Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Univ.-Prof. Dr. Thomas Haaf

Institut für Humangenetik

Methylation reprogramming dynamics and defects in gametogenesis and embryogenesis: implications for reproductive medicine

Epigenetics and DNA methylation

- Heritable change of the genetic information, which is not produced by a change in the DNA sequence itself (mutation), but by reversible modification of the DNA and chromatin structure.
- Methylation at CpG dinucleotides is the only epigenetic mark that targets DNA directly.
- It suppresses transcription by recruiting methylcytosinebinding proteins and chromatin remodelling complexes to cisregulatory regions.

Genomic imprinting and genome reprogramming During gametogenesis the two germline genomes acquire parent-specific epigenetic modifications in form of DNA methylation patterns.

Parent-offspring conflict hypothesis

... postulates a conflict over the allocation of maternal resources during pregnancy.

Genomic imprinting and genome reprogramming The two complementary sets of chromatin must be reprogrammed after fertilization for somatic development of the new organism.

The maternal and paternal genomes are reprogrammed at different time points and by different mechanisms during preimplantation development

Assisted reproductive technologies interfere with very sensitive time periods for epigenetic genome reprogramming in the germline and early embryo

Genome-wide methylation reprogramming defects in mouse twocell embryos

Excess demethylation (diandric patterns)

Failed demethylation (digynic patterns)

Effects of epigenetic factors: ovarian stimulation

		In vitr	o development	MeC staining		
Embryos	Treatment/ Medium	Number analyzed	% not developing to blastocyst	Number analyzed	% with abnormal methylation pattern	
B6C3F1	IVF / HHª	20	80%	7	71%	
B6C3F1	IVF / M199 ^b	28	25%	22	32%	
B6C3F1	IVF / M16 ^c	29	17%	12	9%	
B6C3F1	Direct preparation from non-superovulated fem	n 40 ales	→ 5%	100	→ 10%	
B6C3F1	Direct preparation from superovulated females	n 50	→ 14%	30	→ 20%	
B6C3F1	M16	45	20%	18	22%	
B6C3F1	M16- ^d	47	29%	17	29 %	
B6C3F1	Acetaldehyde / M16	30	8 7%	18	61%	
NMRI	M16	56	28%	35	40%	
NMRI	M16-	57	63%	36	58%	
NMRI	Acetaldehyde / M16	25	100%	28	7 1%	

Superovulation increases the rate of abnormal methylation patterns and embryo loss during preimplantation development.

- Environmental factors such as superovulation, embryo culture, and toxic compounds (alcohol, endocrine disruptors, etc.) can affect the regulation of methylation reprogramming.
- Genome-wide disturbances of methylation reprogramming lead to early embryo loss. (,,All or Nothing" rule)
- Methylation reprogramming defects of individual genes may be compatible with further development and then contribute to phenotypic variation and disease.

Important mouse studies

• Ovarian stimulation decreases the oocyte and embryo quality in mice.

Ertzeid and Storeng, J. Reprod. Fertil. 96, 649-655, 1992

- Mouse embryo culture affects fetal development, methylation patterns and expression of imprinted genes. Doherty et al., Biol. Reprod. 62, 1526-1535, 2000 Koshla et al., Biol. Reprod. 64, 918-926, 2001 Mann et al., Development 131, 3728-3735, 2004
- Embryo culture affects the behaviour of adult mice. *Ecker et al.*, *PNAS 101, 1595-1600, 2004*

Long-term effects of culture of preimplantation mouse embryos on behavior

David J. Ecker*[†], Paula Stein*, Zhe Xu*, Carmen J. Williams[‡], Gregory S. Kopf^{‡§}, Warren B. Bilker[¶], Ted Abel*, and Richard M. Schultz*^{‡∥}

Departments of *Biology and ¹Biostatistics and Epidemiology and [‡]Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA 19104

Large offspring syndrom (LOS)

- In bovine and ovine in vitro production.
- In vitro maturation of oocytes and embryo culture are associated with epigenetic changes in *IGF2R* and fetal overgrowth.

(Young et al., Nature Genet. 27, 153-154, 2001)

Our specific goals

- We want to study the epigenetic effects of different in vitro maturation (IVM), cryopreservation, and superovulation conditions on oocytes and the resulting embryos.
- Comparative aspects in mouse, bovine, and human oocyte and embryo development and potential.
- One important prerequisite for such studies is the development of efficient techniques for the methylation analysis of multiple genes in a few cells.

