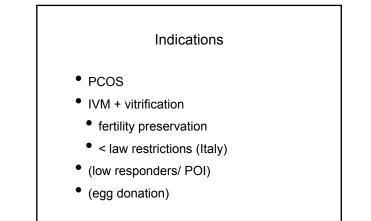
In vitro oocyte maturation: towards an improvement?

Michel De Vos, MD PhD UZ Brussel, Belgium

Universitair Ziekenhuis Brussel

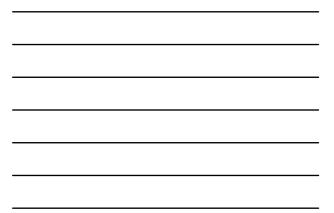
Presentation lay-out

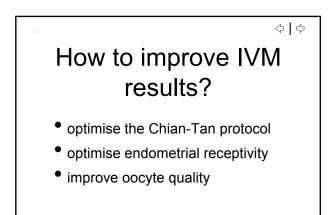

QuickTimeTM and a decompressor are needed to see this picture.

- Indications for IVM
- IVM today
- IVM tomorrow

Advantages of IVM as compared to conventional IVF

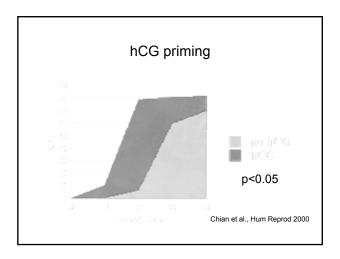
- DHSS avoided
- Simplified protocol
- Reduced cost reduced number of visits
- Drug related side effects avoided (weight gain, bloating, breast tenderness, nausea, mood swings, long-term risks)

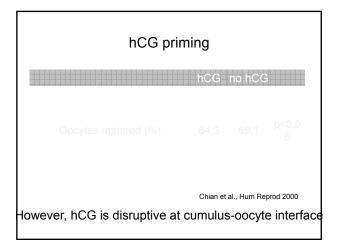

	1
Follicular development	
Stage Follicle size (cm)	
 IVM	
Gougeon, Hum Reprod 1986	



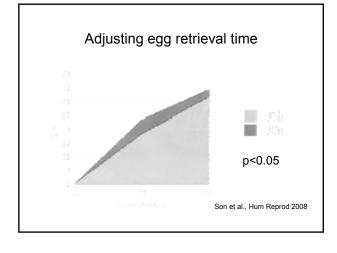
Lower success rate than conventional IVF ...

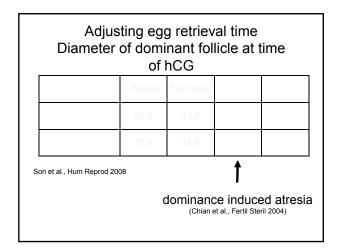
- asynchronous maturation of the oocyte
 - cytoplasmic maturation
 - nuclear maturation
- endometrium out of phase
- lower final number of matured oocytes

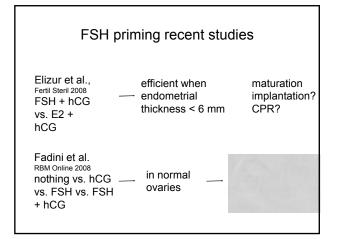

	IVM 2008	
	<35	
	35%	
	22%	
hian-Tan proto	col, Mc Gill, Montreal, Cana	ada



How to improve IVM results?


- optimise the Chian-Tan protocol
- optimise endometrial receptivity
- improve oocyte quality

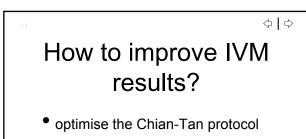



FSH priming

- To increase the number of oocytes?
- To increase the number of MII oocytes?
- To improve endometrium quality?
- To make egg retrieval easier?

