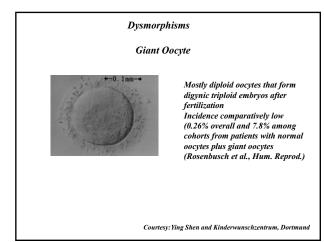
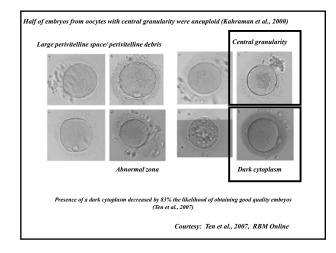


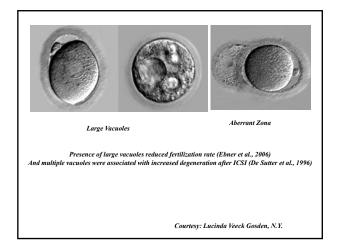
Classification	Parameters	References	
Follicular Vascularisation /Blood Flow	Transvaginal power-Doppler analysis Van Blerkom et al. 1997, - 2000; B. of vascularisation and blood flow 2001; Palomba et al., 2006 (no); Pa 2006, Ragni et al., 2007 (no) Merce		
Morphology/Expansion of Cumulus	Branching of signalling pathy this may cause uncoupling of cumulus expansion	ways downstream from LH surge; oocyte maturation and from	
Apoptosis	Apoptosis in cumulus or granulosa cell Is it feasable to assess apopt to/or shortly after fertilizatio	Piquette et al., 1994; Lee et al., 2001; Yang Raiamahendran 2002: Abu-Hassan et al. tosis in individual follicles prior 200?	
Components in FF	IGFs & IGFBPs;	Artini et al., 1994; Kawano et al., 1997, Oosterhuis et al., 1998; Fried et al., 2003; Nicolas et al., 2005; Wang et al., 2006	
	 G. Analysis of concentrations of individual follicles and quan To require too much time to be t B. procedures to identify the, be 	titation may be difficult and useful in routine clinical est" high quality oocyte;	
	Some factors likeAMH rathe	r related to depletion of pool	
	leptin; nitric oxide, lipid peroxidases/ ROS	Mantzoros et al., 2000, Wunder et al., 2005, DePlacibo et al., 2006 Bedaiwry et al., 2004, Lee et al., 2004; Pasqualotto et al., 2004	
Gene expression profiling	Expression of Has2, Cox-2, Grem1, pentraxin 3 a Omias are most per	Mckenzie et al., 2004; Zhang et al., 2005; Saluctui et al., 2005; Gasca et al., 2007;Paff omising 5; Cilo et al. 2007;Hamel et al.2008	

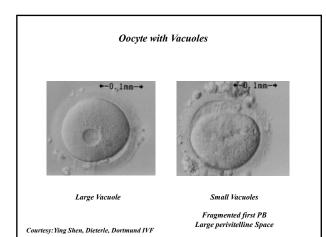
Identifying Good Quality Oocytes at Oocyte Level

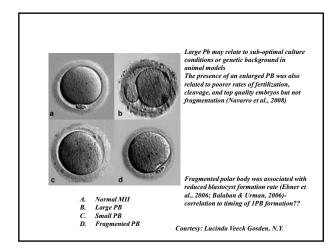

Requires isolation/ ICSI and in cases like chromosomal analysis also cryopreservation

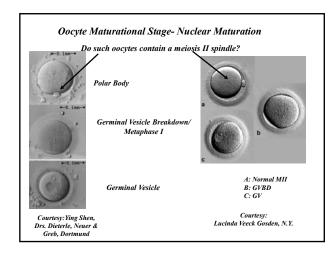

- 2. Oocyte
 - a. Stage of development/nuclear maturation (GV/GVBD/PB) b. Chromosomal constitution (polar body analysis)
 - b. Chromosomal constitution (polar body analysis)
 c. Cytoplasmic maturation/ developmental potential
 - (morphology/dysmorphisms)
 - d. Oocyte secreted factors

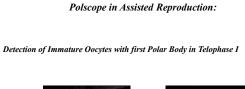
Assessment of the best after cryopreservation

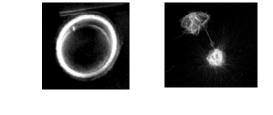

Markers may differ from those of fresh oocytes!