The analysis of DNA methylation patterns in single cells or small pools of cells is a challenging technological problem

• High signal-to-noise ratio.

- Competition of background DNA for primer annealing.
- Bisulfite-converted DNA is highly degraded, depleted of C (sense) and G (antisense) nucleotides, and endowed with long T stretches.
- No reliable methods for whole genome amplification (WGA) of small amounts of bisulfite-converted DNA.
- Amplification bias that is the preferential amplification of a single or a few DNA molecules from the starting material (bisulfite-converted DNA).

Effects of superovulation on methylation imprints in early mouse embryos

- Bisulfite sequencing of differentially methylated regions (DMRs) of representative imprinted genes.
- Comparative analysis of methylation patterns in individual mouse morula-stage embryos from superovulated and nonsuperovulated C57BL/6J x CAST/Ei matings.

Methylation imprints on paternal (*H19*) and maternal (*Snrpn*, *Igf2r*) chromosomes

TT10

→ Methylated CpG→ Unmethylated CpG

Jocytes

H 19	Snrpn	Igj2r
$\begin{array}{c} - 0 & - \infty & - \infty & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		
	$\begin{array}{c} 0 & 0 & - 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0

T.M.

Sperm

No detectable differences in *H19* methylation between pools of superovulated versus nonsuperovulated C57BL/6J x CAST/Ei embryos

superovulated vs. non-superovulatedsuperovulated vs. non-superovulated4-cell embryos8-cell embryos

maternal superovulated vs. non-superovulated allele

paternal superovulated vs. non-superovulated allele

Classic bisulfite (plasmid) sequencing of the *H19* DMR in individual mouse (B57BL6/J x CAST/Ei) hybrid morula-stage embryos

... does not produce representative results on the epigenetic status of the embryo. Amplification bias!!!

Limiting Dilution (LD): a novel strategy for methylation analysis of small amounts of DNA

- Single DNA molecules (i.e. from a few bisulfitetreated cells) are distributed into separate wells/tubes and then amplified individually.
- The aim is to detect a binary state: signal / no signal.
- The dilution of competing background molecules (distribution over several PCR tubes) increases template-to-background ratio).
- This avoids any amplification bias and allows one to determine the methylation patterns of single DNA molecules.
- Multiplex analyses after LD provide a way to increase the number of studied genes.

 Collecting oocytes from superovulated C57BL/6J mice.

(Pyro-)

Sequencing

- Hyaluronidase digestion to remove cumulus cells.
- Visual inspection of oocytes: are all cumulus cells removed?
- Collecting aliquots of 10 oocytes each in 10 µl PBS.

- Bisulfite conversion with the EZ DNA Methylation Direct Kit (Zymo Research).
- Recovery rate ≥ 80%; Sensitivity 5-10 cells.
- Elution of bisulfiteconverted DNA in 10 µl buffer.
- Dilution 1:10 with water to a final volume of 100 µl.

- 100 µl diluted bisulfite-converted DNA are distributed into 10 PCR tubes with 10 µl template each (equivalent to one oocyte).
- 6 control tubes without template DNA.
- 1st round Multiplex PCR with amplicons for three genes (H19, Igf2r, and Snrpn).
- AmpliTaq Gold (Applied Biosystems).

- Optimized 2nd round nested PCR assays for the three studied genes (*H19*, *Igf2r*, and *Snrpn*) in Singleplex reactions.
- FastStart Taq system (Roche).
- Classic bisulfite (plasmid) sequencing. Direct sequencing. Bisulfite pyrosequencing.