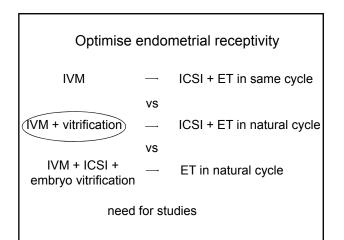
FSH priming previous studies

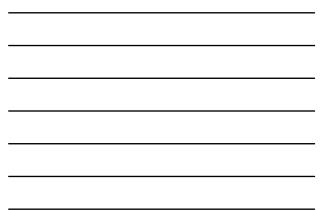
		•	with norma	-
				82,0%
FSH enha	ances the	effect of I	nCG on m	aturation


The effect of different gonadotrophin priming on in-
vitro maturation of oocytes in women with normal
ovaries: a prospective randomized study
Fadini et al., RBM Online 2008

	7,6	29,8
	4,0	16,3

Priming in IVM: current recommendations		
PCO(S)	hCG FSH priming	
normal ovaries	no priming or	
	FSH + hCG priming	

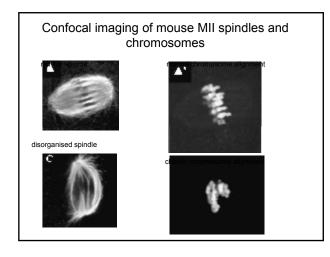

- optimise endometrial receptivity
- improve oocyte quality


Optimise endometrial receptivity

Endometrial thickness >10 mm predictor of pregnancy (Child, Fertil Steril 2003)

Preliminary study of endometrial development: Lindenberg, pers. communication biopsy 7 days after egg retrieval Results: 9 biopsies analysed 2 biopsies in phase 7 biopsies out of phase

Need for larger study



Developmental potential of embryos after IVM

- aneuploidy?
- spindle ultrastructure?
- epigenetics?

Aneuploidy?

- Abnormalities of chromosome segregation in IVM of horse and pig oocytes (Sosnowskiet al., Theriogenology 2003)
- Higher proportion of spindle abnormalities in oocytes matured in vitro (43.7%) than in oocytes matured in vivo (13.6%)(Li et al., Fertil Steril 2006)
- No significant difference of spindle organization, chromosomal alignment and aneuploidy between in vivo and in vitro matured oocytes in mice. (Xu et al., Systems biology in reproductive medicine 2008)
- Obstetric outcomes after IVM cycles are comparable to those after IVF/ICSI (Buckett et al., Obstet Gynecol 2007)

Aneuploidy?

- Abnormalities of chromosome segregation in IVM of horse and pig oocytes (Sosnowskiet al., Theriogenology 2003)
- Higher proportion of spindle abnormalities in oocytes matured in vitro (43.7%) than in oocytes matured in vivo (13.6%)(Li et al., Fertil Steril 2006)
- No significant difference of spindle organization, chromosomal alignment and aneuploidy between in vivo and in vitro matured oocytes in mice. (Xu et al., Systems biology in reproductive medicine 2008)
- Obstetric outcomes after IVM cycles are comparable to those after IVF/ICSI (Buckett et al., Obstet Gynecol 2007)

Aneuploidy?

- IVM does not lead to increased incidence of aneuploid oocytes (Chian, unpublished)
- lower developmental potential results from DNA fragmentation (TUNEL assay) (Gianaroli, unpublished)

Epigenetics?

- Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes (Khoureiry et al., J Med Genet 2008)
 - About 60% of alleles were fully methylated in GV oocytes and that full imprint is acquired in most MII oocytes. Similarly to in vivo, de novo methylation of DNA occurred in vitro during oocyte maturation.

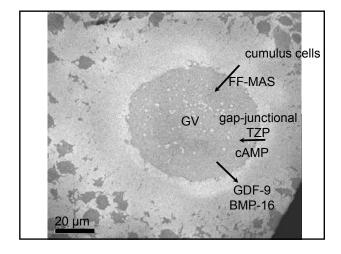
- optimise the Chian-Tan protocol
- optimise endometrial receptivity
- improve oocyte quality

How to improve oocyte quality in IVM?

Synchronise

- Cytoplasmic maturation
- Nuclear maturation

Preserve


oocyte - granulosa cell connection

Nuclear maturation

- Oocytes resume meiosis once removed from the follicle (extrusion of first polar body)
- In vivo: GV to MII only takes 24 hours after LH surge - cytoplasmic maturation takes longer

Cytoplasmic maturation

- Developing competence to regulate fertilisation
- Growth of organelles, accumulation of RNA and proteins to build up energy for downstream embryonic development
- Enable communication between cumulus/granulosa cell and oocyte (gap junctions): transzonal connection

How to synchronise nuclear and cytoplasmic maturation in IVM?

