, corrected observed critical cooling rates for the prevention of ice in propylene glycol (PG) – water solutions (from Baudot and Odagescu);⁸⁷ G = glycerol hexagons, observed critical cooling rates for ethylene glycol (EG) – water solutions.⁸⁷

Vitrification in Assisted Reproduction, Edt. By M.J. Tucker, J. Liebermann, 2007, p. 13

TABLE 1Critical Cooling Rates (C/min) to Avoid Any Crystallization for ME2SO and Other Aqueous Solutions

% (w/w) Solute	1,2- Propanediol	ME ₂ SO	Ethylene glycol	Glycerol
30	1200			
35	240			
40	35	500 +/- 50		
45	10	14 +/- 3	260	380
50	< 2.5	< 2.5		70

Baudot et al., Cryobiology, 40, 151-158 (2000) Modified Table 1

Table 1. Cooling rates for modern vitrification devices.

Device	Media (ul)	Freezing Rate
0.25cc straw	25ul	4460°C/min
Open-pulled straw	1.5ul	16,340°C/min
Cryo-Top	0.1ul	22,800°C/min
Cryo-Tip	<2ul	12,000°C/min
0.25cc straw (S ³ vit) ¹	10ul to 250ul	<100°C/min

From Kuwayama et al., (2005b). ¹This study.

Dr. U. Schneider © 2009

Table 1 : Vitrification Properties of Sugar-EG-Saline Solutions:How the Sugar Type and Concentration Influenced the LowestTotal Solute Concentration at Which Vitrification Would Occur

Vitrification Solution	Total solute concentration	Sugar concentration	Тд	
	(wt%)	(mol/kg)	(oC)	
EG-saline	59	0	-127.7	
Sucrose-EG-saline	60	0.1	-126.8	
Sucrose-EG-saline	61	0.5	-122.6	
Sucrose-EG-saline	65	1	-118	

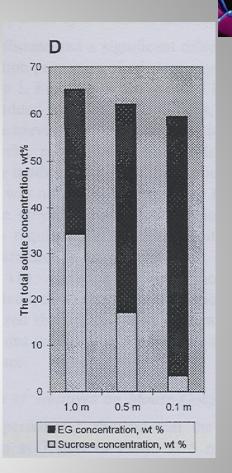
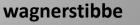
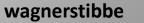




Fig.1. The lowest total soluteconcentration required for vitrification:(D) ethylene glycol-saline solutions.

Kuleshova et al., Cryobiology 38, 119-130 (1999) modified Table 1 and Fig. 1 Dr. U. Schneider © 2009



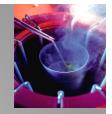
We have discussed vitrification conditions of a cell free system

To reach vitrification conditions independant of cooling and warming rate, we need the same app. 60% solute concentration **inside the cell** also.


Table I. In vitro development of pronuclear stage embryos exposed to cryoprotectant [1,2-propanediol (PROH) or dimethylsulphoxide (DMSO) at	3.0 mol/l
concentration each with 0.5 mol/l sucrose) for 45 s	

Cryoprotectant No. of embryos	No. of embryos	Survival		Development t	0			
			2-cell-embryos		Blastocysts			
		п	%	n	%	n	%	
DMSO	95	95	100	91	96	76	80	
PROH	95	94	99	89	94	80	84	
Control	113			106	94	94	83	

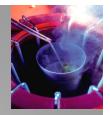
M.A. Nowshari et al. Human Reproduction, 10, 3237-3242, 1995


Table 2: Developmental competence of oocytes exposed to changes in external osmolality

	External osm	olality (mOsn	nol/kg H ₂ O)				
	39	76	151	302	598	1262	2264
No. of oocytes	49	49	49	49	49	49	49
Percentage of 2PN embryos	63	59	71	69	69	71	69
Percentage of Good-Quality embryos	52	72	51	56	53	54	53
Mean number of cells (+/- SD)	5.9 (+/- 1.5)	6.4 (+/-1.9)	6.0 (+/-1.6)	6.8 (+/-2.0)	6.1 (+/-2.1)	7.1 (+/-1.7)	5.7 (+/-2.3)

