Effect of age on the transcriptome of the human MII oocyte

Marie Louise Grøndahl, DVM, PhD Fertility Clinic, Hvidovre Hospital, Copenhagen University Hospital Denmark

Contents

- Cytoplasmic maturation
- The transcriptome of the human MII oocyte
- Effect of age on the MII transcriptome

Maturity of the oocyte

- 'Nuclear maturation' is used to describe the oocyte maturation stages of the chromosome compartment: GV, MI and MII
- **'Cytoplasmic maturation'** covers the rest: the organelles, the transcriptome and the proteins stored in the cytoplasma during oogenesis.

Developmental competence

- timely translation of stored maternal transcripts provide the ooplasma with new proteins
- post translational modification of stored or newly synthesized protein sets the exact timing for cellular events
- processes involved in degradation of proteins and mRNAs remove no longer needed molecules

The microarray technique has made it possible to approach the transcriptome part of the 'cytoplasmic maturation'.

The transcriptome of the human MII oocyte

Materials and Methods

- 15 Women undergoing IVF/ICSI treatment
- Short antagonist protocol, Puregon and Orgalutran (Organon, Denmark)
- One COC and follicular fluid with mural granulosa cells was donated, if > 6 COCs available for the treatment
- Zona were removed with Tyrodes solution (MediCult, Denmark)
- The oocyte was flash frozen within one hour after ovum pick up

extraction and

extraction and \rightarrow hybridization amplification and \rightarrow to the gene chip labelling of mRNA (cRNA) (PicoPureTM Isoloation Kit (Arcturus, USA))

Labeled RNA (pumple) I atching probes in

*The feature will now flue

Results

Patient and treatment data

Number of donated follicles	15
Age (years)	33.1±2.7 (27-39)
FSH cd2-3 (IU/l)	5.9±2.0 (2.0-13.0)
BMI	22.6 ± 2.7
Reason for treatment	Male factor: 10 Ovulationdefect: 3 Unexplained: 2
Cycle number	1.2 ± 0.4
FSH total (IU)	1785±383 (1200-4050)
FSH days	8.9±1.6
No of oocytes	11.6±4.6
"Follicle size" (ml)	2.5±0.9

$Results \, / \, {\tt Discussion}$

• 10,428 transcripts representing 7,470 genes were present in the human MII oocyte

	Sample	Number of transscripts	whole genome arrays
Human	Individual MII oocytes	8,125	(Woods et al. 2007)
	Pooled (3-10) MII oocytes	4,801 - 12,031	(Wells and Patrizio, 2008), (Jones et al., 2008),(Assou et al.,2006) (Jaroudi et al., 2009). (Kocabas et al., 2006).
Murine	Pooled (25-500) MII oocytes	10,977- 13,892	(Hamatani et al., 2004) (Pan et al., 2008)

Results Enrichment analysis

- In this list of expressed genes in the MII oocytes, 5,213 of the expressed genes have a biological and a molecular process term assigned
- 2,257 genes have no functional term assigned, yet.

Results

Biological function

Figures in (): enrichment score > 1 is significant; p < 0.001

Molecular function

Figures in (): enrichment score > 1 is significant; p < 0.001

- List of expressed genes
- Biological function
- Molecular function
- Signalling pathways

Competent or incompetent oocyte?

- What characterize the developmental machinery in a competent oocyte?
- Does the transcriptome part of the 'cytoplasmic maturation' differ?
- Age is a significant quality parameter!

Hvidovre Hospital, 2003-2007 1st cycle

The effect of age on the transcriptome of the human MII oocyte

<36 years x 37-39 years

Results Patient and treatment data

	Younger	Older
Number of donated oocytes	10	5
Age (years)	31.1±2.7 (27-35)	37.8±1.3 (37-39)
FSH CD2-3 (IU/I)	4.5±1.7	8.9±3.3 *
Length of infertility (years)	2.1±1.5	1.6±0.9
BMI	23.4± 2.5	21.0 ± 1.4
Reason for treatment	Male factor: 8 Ovulation defect: 2	Male factor: 2 Un-explained: 2 Ovulation defect: 1
Cycle number	1.2 ± 0.4	1.2 ± 0.4
FSH total (IU)	1,505±383	2,345±1,003*
FSH days	8.9±1.6	8.8±0.8
No of oocytes	11.9±3.8	11.2± 4.6
"Follicle size" (ml)	2.5±0.8	2.5±1.0