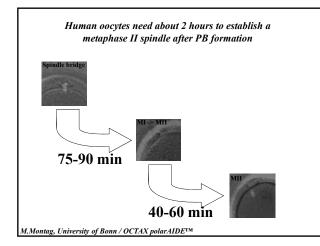

- 3. Cyopreserved Oocyte
 - a. Intactness with respect to all cellular components

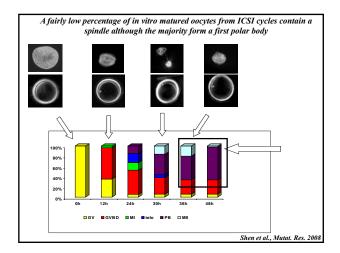


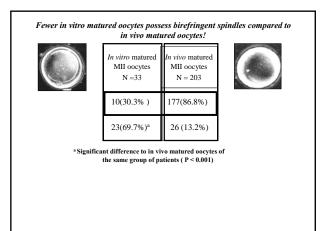







5




There is no information of ,late' oocytes (telophase I).

GV or MI oocytes may be able to progress to meiosis II but are likely to be compromised in developmental potential even when able to emit a first polar body and become fertilized!

The detection of such oocytes may help to optimise treatment or counselling.

7

A high percentage of immature GV-stage oocytes that matured in vitro to Metaphase II are aneuploid!

70% vs. 54% aneuploidy in in vivo versus in vitro matured oocytes, P<005)

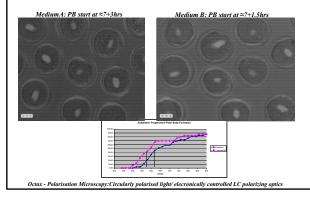
62% vs. 40% complex aberrations; P<.001

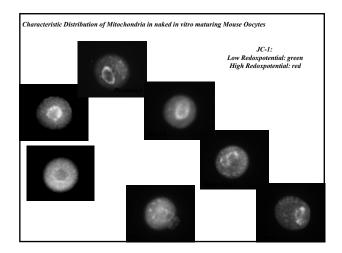
55% vs. 34% chromatid containing oocytes; P<001

Magli et al., 2006 Fertil Steril. 86(3):629-35

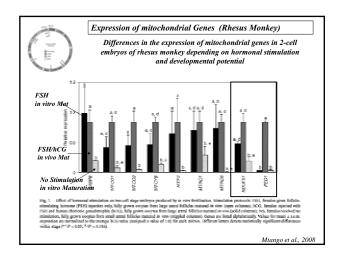
Information on ,delayed' oocytes is missing!

Accelerated or delayed maturation can be related to adverse exposures inducing checkpoint or changes in gene expression that predispose to errors in chromosome segregation!

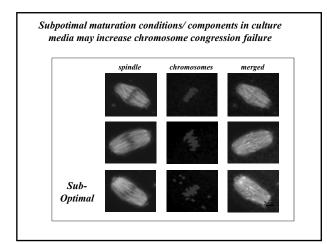

Several genes in cell cycle regulation, spindle formation and chromosome separation are altered in expression in aged oocytes.


Depletion of such genes in animal model by RNAi causes altered maturation kinetics, spindle aberrations and aneuploidy!




Eichenlaub-Ritter et al., in preparation

In in vitro maturation (and probably also in vivo) timing of progression to meiosis II is dependent on milieumaturation conditions/ components in culture media

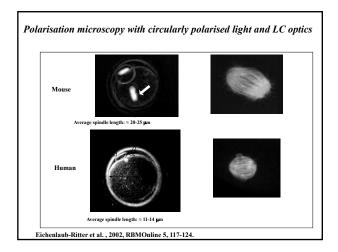


9

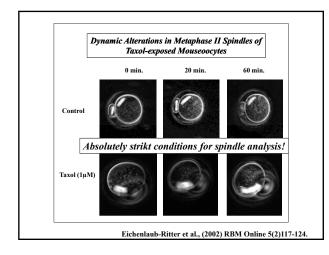
Pragmatic Approach:

<u>IVF/ICSI</u> Identify dysmorphisms, analyse spindle and zona

Are oocytes mature?