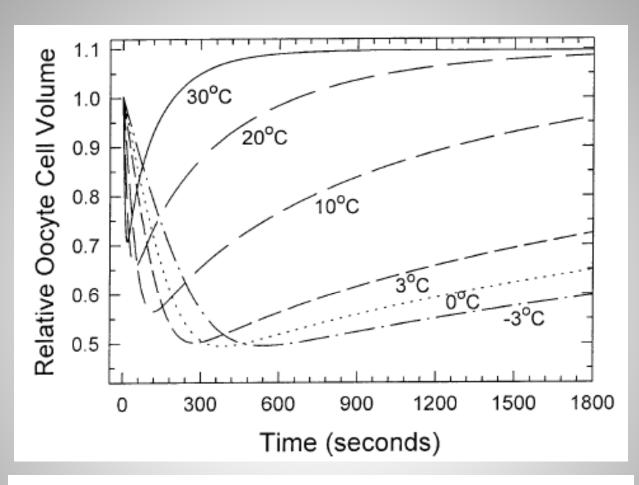
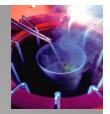
Van den Abbeel et al., Human Reproduction, 22 (2007)

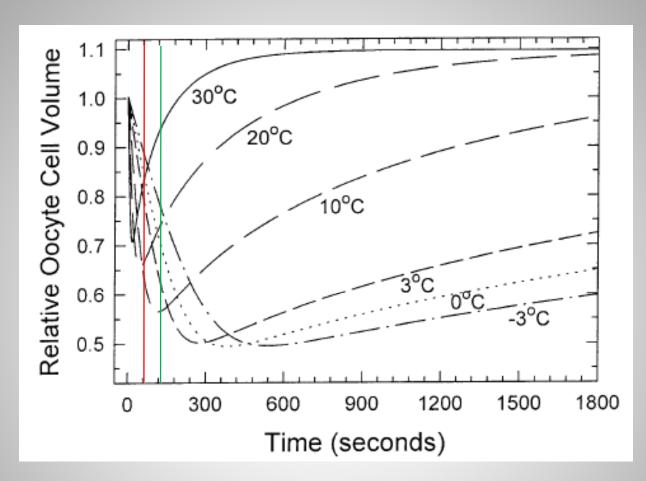
TABLE 5


Effect of Exposure of *in Vivo* Matured MII Oocytes to 0.5 or 1.0 M Sucrose at Room Temperature for 10 Min on Their Subsequent Two-Cell Formation and Parthenogenetic Activation Rates

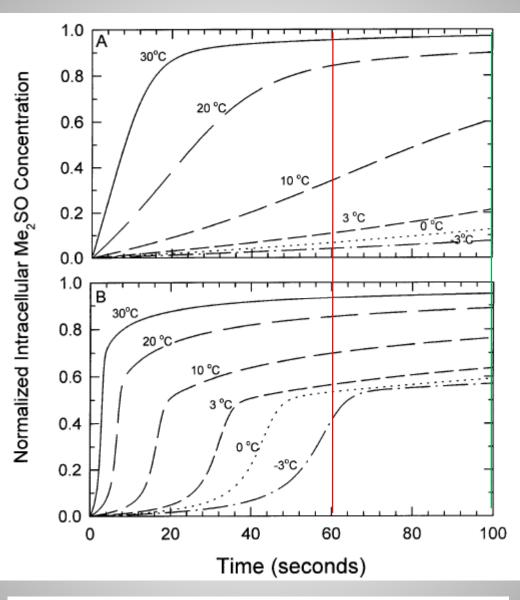
	-	0.5 M				1.0 M	
	Inseminated	N	Two Cells %	Blastocysts %	N	Two Cells %	Blastocysts %
	f	IN	70	/0	IN	/0	/0
Sucrose at MII	Yes	10	90	40	9	89	55
Sucrose at MII	No	14	0	0	11	0	0

Kuleshova et al., Cryobiology 38, 119-130 (1999) modified Table 5


FIG. 2. Predicted responses of the kinetic cell volume responses of MII mouse oocytes in 1.5 M Me₂SO at the indicated temperatures.

Agca, et al., Cryobiology 36, 287-300 (1998)



Agca, et al., Cryobiology 36, 287-300 (1998)

Dr. U. Schneider © 2009

Agca, et al., Cryobiology 36, 287-300 (1998)

Dr. U. Schneider © 2005 FIG. 6. Simulation of MII mouse occytes after exposed to either 1.5 M (A) or 6 M (B) Me₂SO at various temperatures and the corresponding intracellular Me₂SO concentrations.