Classical bisulfite sequencing of LD products from 10 oocytes: H19

Classical bisulfite sequencing of LD products from 10 oocytes: *Igf2r*

Bisulfite pyrosequencing of LD products from 10 oocytes (multiplex reaction): H19 and Snrpn

Bisulfite pyrosequencing of LD products reveals Snrpn methylation errors at single CpG sites

in vivo mouse oocytes
in vitro matured oocytes
vitrified IVM oocytes

8/241 CpGs (3%) 8/246 CpGs (3%) 14/228 CpGs (6%)

Stochastic errors (most likely without functional implications)

Bisulfite pyrosequencing of LD products reveals abnormal Snrpn DMR methylation (imprinting mutation)

in vivo mouse oocytes
in vitro matured oocytes
vitrified IVM oocytes

0/28 alleles (0%) 2/32 alleles (6%) 1/30 alleles (3%)

Bisulfite pyrosequencing of LD products reveals

H19 methylation errors at single CpG sites

in vivo mouse oocytes
in vitro matured oocytes
vitrified IVM oocytes

0/105 CpGs (0%) 1/ 90 CpGs (1%) 3/127 CpGs (2%)

abnormal H19 DMR methylation

in vivo mouse oocytes
in vitro matured oocytes
vitrified IVM oocytes

0/24 alleles (0%) 4/24 alleles (17%) 0/27 alleles (0%)

Bisulfite pyrosequencing of LD products from single morula-stage (C57BL/6J xCAST/Ei) hybrid embryo

SNP to distinguish between the maternal (*Mus musculus*) and the paternal (*M. castaneus*) alleles

- Limiting dilution combined with bisulfite sequencing or bisulfite pyrosequencing allows the methylation analysis of 3-5 genes from pools of 10 mouse oocytes or single morula stage embryos.
- Mouse hybrids allow one to distinguish between paternal and maternal alleles by analyzing SNP positions.
- Amplicon lengths up to 300 bp give reliable results. Targets larger than 300 bp are more likely to be fragmented during the bisulfite conversion step.
- Methylation errors occur at the level of individual CpG sites (stochastic errors) and at the level of the entire allele (imprinting mutations).

ART is associated with an increased risk for

... congenital malformations (factor 1.3-1.4)
... low and very low birth weight (factor 2-3)
... some rare imprinting disorders (factor 3-12)

So far it is not clear

- whether epigenetic changes during gametogenesis and early embryogenesis and/or
- parental factors associated with infertility
 are responsible for these medical problems.

Beckwith-Wiedemann syndrome

(Exomphalos, Macroglossia, Gigantism)

Despite a 3-9fold increased prevalence, the absolute risk of receiving an IVF/ICSI child with BWS remains low (1 in 5.000)

Loss *LIT1* imprinting on chromosome 11p15

paternal

maternal

Imprinting defect in IVF/ICSI children

paternal

maternal

Are rare imprinting disorders in IVF/ICSI children only the tip of an iceberg ???

Angelman syndrome

Beckwith-Wiedemann syndrome

Fetal loss Low birth weight Congenital malformations Cardiovascular disorders Diabetes (Type II) Obesity Cancer Behavioral disorders Learning disorders

- Systematic studies of the association between human ART and methylation reprogramming defects are warranted.
- We perform methylation analyses of developmentally important genes in pregnancy losses after IVF/ICSI and of spontaneous conceptions.
- Genomic DNA from chorionic villi and fetal muscles is analyzed by bisulfite pyrosequencing.

Methylation analyses of CVS from abortions and stillbirths after assisted reproduction (ART) and of spontaneous conception (SC)

- We did not find an increased rate of extreme (potentially abnormal) DMR or promoter methylation values after ART, but significant and trend differences in the methylation levels of *LIT1*, *H19*, and *NANOG* between ART and non-ART samples.
- It is plausible to assume that the observed methylation differences at 3 of 9 loci studied are an indicator for more profound epigenetic differences.
- ART or factors associated with parental infertility can affect the epigenome of the next generation.
- The role of stochastic and/or environmentally induced epimutations for human phenotopic variation and disease is likely to be largely underestimated.

Methylation analysis of fetal muscles from abortions and stillbirths of spontaneous conception

 Compared to adult blood samples, fetal muscles from abortions and stillbirths exhibit a much broader range of methylation variation and a higher proportion of extreme methylation values.

- The vast majority (>90%) of outliers are hypermethylated DMRs. This points to stochastic failures of the mechanism which normally protects the hypomethylated allele from de novo methylation after fertilization.
- The observed methylation abnormalities are consistent with a mosaic state that is the presence of hypermethylated and normally methylated cells in the same sample.
- Multifactorial threshold model for epigenetic pregnancy loss: If extreme methylation values due to primary epimutations in imprinted and/or other developmentally important genes exceed a critical threshold, the phenotype becomes manifest. Similar to other multifactorial diseases, additional genetic and environmental factors might also play a role.