Add

- Maturation enhancers
- Meiosis inhibitors to the culture medium

Maturation enhancers

- FSH, LH, IGF-1, BMP, GDF9, GH, FGF, statins, neurotrophin
- FF-MAS (Follicular Fluid Activating Sterol)
- LIF/IL6 (Leukemia Inhibiting Factor/Interleukin 6)
- VEGF (Vascular Endothelial Growth Factor)
- EGF (Epidermal Growth Factor)

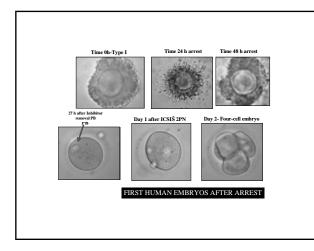
• other

Problems with proprietary issues (patents)

How to synchronise nuclear and cytoplasmic maturation in IVM?

Add

- Maturation enhancers
- Meiosis inhibitors


to the culture medium

Keep the oocyte meiotically arrested

- High levels of cAMP (analogues) prevent meiotic resumption (Dekel, Ann NY Acad Sci 1988)
- Cilostamide (Phosphodiesterase 3-inhibitor) (Tsafriri et al., Dev Biol 1996)
- Pre-maturation system (PMC)

BIOLOGY OF REPRODUCTION 74, 177-184 (2006) Published online before print 5 October 2005. DOI 10.1095/biolesprod.105.040685

Meiotic Arrest In Vitro by Phosphodiesterase 3-Inhibitor Enhances Maturation Capacity of Human Oocytes and Allows Subsequent Embryonic Development¹ D. Nogueira,²³ R. Ron-El,* S. Friedler,* M. Schachter,* A. Raziel,* R. Cortvrindt,³ and J. Smitz³

Temporary inhibition of meiosis

Evidence that maturation progresses :

- during butyrolactone-1 inhibition:
 - continued RNA synthesis (Pavlok, 2000)

RNA transcription ongoing (Sui et al., 2005)

- during PDE3 A inhibition:

GV chromatin undergoes NSN - SN transformation (Nogueira et al., Biol Reprod 2003)

Effect of PMC on fertilisation and embryonic developmental rates in mice

Cilostamide	52,3	57,3
	20,6	50,8
	81,8	85,0

Vanhoutte et al., Mol Reprod Dev 2008

Keep the oocyte meiotically arrested

- High levels of cAMP (analogues) prevent meiotic resumption (Dekel, Ann NY Acad Sci 1988)
- Pre-maturation system (PMC)
- Cilostamide (Tsafriri et al., Dev Biol 1996)
- Forskolin (adenylate cyclase activator) + PDE3-I improves fertilisation (Shu et al., Hum Reprod 2008)

Maintain transzonal connection between granulosa cells and oocyte

- Three-dimensional culture + PDE3-I
 - Development beyond the blastocyst stage is lower in cumulus-free oocytes compared to cumulus-intact counterparts (Ali et al., Reprod Biomed Online 2006)
 - Improved fertilisation and embryonic development in <u>rescue IVM</u> in a threedimensional co-culture system (Vanhoutte et al., Hum Reprod 2008)

Conclusions/ Future prospects

- In most centres, IVM will not replace IVF
- Valuable technique in selected patients
- Focus on improvement of culture media
 more competent MII oocytes
 - embryos with higher implantation potential
- Focus on endometrium
- IVM + vitrification = promising

Acknowledgements

Johan Smitz MD PhD, Laboratory of Follicular Biology Paul Devroey MD PhD, Centre for Reproductive Medicine Josiane Van der Elst MD PhD, Centre for Reproductive Medicine

Dominic Stoop MD PhD, Centre for Reproductive Medicine Claire Bourgain MD PhD, Dept. of Histopathology Catherine Staessen, Dept. of Cytogenetics Sandy Lenie BSc, Laboratory of Follicular Biology Tom Adriaenssens BSc, Laboratory of Follicular Biology