Data are mean \pm standard deviation. * P< 0.05

Results / Discussion

- 351 transcripts, 342 unique genes, (4,5%) showed significant expression change with age, fold change >1.5, p <0.05
- 103 genes > 2 fold
- 239 genes >1.5 fold

-2.0 -1.6 -1.1 -0.7 -0.2 0.2 0.7 1.1 1.6 2.0

Results / Discussion

	Age groups (number of biological replicates)	Number of Differentially expressed genes	Array platform	
Human	<36 years (10) >36 years (5)	351 transcripts / 4.5% 103 genes > 2 fold, 239 genes >1.5 fold	48,000 transcripts Affymetrix, Human Genome U133 2.0 Plus	Present study
Human<32 years(2)Oocytes failed to fertilize after32-40 years(1)> 40 years(2)IVF/ICSI		608 transcripts / 28% > 1.5 fold change	8,500 transcripts Affymetrix 'Human Genome Focus Array'	Steuerwald et al., 2007
Murine MII oocytes harvested 18 hrs after hCG	5-6w (3) 42-45w (3)	 530 transcripts /5% 99 transcripts > 2.0 431 transcripts > 1.5 	22,000 transcripts Agilent technolo- gies NIA 22K array	Hamatani et al., 2004
Murine MII oocytes harvested 16 hrs after hCG	6 weeks (4) MII 66 weeks (4) GV	 2129 transcripts/ 13% 2001 transcripts >1.4 128 transcripts>2.0 335 transcripts / 2% 298 transcripts >1.4 47 transcripts > 2.0 fold 	39,000 transscripts Affymetrix 'murine genome array' MOE430 v2	Pan et al., 2008

Results qRT-PCR confirmation of microarray data

Gene Symbol	Ratio by microarray	Ratio by real time PCR		
	5 older oocytes (37-39 years) 10 younger oocytes (27-35 years)	2 older oocytes (39 years) 4 younger oocytes (26-35 years)		
SMAD2 SMAD family member 2	0.42	0.38		
MRPL43 mitochondrial ribosomal protein L43	2.50	1.40		
ANAPC4 anaphase promoting complex subunit 4	0.65	0.08		

Results

Enrichment analysis of the differentially expressed genes

	Annotational term			p-value
Cell compartment	Intracellular		188	0.000074
	Nucleus		75	0.004391
Cell cycle	Cell cycle		27	0.002681
	Mitotic cell cycle	Mitotic cell cycle		0.00148
	Regulation of mitosis		5	0.005004
Spindle / microtubule	Cytoskeleton organization and biogenesis		19	0.00078
	Spindle organization and biogenesis		4	0.000733
Cellular organization	Cellular component organization and biogenesis		61	0.004947
	Regulation of cellular component organization		6	0.002685
	Golgi vesicle transport		9	0.001402
DNA	DNA metabolic process		28	0.000248
	DNA replication		10	0.003983
	Nucleobase, nucleoside, nucleotide metabolic process		87	0.000507
	Hydrolase activity, acting on ester bonds		21	0.004135
DNA repair	DNA repair		10	0.016809
	Response to DNA damage stimulus		13	0.010501
RNA	Regulation of transcription from RNA polymerase II promoter		15	0.008099
	Negative reg of transcript from RNA polymerase II promoter		7	0.008154
Metabolism	Metabolic process		171	0.000035
	Biopolymer metabolic process		122	0.000000
	Catalytic activity		107	0.009242
Post translational	Protein modification process		46	0.000565
protein modification	Post-translational protein modification		43	0.000088
	Protein catabolic process		12	0.000749
Ubiquination	Protein ubiquitination		6	0.00222
	Ubiquitin ligase complex		5	0.00569
Energy	ATP binding		36	0.007735
	Purine ribonucleotide binding		43	0.007701
Apoptosis	Programmed Cell death		20	0.035156
Cionalling and	Dustain lineas astivity		20	0.000007

Developmental competence

- timely translation of stored maternal transcripts provide the ooplasma with new proteins
- post translational modification of stored or newly synthesized protein sets the exact timing for cellular events
- processes involved in degradation of proteins and mRNAs remove no longer needed molecules

Results ubiquination

- The most prominent function of ubiquitination is labelling of proteins for protesomal degradation by the ubiquitin ligases. The proteasomal degradation pathway is essential for many cellular processes including the cell cycle regulation and progression, where cyclins are ubiquitinated, i.e. is cyklin A degradated by the ubiquitin ligase, anaphase promoting complex
- Ubiquilin 1 (1.6 fold), an anaphase promoting complex subunit, ANAPC4 (1.6 fold) and two ubiquitin-conjugating enzyme genes UBE2D (1.9 fold) and UBE4B (1.8 fold) were down regulated while three genes for ubiquitin specific peptidases USP2, USP34 and USP42 were up-regulated (2.9, 1.6 and 1.6 fold, respectively).
- These findings showing mainly reduction in the ubiquitination by age is in accordance with previous findings on murine (Hamatani *et al.*, 2004) and human oocytes (Steuerwald, *et al.*, 2007).

