

Paternal methylation imp during human sper	rinting of matogene	H19 gene isis
Fetal spermatogonia (24 weeks)	100%	unmethylated
Adult spermatogonia	25% 6% 69%	unmethylated hypomethylated methylated
Adult spermatocytes	5% 95%	hypomethylated methylated
Adult spermatids	100%	methylated
	к	erjean et al, Hum Mol Gen, 2000

Alteration	ns of methylatio	n state ir	n human sperm
	Global/Gene	Sperm	Methylation imprinting Maternal (MI) - Paternal (PI)
Manning et al., 2001	SNRPN	mixed	57-63% abnormal MI
Benchaib et al., 2003	Global	mixed	in teratozoospermia
Marques et <i>al.</i> , 2004	MEST H19	normal normal oligo	Unmethylated, normal MI Methylated, normal PI 17-30% incomplete PI
Houshdaran et al., 2007	7 NTF3, MT1A PAX8, PLAGL1	mixed	Hypermethylation
Kobayashi et <i>al.</i> , 2007	H19, GTL2 PEG1, LIT1, ZAC PEG3, SNRPN	oligo	14 % abnormal PI 21 % abnormal MI
Marques et <i>al., 2008</i> <i>H19</i> DMR	MEST H19 6 th CTCF oligo	oligo oligo	14 % abnormal MI 47% abnormal PI

Imprinting status analysis of *H19* and *IGF2* Differentially Methylated Regions in normal and infertile men

17 men with normal sperm parameters19 men with isolated alteration of sperm mrphology22 men with oligo-astheno-teratozoospermia

Methylation status of 47 CpGs arranged in 4 clusters localized in DMR0 and DMR2 of *IGF2* gene and in *H19* DMR (3rd and 6th CTCF binding site) after bisulfite conversion of genomic DNA by pyrosequencing

on phenotypes and epigenetic inheritance?

	Methyla	Methylation	
	normal (n=27)	low (n=16)	
Pregnancy rate	28%	15.8 %	
Delivery term (weeks)	40.7 ± 0.58	40.3 ± 0.50	
Birth weight (g)	3090 ± 394	3053 ± 91	

I - Originality of this work

In normozoospermia patients:

1) we reported for the first time the methylation status of the two IGF2 DMRs (DMR0 and DMR2) and of two regions of /H19/ ICR containing the 3^{rd} and 6^{th} CTCF binding sites

2) The quantitative pyrosequencing analysis described with a high accuracy the methylation status of the 47 CpG included in these four regions and found a mean of 86.8%±6.9 of methylation for these four regions

3) A high methylation level was found in /IGF2/ DMR0.suggesting the possibility of transmission of paternally methylated allele in somatic cells after fertilization.

In infertile patients

 For the /IGF2/ DMR and /H19/ ICR 6th CTCF binding site, the quantitative pyrosequencing analysis of normal sperm samples lead us to define a threshold of methylation for all CpGs positions and classify the patients in different groups according their methylation status

2) Very specific perturbations of the /H19-IGF2/ locus methylation pattern have been frequently detected in human spermatozoa produced by abnormal spermatogenesis. Surprisingly, no isolated loss of methylation was observed on the IGF2 DMR0 and the H19 ICR 3rd CTCF binding site

II - Questions and perspectives

- Could studies of DNA methylation be informative to predict gamete imprinting defects associated with disturbed spermatogenesis?

- Are DNA methylation alterations observed in spermatozoa independent or not of chromatin remodelling and what are the consequences?

- Is the methylation profile of imprinted genes in spermatozoa stable in a given man?

 Even if using abnormally methylated sperm is probably not influencing ART outcome, consequences of imprint methylation errors on growth abnormalities and health of children born from ART need further studies.