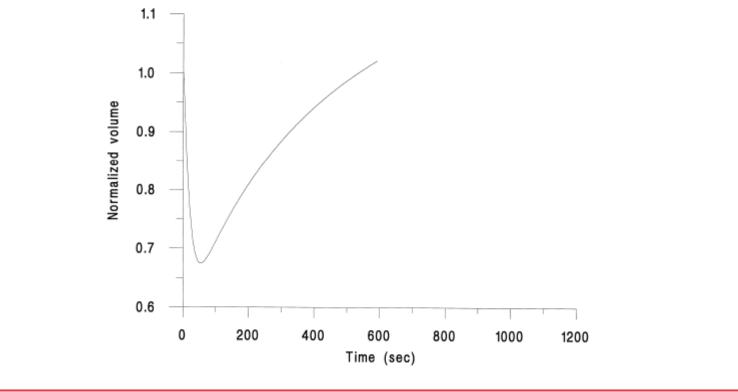


FIGURE 3

Predicted osmotic response of human oocyte exposed to 1.5 M propane-1,2-diol for 10 minutes at 24°C followed by exposure to 1.5 M propane-1,2-diol plus either 0.1 M or 0.2 M (heavy solid line) sucrose at 24°C.

Paynter. Oocyte membrane permeability and cryoprotectant. Fertil Steril 2001.

How does the volume change during the second step - exposure to 1.5 M PROH + 0.2 M sucrose?

- A stays the same because no change in CPA concentration
- B immediate shrinkage due to the added sucrose
- C volume response in relation to gradients caused by sucrose

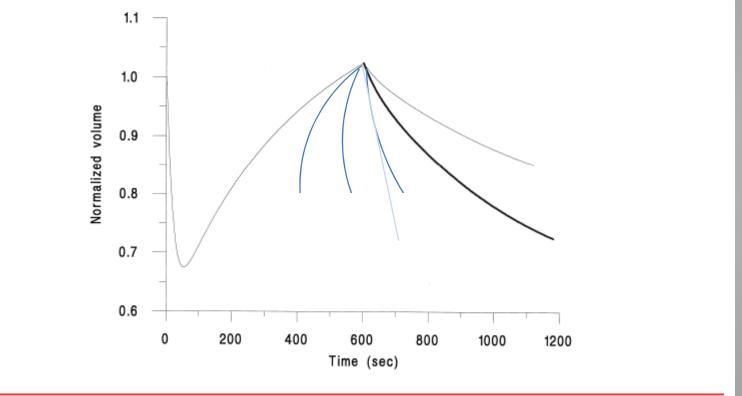
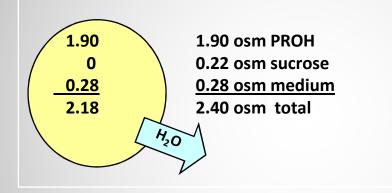
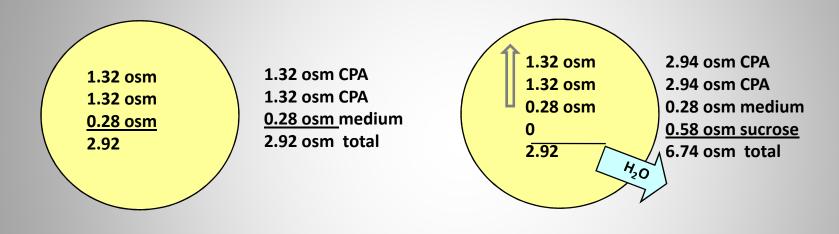


FIGURE 3

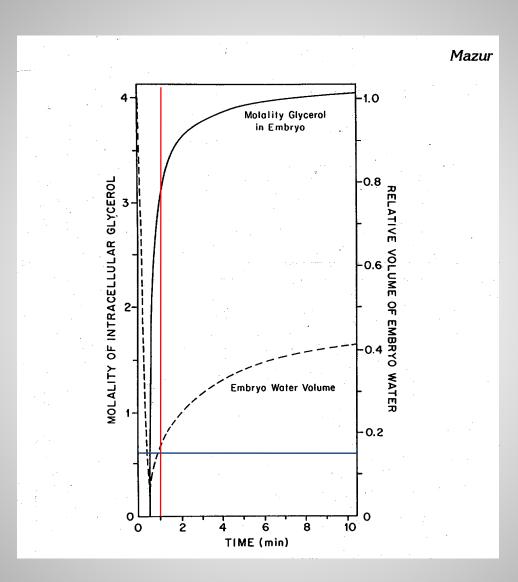
Predicted osmotic response of human oocyte exposed to 1.5 M propane-1,2-diol for 10 minutes at 24°C followed by exposure to 1.5 M propane-1,2-diol plus either 0.1 M or 0.2 M (heavy solid line) sucrose at 24°C.



Paynter. Oocyte membrane permeability and cryoprotectant. Fertil Steril 2001.