Subgroup Sample no.	Weeks gestation	Methylation value				No of outliers	Phenotype		Karyotype/ Genital sex		
		H19	MEG3	LITI	NESP 55	PEG3	SNRPN		Placent	a Fetus	
Spontaneous abortions											
2	17	\leftrightarrow	\leftrightarrow	î	\leftrightarrow	1	\leftrightarrow	2	CHA	NAD	46,XY
118	20	\leftrightarrow	† †	\leftrightarrow	\leftrightarrow	† †	1	3	RC	NAD	46,XY
Stillbirths											
1	35	Ť	<u></u> Υ1	\leftrightarrow	Ť	\leftrightarrow	<u>î</u> †	4	VMI	NAD	male
6	37	Ť	Ť	\leftrightarrow	Ť	î	1	5	VMI	NAD	46,XY
7	32	\leftrightarrow	\leftrightarrow	\leftrightarrow	Ť	\leftrightarrow	Ť	2	VMI	NAD	46,XY
16	22	\leftrightarrow	Ť	î	\leftrightarrow	1	1	4	VMI	NAD	female
30	36	Ť	11	\leftrightarrow	î	11	11	5	VMI	NAD	46,XX
53	28	Ť	11	\leftrightarrow	\leftrightarrow	1	11	4	VMI	NAD	46,XY
93	22	\leftrightarrow	Ť	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	2	VMI	NAD	46.XY
102	37	\leftrightarrow	Ť	\leftrightarrow	Ť	\leftrightarrow	11	3	VMI	NAD	46.XY
104	26	\leftrightarrow	Ť	\leftrightarrow	Ť	î	11	4	CHA	NAD	46.XY
134	24	\leftrightarrow	\leftrightarrow	î	\leftrightarrow	Ť	\leftrightarrow	2	NAD	Lymphangio ma	male

- Two of 55 (4%) spontaneous abortions and 10 of 57 (18%) stillbirths displayed extreme methylation values in multiple genes.
- All but one abortion/stillbirth with multiple methylation abnormalities were male, indicating that the male embryo may be more vulnerable to epigenetic reprogramming defects.

Detection of primary epimutations (faulty methylation patterns) in sperm

High prevalence of germline reprogramming defects in ICSI sperm

100 sperm samples of males attending a fertility center 15 samples exhibited faulty methylation patterns in at least one the 7 studied imprinted genes

Abnormal methylation patterns and sperm quality

<20% sperms with normal morphology 13/57 = 23%

p<0.05

>20% sperms with normal morphology 2/39 = 5%

Abnormal methylation patterns and ART outcome

All sperm samples (n=96)MethylationPregnancy RateAbnormal7/15 = 47 %Normal31/81 = 38 %

Oligospermic samples (n=14)MethylationPregnancy RateAbnormal2/7 = 29 %Normal5/7 = 71 %

• Our results suggest a role for germline reprogramming defects in male infertility.

 Transmission of epimutations by the sperm (and/or the oocyte) into the zygote may account for at least some of the mediacl problems that have been associated with ART

Conclusions

- The male and female germline-derived epigenomes must be reprogrammed after fertilization for somatic development.
- Disturbances in this highly coordinated process may contribute to developmental failures and defects.
- Much of the existing DNA methylation variation and abnormalities may result from stochastic events during epigenetic reprogramming in gametogenesis and early embryogenesis.
- The spontaneous epimutation rate is modified by genetic and environmental factors.
- Normal conception and assisted reproduction appear to be susceptible to similar dysregulation of epigenetic components.

- Imprinting defects that can be linked to a defined syndrome(s)/disease(s) appear to be rare in human ART.
- Significant differences in the methylation levels of some genes (within the range of normal variation) between ART and non-ART conceptions indicate that ART-associated factors can affect the epigenome of the next generation.
- A better understanding of epigenetic reprogramming in gametogenesis and early embryogenesis and of possible genetic modifiers and environmental factors is crucial for improving human infertility treatment.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Institut für Humangenetik

Nady El Hajj Tamara Hansmann Galyna Pliushch Matthias Linke Andreas May Ulrich Zechner Thomas Haaf

Institut für Gentechnologie/Mikrobiologie

Thomas Trapphoff Ursula Eichenlaub-Ritter

Universität Bielefeld