

Cell Type	ART Technique/ conditions	Species	Affected Gene or Epigenetic Mark	Comments	Reference
PREIMPLANTATION EMBRY OS	Culture Media	Mouse	H19, 1gC	Aberrant expression due to presence of FCS in M16 culture medium.	Khosla et al., 2001
	Culture Media	Mouse	H19	Loss of H19 methylation upon culture in Whitten's medium.	Doherty et al., 2000
	Culture Media	Mouse	182	Aberrant expression bias to maternal allele in preimplantation embryo	Ohno et al., 2001
	Culture Media	Mouse	H19	High levels of ammonium causes ab errant expression of H19	Lane and Oardner 2003
	Culture Media	Mouse	Ig7, Meg1 and Peg1	Reduced expression of three imprinted genes after culture with FCS	Fernandez- Oonzalez et al. 2004
	Culture Media	Макее	M19, 1g2	Quinn's medium causes aberrant H19 expression in embryos, aberrant H19 and Ig7 in ES calls	Li et al., 2005
	Je vitro development	Sheep	1977	Aberrant expression and methylation of IgDr in a Large Offspring Syndrome model	Young et al., 2001
	Je vitro development	Cow	182.182+	Reduced expression in <i>In vitro</i> produced embryos compared to in vivo embryos	Gutierrez-Adar et al., 2004
	De vitro culture	Meuse	Dantl	Increased Drivel expression in textro produced blastocysts	Wang et al., 2005
	Je vitro development	Con	Dantl, Mathl	Increased Donul expression, decreased Mach2 in the vitro produced blastocysts	Wrenzycki er al., 2001
	De vitro	Moter,	DNA	Increased DNA methylation compared to be	Zaitseva et al.,
	Culture Media	Cow	Dent3a, 1g2r	Upregulated expression of Down3a and IgDr in CR1aa and KSOMaa respectively	Sagirkaya et al 2006
00CYTES	Je vitro growth of follicles	Mouse	1g7r, Pegl, H19	Loss of methylation at IgGz, and Peg1. Oain of methylation at H19	Kerjean A. et al., 2003
	Je vitro maturation	Mouse	Pegl	Je vitro culture for 8 h, Peg/Mear DMR becomes fully methylated. Demethylation may occur after culture for 28 hrs in vitro	Imamora et al., 2005
	De vitro maturation	Human	H19	Abnormal methylation at HTP locus	Borghol et al., 2006
	Superovulation	Mouse	DNA methylation	Olobal methylation abnormalities	Shi and Haaf., 2002
	Superovulation	Human	NIS PIGI	Abservant gain of methylation at HIP, loss of methylation at the PEGI gene	Sato et al., 200
	Cause not identified	Human	KvDMR1	Failure to establish methylation imprint at RVDMRJ in a MI cocyte	Orens et al., 2007
	Synthetic serum substitute in media during its vitro	Cow	Dantla	Significantly reduced Downla expression during IVM with media containing synthetic serum substitute	Sagirkaya et al 2007

Studies on Human Oocytes & Preimplantation Embryos

- 1. Establish which epigenetic regulatory factors are expressed during human oogenesis + preimplantation development
- 2. Understand **imprint** establishment and maintenance
- 3. To analyse expression of imprinted genes during normal oogenesis + preimplantation development
- 4. Compare epigenetic marks and imprinted gene expression in embryos derived from various ART treatments (IVF vs ICSI)
- All this to serve as a framework for understanding epigenetics in normal development and also ART-induced epigenetic disease

•Little/no functional work can be done

Limitations of Analysis in Human Oocytes Preimplantation Embryos

Limitations of non-array methods for expression

- Non-array methods allow analysis of only ~4 genes per embryo/oocyte
- · Hard to control across individual experiments
- Replicate experiments?

Focussed Microarray Analysis of Imprinted Gene Expression in Human Preimplantation Embryos

- 1. To design, develop & validate a bespoke gene expression microarray containing all human IGs
- 2. To develop gene expression microarray technology to single oocyte/embryo level to detect potential disruption of IG expression in human blastocysts.
- 3. Use to map IG expression in *in vitro* derived embryos
- 4. To use this system to test the 'safety' of existing and emerging human ART procedures including IVF, ICSI and oocyte IVM (*in vitro* maturation).

Justification of a Focussed Gene Expression Approach to Assessing Epigenetic Disruption in Human Embryos and ES cells.

- Imprinted Genes are susceptible to disruption during in vitro culture
- Use Imprinted Genes themselves as Biomarkers
- Focussed array-based methods allows analysis of all known imprinted genes (n=70) per single embryo/oocyte
- · Can repeat experiments from each embryo, pool or use individually
- Gives a 'Global' idea of epigenetic disruption for imprinted genes across all chromosomes
- In contrast, alternative such as bisulphite genomic sequencing analysis limited to one gene/region.
- Controls included (sample 'quality', sexing)
- Limitation to 100 genes (total) reduces complexity of bioinformatics

Chromosome 11 Imprinted genes. ADV11/NO21V2, 7973 Chromosome 11 Imprinted genes. ADV11/NO21V2, 7973 Chromosome 11 Imprinted genes. PLACE, NYNBA, KITER SUCCESS, COMPANY, CO

DNRT38, DNRT31, Cell Bexing controls 2FY, SRY, AFX, XIST Blastocyst Marker Genes OCT4, TERF1, DA82, KRT18

	Experiment	1	Experiment 2		
Brain vs Mixed Tissue					
Blastocyst 1 (ICSI)vs Mixed Tissue		936 936 53 53 936 936	5.5 5.5 5.6	906 900	
Blastocyst 2 (IVF) vs Mixed Tissue					

Conclusions

•Aim to understand epigenetic biology of human gametogenesis & embryos to assess if/how ART may affect epigenetic regulation.

•Tools & methods described here to assess the effectiveness of using expression of imprinted gene as 'biomarkers' of epigenetic disruption.

•Where expression of IG is affected, follow up by bisulfite methylation analysis of imprinted gene DMRs in the same embryo.

•Tools such the IG array may become useful for the epigenetic safety testing of ART-derived embryos and other *in vitro* cultured cells like human ES cells.

-Allelic expression analysis suggests variable imprinting of PEG1/MEST and H19 between human preimplantation embryos.

•Must establish cause of variability- may be natural inter-individual differences in imprinting or may be induced by ART and embryonic development *in vitro*

•Use this knowledge to adjust ART treatments accordingly

Acknowledgements

This work was supported by BDF NEWLIFE

The UK's leading Child Health and Research Charity.

I disabled babies, children and families.