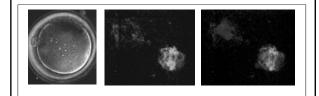

How many oocytes are ,immature'

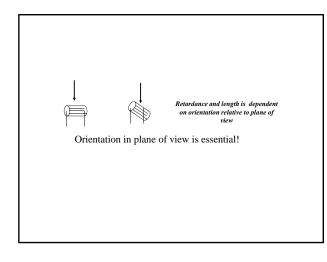
Change protocol Decide on timing for ICSI/IVF Identify ,risk⁶ patients

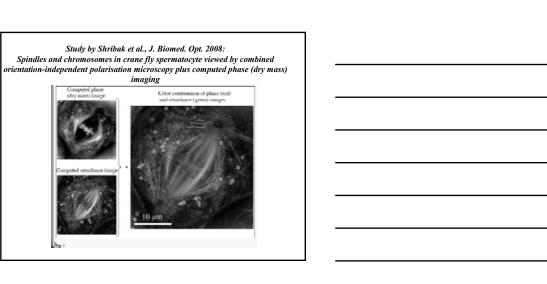

IVM:

Optimize culture conditions Stimulation protocols/ timing of fertilisation etc.

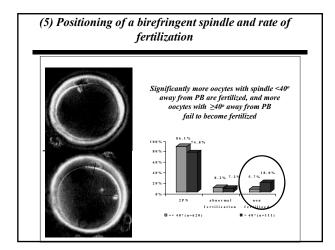
Altered gene expression in aneuploid oocytes:]
Spindle dynamics Cytoskeleton	Polarisation Microscopy Polarisation Microscopy GVBD/PB/PN Formation/Cleavage
Cell surface Secreted protein	Polarisation Microscopy/FF
Debate: Can presence, positioning, leng of the meiotic spindle be predictive o	, , , ,



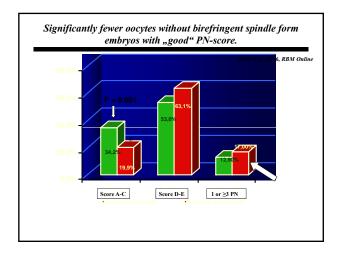



Absence of a birefringent spindle is frequently associated with disturbed spindle organization and chromosome congression failure

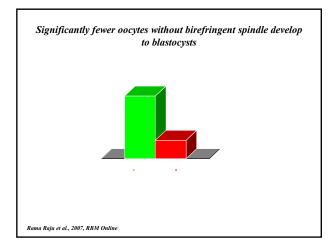
This does not implicate that presence of a spindle predicts chromosome alignment!

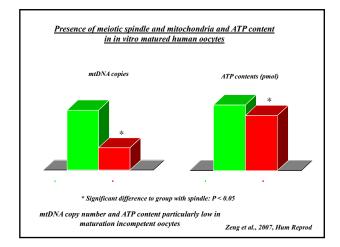


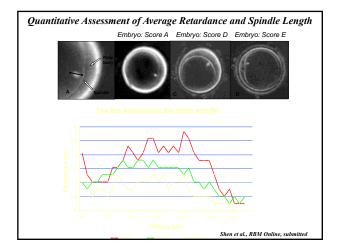
Color



	n	% + spindle	%Ferti	lized	Embryo
			+ spindle	-spindi	le quality
Wang et al. (2001) Fertil.Steril.	533	61.4	61.8	44.2ª	
Wang et al. (2001) Hum.Reprod.	1544	82.0	69.4	62.9ª	
Rienzi et al. (2003) Hum. Reprod.	532	91.0	74.8	33.3 ^b	
Cooke et al. (2003) Hum.Reprod.	124	92.7	70.4	n.d.	
Moon et al.(2003) Hum.Reprod.	626	83.6	84.9	75.7ª	(62.9/35.9)
Cohen et al. (2004) Hum.Reprod.	770	76.0	70.6	62.2ª	
Konc et al. (2004)J.Ass.Reprod.Genet	428	74.8	73.4	n.d.	
Shen et al. (2006) RBM Online	1369	83.9	88.5	66.4 ^b	
Chamayou et al., RBM Online	967	42.9(?)	n.d.	n.d.	(43.5/48.5)
Rama Raju et al., (2007)RBM Onl.	205	88	82.5	31.1 ^a	(48.5/14.3ª)