1. step



Kuwayama protocoll

Dr. U. Schneider © 2009

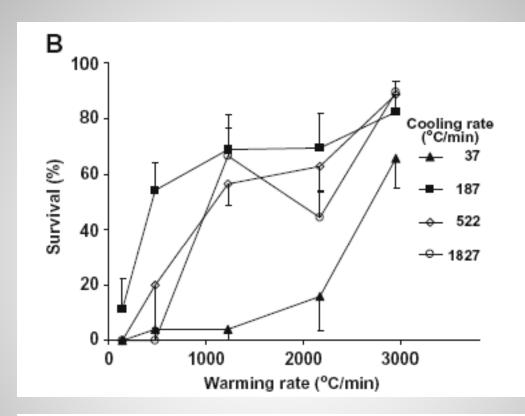
Do we need cryotips, cryotops, cryoleaf, etc.?

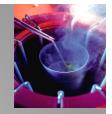
The underlying assumption of the use is that high survival demand the avoidance of IIF during cooling by converting water to glass, and the higher the cooling rate, the more likely that conversion.

Pragmatically it is fortunate that the devices used to achieve very high cooling rates also produce very high warming rates. Mechanistically it has resulted in confounding of whether cooling rate or warming rate are the important cooperative.

If the primary cause of injury or death in a vitrification procedure is ice recrystallisation during warming and not failure to vitrify during cooling, the potential remedies may be quite different.

Seki and Mazur, Cryobiology 59, 75-82, 2009




Fig. 3. (A) The survival of EAFS 10/10-vitrified oocytes warmed at 139, 476, 1220, 2170, 2950 °C/min as a function of the cooling rate. (B) The survival of EAFS 10/10-vitrified oocytes cooled at 37, 187, 522, 1827 °C/min as a function of the warming rate. The filled symbols depict conditions where the EAFS 10/10 solution froze; the open symbols depict where it vitrified.

Seki and Mazur, Cryobiology 59, 75-82, 2009

Dr. U. Schneider © 2009

Potential developments in the field

Chemical substitution in conventional CPA to enhance glass formation e.g. methoxylation of PROH and Glycerol reduces critical cooling rate from 500° C to 50° C/min

Stabilization of cytoskeleton with compounds like Taxol, Cytochalasin B

Add antinucleating agents to VS

Computer modelling of cell response during vitrification procedure

Raise intracellular sugar concentration by microinjection of Trehalose

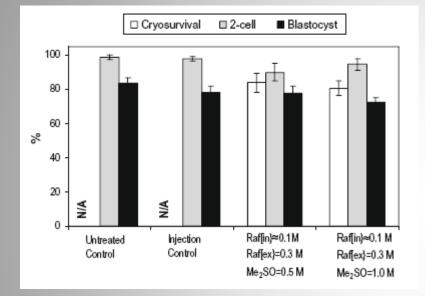


Fig. 1. Cryosurvival, fertilization, and embryonic development of mouse oocytes after cooling to -196 °C. The survival rates represent mean ± s.e.m. There was no significant difference between the groups (p > 0.05).

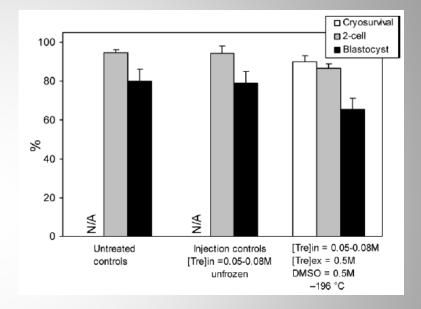
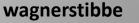


FIG. 5. Cryosurvival, fertilization, and embryonic development of mouse oocytes after cooling to -196° C. The rates represent mean ± SEM. There was no significant difference between the groups (P > 0.05). N/A indicates that control oocytes were not cryopreserved, and thus the cryosurvival is not applicable.

A.Eroglu, Cryobiology (2009), July 2009

Eroglu et al. Biol. Reprod., 80, 70 - 78, 2009


Dr. U. Schneider © 2009

S³ Vitrifcation System: A Novel Approach To Blastocyst Freezing

James J. Stachecki, Ph.D. Jacques Cohen, Ph.D. Tyho-Galileo Research Laboratories, 3 Regent Street, Suite 301, Livingston, NJ 07039 Email: james @galileoivf.com

