

BMP signalling in the human fetal ovary is developmentally-regulated and promotes PGC apoptosis

Andrew Childs, PhD
MRC Human Reproductive Sciences Unit
Edinburgh, UK

Extrinsic factors regulate germ cell fate decisions

What is the function of BMP signalling in human fetal ovary?

- BMPs essential at multiple stages of gametogenesis
- BMP4 promotes proliferation of isolated mPGCs in vitro
 Pesce et al., 2002
- BMP4-treated fetal mouse ovaries contain fewer meiotic cells
 - Ross *et al.*, 2003
- No known roles for BMP4 in regulating human PGCs

The BMP signalling pathway

Are BMPs expressed in the human fetal ovary?

+p=0.05, 8-9 v 14-16 wks, +++p=0.001, 8-9 v 14-16/17-20 wks, ***p<0.0001, 8-9 v 14-16 wks, n=5-6

What are the targets of fetal ovarian BMP signalling?

Is BMP signalling active in the human fetal ovary?

Re-localisation of pSMAD1/5 does not impair germ cell responsiveness to BMP4

14-17 week disaggregated ovaries

(**p<0.01,***p<0.001, n=3)

Determining the effects of BMP4 treatment on first trimester germ cells

8-9 week human fetus (female)

- retains germ-somatic cell interactions
- •more accurately reflects the *in vivo* situation

Gonadal architecture is maintained *ex vivo* in the absence of growth factor support

63d ovary +10d culture, GC marker: AP-2γ

Does BMP4 treatment affect germ cell number?

Does BMP4 inhibit proliferation or promote apoptosis?

Proliferation

phosphoHistone H3

Apoptosis

Cleaved Caspase 3

63d ovary +10d culture

Does BMP4 inhibit proliferation or promote apoptosis?

BMPs have pro-apoptotic effects in diverse developmental contexts

- Eye development
 - Trousse et al., 2001
- Capillary regression
 - Kimono and Shibuya, 2003
- Inter-digital apoptosis during limb morphogenesis
 - Zou and Niswander, 1996
- Focal apoptosis during brain development
 - Graham et al. 1993, 1994
- Promote apoptosis in association with MSX proteins
 - Hox-related developmental regulators
 - expression not previously described in the gonad

MSX genes are expressed in human fetal ovary

Does BMP4 promote *MSX* gene expression in the human fetal gonad?

BMP4 promotes apoptosis in human PGCs

Conclusions

- Expression and functionality of BMP signalling is developmentally-regulated in human fetal ovary.
- BMP4 promotes apoptosis in human ovarian PGCs.
 - May explains the reduction in meiotic cells in BMPtreated fetal mouse ovaries.
- Organ culture vs. isolated PGCs?
 - Subtle differences in developmental stage?
 - Effect of feeder cells?

Acknowledgements

MRC HRSU

Hazel Kinnell
Craig Collins
Kirsten Hogg
Samira Tritton
Rosey Bayne
Richard Anderson

Alan McNeilly

R.I.E.

Anne Saunderson
Joan Creiger
Isobel Morton
Bruntsfield Suite staff

SMAD6 can inhibit SMAD nuclear translocation by sequestering pSMAD1/5

Does SMAD6 inhibit pSMAD1/5 nuclear trans-localisation?

SMAD6 expressed exclusively by somatic cells

RanBP5 / Importin β 3 relocalises at meiosis in the fetal mouse ovary

E13.5 E14.5

Hogarth et al. (2007) Dev Dyn 236:2311

Is BMP4 an autocrine factor?

К Нодд

Typical cross-reaction of 5-

10% with BMP2, and BMPRs

Effects of dorsomorphin on gonadal development