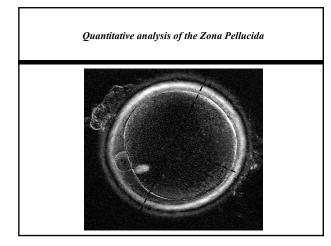


Mean retardance of light and spindle length correlate to PN-Score					
	n	Retardance (nm)	Length (µm)		
PN-Score A,B	180	1.72 ± 0.43	12.7 ± 1.8		
PN-Score C	51	1.53 + 0.40*	12.5 + 1.6		
PN-Score D	324	$1.52 \pm 0.44 **$	12.6 ± 1.7		
PN-Score E and Abnormals	121	1.39 ± 0.46**	11.7 ± 1.7**		
Significantly different to score A,B; * $p < 0.05$; ** $p < 0.001$.					
Shen et al., 2006, RBM Online					

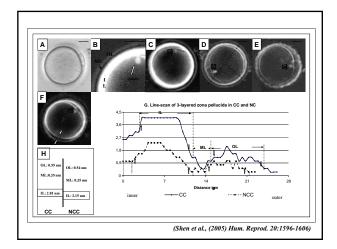
Mean retardance of light and length of oocyte spindle correlate :

- 1. to embryo quality (Shen et al., 2006, RBM Online)
- 2. conception cycle (Shen et al., 2006, RBM Online)
- 3. to development to the blastocyst (Rama Raju et al., 2007, RBM Online)
- 4. to mean maternal age (Rama Raju et al., 2007, RBM Online)

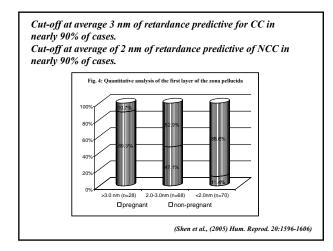
Spindles are extremely metastable organelles !!!

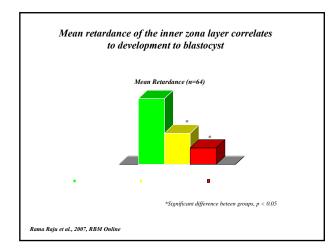

<u>High retardance</u> and ,normal⁴ shape is not necessarily associated with aligned chromosomes and euploid state

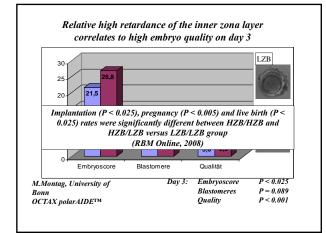
Difficult to define general ,cut-off* values for good/bad oocytes

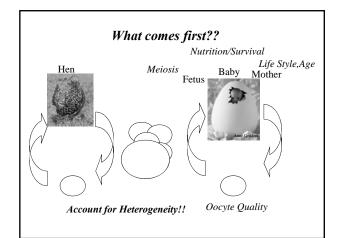

However, <u>low retardance</u> or absence of spindle may signal Problems with handling Problems with stimulation Genetic predisposing factor Helpful to identify ,best' oocyte

Cryopreservation: Reduced birefringence indicative of reduced fibre density after cyopreservation (Cotticio)


Altered gene expression in aneuploid oocytes:	
Spindle dynamics Cytoskeleton Chromatin structure, Cell cycle regulation	→ Polarisation Microscopy → Polarisation Microscopy GVBD/PB/PN Formation/Cleavage
Cell surface Secreted protein	→ Polarisation Microscopy/FF






Morphological markers: interference optics polarisation microscopy imaging of kinetics

Molecular markers: FF

Cumulus Metabolites/oxygen consumption

<u>Genetic markers:</u> Screening for polymorphisms/ susceptibilty genes

Personalised Treatment in Routine IVF! New approaches in routine treatment!

Y. Shen E. Vogt I. Betzendahl S. Lüke

Thank you for your attention!