Results cell cycle

Number one signalling network affected by age 'organism development and cell cycle'

SMAD2

Table II. mRNA expression pattern in human oocytes and preimplantation embryos. The figures show the number of oocytes and preimplantation embryos that were positive, and the figure in parentheses shows the number of patients that donated the material

Gene	Ooc	yte (3)	4-cell (3)	8-cell (4)	Morula (6)	Blastocyst (10)
TGFBR-I	3/5	15/15	0/4	0/5	0/6	7/10
TGFßR-III	-	15/15	0/4	0/5	0/6	0/10
Smad2 ^a	5/5	15/15	4/4	5/5	6/6	8/10

 $TGF\beta R-I = transforming growth factor (TGF)\beta$ receptor type I;

 $TGF\beta R-II = TGF\beta$ receptor type II.

^aRT–PCR product obtained using primer for Smad 2/3 was by sequencing shown to be Smad2.

Results/Discussion SMAD2

- SMAD2 was significantly down regulated (1.5 fold) in MII oocytes from aged compared to young mice. Pan et al 2008
- Presence and dosage of SMAD2 have been shown to have an essential role in early embryonic development in studies with mutant mice and in vitro culture of mice oocytes with inhibition of SMAD2 signalling. Weinstein, Yang *et al.*, 1998, Nomura and Li, 1998.

Results meiosis, mitosis

EME1

- Separase was up-regulated (1.6 fold) in the older oocytes compared to the younger oocytes
 Over-expression of separase induces premature separation of chromatids, lagging chromosomes, and anaphase bridges (Zhang, Kuznetsov *et al.*, 2008)
- EME1 (essential meiotic endonuclease 1) gene expression was down-regulated (1.6 fold) in older oocytes compared to younger

Small decreases in gene dosage of EME1 promote re-replication and polyploid cells in addition to chromosome aberrations as DNA gaps and breaks (Hiyama, Katsura *et al.*, 2006).

Results meiosis, mitosis/spindle

• **CSPP** (centrosome/spindle pole associated protein) was upregulated 1.7 fold) in the aged oocytes Over-expression of CSPP has been shown to impair mitosis and promote multipolar spindles (Patzke, Stokke *et al.*, 2006)

CSPP

• **Ran** (member RAS oncogene family/GTP-binding nuclear protein Ran) was down regulated by 1.8 fold, (p = 0.0041)

-The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Deng et al. 2008 -Involved in the acentriolar spindle assembly during meiosis i mouse oocytes.

-Ran was 1.4 fold up regulated in MII oocytes from aged mice as compared to younger. Pan et al 2008.

Conclusion

- Significant difference in the transcriptome of the MII oocyte between younger and older oocyte
- 342 of 7470 expressed genes were differentially expressed between the two age groups
- Analysis of the these 342 genes indicates alterations in -ubiquination, generally reduced
 -cell cycle, top signalling network affected
 -mitosis/spindle, suggests molecular basis for the age-associated increase in aneuploidy in human oocytes and pre-embryos
- Gene expression profiles in cumulus and granulosa cells are also affected by age

When and how are the changes induced in the oocyte?

- 'limited oocyte pool' hypothesis, where the limited number of antral follicles available in older women could lead to suboptimal oocyte for ovulation
- 'over time' hypothesis, while resting in the prophase, changes happen to the oocytes or its milieu inducing damage to the meiotic/developmental machinery

Thanks

Jeanette Bogstad, Helle Meinertz, Vibeke Boujida Hartvig, Thue Bryndorf Anita Elverdal, Pernille Andersen Kirsten Langbøl, Marianne Pedersen, Mette Villads Nielsen, Tanja Schrøder Fertility Clinic Hvidovre Hospital Rehannah Borup Microarray Centeret Rigshospitalet

Claus Yding Andersen Rigshospitalet Organon, Denmark `a division of Schering-Plough'