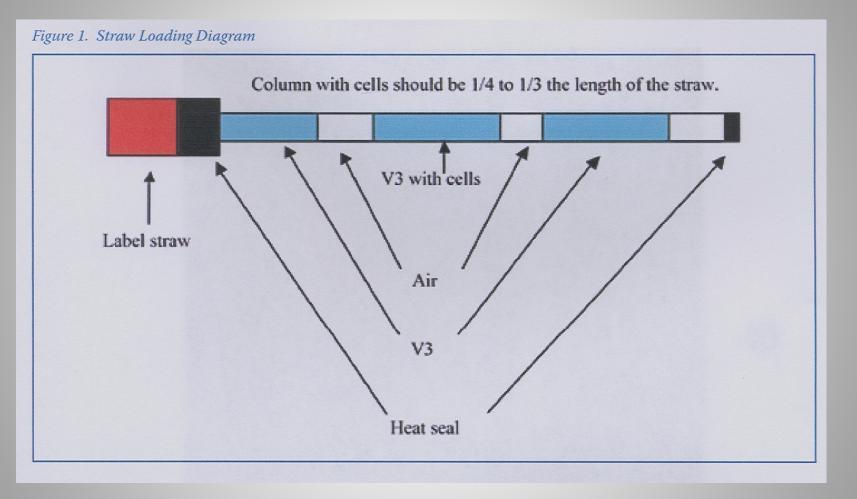
Table 1. Cooling rates for modern vitrification devices.

Device	Media (ul)	Freezing Rate
0.25cc straw	25ul	4460°C/min
Open-pulled straw	1.5ul	16,340°C/min
Cryo-Top	0.1ul	22,800°C/min
Cryo-Tip	<2ul	12,000°C/min
0.25cc straw (S ³ vit) ¹	10ul to 250ul	<100°C/min

From Kuwayama et al., (2005b). ¹This study.

Dr. U. Schneider © 2009

S-3 method


freezing contain	er: "standard" 0.25 cc straw
Cryo-Medium: CPA-solution	 PBS; cholin based medium; 20% HSA I. 10 % glycerol II. 10 % glycerol, 20% ethylenglycol III. 25 % glycerol, 25 % ethylenglycol
Handling:	CPA-Sol. I. 5 min. at roomtemp CPA-Sol. II. 5 min. at roomtemp CPA-Sol. III. up to 90 (-120) sec until exposure to nitrogen vapor ≈ -100°C during those 90 sec load and heat seal straw

keep at -100°C 2-5 min transfer straw into liquid nitrogen

S-3 method

Τ	h	a	W	i	n	g

straw 5 sec in air

10 sec in waterbath 20° C

CPA-Dilution

empty straw into cryomedium w/o CPA containing:

0.85 M sucrose, 5 min, RT
0.4 M sucrose, 5 min, RT
0.2 M sucrose, 5 min, RT
0.1 M sucrose, 5 min, RT

transfer into culture medium



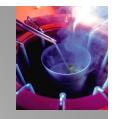
Table 3. Clinical results of S3 Vitrification on blastocysts.

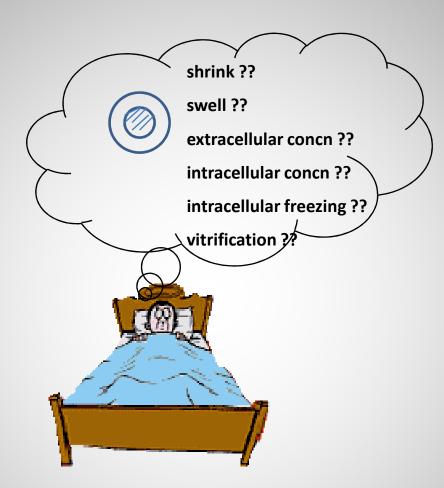
Clinic	Thawed	Intact	Transfers	Replaced	FHB	Preg/Transfer
A	104	86 (83%)	45	80	47 (58.7%)	32/45 (71.1%)
В	160	141 (88.1%)	77	131	43 (32.8%)	37/77 (48.0%)
С	41	35 (85.4%)	19	35	16 (45.7%)	12/19 (63.1%)
D	566	509 (89.9%)	209	509	N/A	116/209 (55.5%)
E	13	13 (100%)	8	13	5 (38.5%)	5/8 (62.5%)
Total	884	784 (88.7%)	358	768	111 (42.8%)	202/358 (56.4%)

Conclusion

Discuss some of the cryobiological factors that influence the vitrification procedure as applied to oocytes and embryos.

The results obtained with the cryotip are excellent, however, one has to realize that the vitrification method was tailored to the device.


There are a number of possibilities to modify the nonequilibrium vitrification method to allow easier and more secure handling also in combination with sealed 0.25ml straws.


Computer modelling will optimize the addition and removal procedures for vitrification solutions.

Standard slow freezing and vitrification should be seen as alternative methods. Similar cryobiological principles apply.

...if you dream at night how a cell responds during freezing and thawing then you begin to understand cryobiology

Dr. U. Schneider © 2009

Thank You For Your Attention !

email: ulrich.schneider@amedes-group.com

Dr. U. Schneider © 2009

