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Background

� Telomeres are repeated 

sequences of DNA at 

ends of chromosomes –

TTAGGG –

�Specific conformation 

and surrounded by 

proteins that protect free 

ends from degradation

Henning Wege



Background

� Functions:

• ‘End replication problem’ – DNA polymerase cannot 

replicate the very ends of chromosomes, hence DNA 

shortens slightly with each replication.  Telomeres 

avoid loss of critical coding DNA.

• Control movement of chromosomes 

eg interacting with spindle, 

other chromosomes’ telomeres

chromosome looping in spermatozoa



Background
� Telomeres shorten gradually with age due to DNA replication 

� Stem cell telomeres shorten less than somatic

� Short telomeres recognised by DNA repair mechanisms due to 
inadequate protein cap 

� Short telomeres promote end-to-end joining of affected 
chromosomes and chromosomal instability. 

� Critically short telomeres cause cell senescence/apoptosis via p53

cepceb.ucr.edu

� Telomerase – reverse transcriptase 
enzyme, ribonucleoprotein, 
synthesizes TTAGGG repeats 
at chromosome ends 
resulting in gradual lengthening.  
Targets shortest telos in cell

� Telomerase present in stem cells, 
immortalised cells, most cancer cells



Background

� Major changes in telomere length occur at 

specific or random occasions.

� Sporadic loss of telomere (exogenous DNA damage, 

problems with DNA repair, or spontaneous)

� Sister chromatid fusion and anaphase bridging � Sister chromatid fusion and anaphase bridging 

leading to ‘break-fuse-break cycles’ or possibly  

failure of chromatid separation (oocyte-specific 

mechanism in mice, Koehler et al, 2002)

� Deletions at termini 

� Further chromosomal instability

� Irrespective of telomerase

agron.missouri.edu



Background

� Quantum gains of telomere length due to

� Telomere ‘healing’ = direct addition of telomere 

repeats to the ends of broken chromosomes

� Non-reciprocal translocations – ie capture of the ends 

of other chromosomes (perpetuates chromosomal of other chromosomes (perpetuates chromosomal 

instability)

� Duplication of the ends of chromosomes

� ALT (‘alternative lengthening of telomeres’) by 

recombination, particularly between sister chromatids 

(SCE), leads to heterogeneous telomere lengths 

� Mechanisms can coexist with telomerase



• Alternative 

lengthening of 

telomeres 

pathway

• Increases 

variability in 

telomere length

Murray and Carr, 2008

Sister Chromatid Exchance 
(SCE)



Telomeres in oocytes

� Telomeres control chromosome 

movement in prophase I (bouquet 

formation), for homologous pairing and 

interaction with microtubules eg spindle. 

Time lapse shows motility at key stages

� In telomerase-null mice, short telos in � In telomerase-null mice, short telos in 

late generations associated with infertility, abnormal 

spindles and misalignment of metaphase chromosomes 

(Liu et al, 2004) 

� Telomere length in human (unfert) oocytes correlated with 

embryo quality (fragmentation) in sibling fertilised oocytes 

and eventual pregnancy outcome (Keefe et al, 2007).  

� Telomeres lengths of human oocytes found by Keefe et al 

were low (6-7kb).  



• Fewer 

spots seen 

in null than 

wt mice at wt mice at 

GV 

Liu et al, 2002



Telomeres in sperm

� Extensive variation in genome-wide telomere length (avg 

12.5, range 8-17.5kb)

� Populations of sperm with short, medium and long telo 

lengths identified in individuals (Baird et al, 2005)

� High prevalence of substantial telomere truncations.  

Baird et al, (2005) estimate only 19% of human sperm Baird et al, (2005) estimate only 19% of human sperm 

have normal telos at all chromosomes

� Telomere length inversely proportional to telomerase as 

cells progress through male germ line (Achi et al, 2000)

� Critically short telomeres associated with sperm DNA 

fragmentation (Rodrigues et al, 2005)



• Short, medium 

and long 

telomere length 

populations

• Sperm telomere • Sperm telomere 

length increases 

with age

Baird et al, 2005



Fertilisation

� Liu et al (2007) found oocyte telomere length short 

(surprisingly) and significant lengthening of telomeres 

between zygote and 2c (mouse)

� Telo length of parthenotes  was greater than after 

fertilisation (mouse)

� In late generation telomerase null mice, both oocyte and � In late generation telomerase null mice, both oocyte and 

sperm have similar contribution to loss of function (fert 

and cleavage) Liu et al 2002

� Newborn telomere lengths in ICSI

vs controls aged 0-19 (Robinson 

et al 2005)



• Failures of 
fertilisation and 
embryo embryo 
development in 
telomerase null 
mice

Liu et al, 2002



Telomere length in 

pre-implantation embryos
� Telomere lengths change during pre-

implantation development (mice and cattle)

Mice Cattle

Liu,L,et al(2007) Nature Cell 
Biology 9 1436-1441

Meerdo, L.N. et al (2005) Cloning 
and Stem Cells 7, 62-73



P<0.01

Bermejo-Alvarez et al 
2007

• Average telomere length ratios longer in female than 

male bovine blastocysts 

• Possible epigenetic regulation of telomere length or vv

• Possible sex-specific variability in e.g. resistance to 

oxidative stress.  



� In telomerase null mice, telomere extension in 

early embryos mediated by ALT-SCE (sister 

chromatid exchange), but extension was greater 

in w/t mice, so telomerase may also be active.  

Liu et al (2007)

� Schaetzlein et al (2004) found an increase in 

telo length at blastocyst in mice that was entirely telo length at blastocyst in mice that was entirely 

due to telomerase.

� In cloned embryos of cattle (4-5 kb, Lanza et al, 

2000) and mice (Wakayama et al, 2000), 

telomeres of the donor cell are lengthened, 

depending on donor cell type.

� No data on telomere lengths in human embryos.  



• that telomere length is important for, and may 

be a marker of, human pre-implantation 

embryo quality.  

• that the oocyte’s DNA damage repair 

Hypothesis:

• that the oocyte’s DNA damage repair 

mechanisms modify telomere lengths of 

incoming sperm 



Methods

�Human embryos, donated to research (R0155)
(Thawed), (cultured), zona removed
Cells dissociated with Ca++/Mg++ free medium
Spread with  citrate and Tween 20 
Fixed with methanol/acetic acid (Dozortsev et al, 2001)

�Control cells added to slide (mouse L-5178Y-S having 
known telomere length  of 7kb)known telomere length  of 7kb)

�FISH using fluorescently labelled quantitative PNA probe
for telomere sequence (DAKO).  DAPI for chromatin. 
Olympus IX81.  Imaged with fixed exposure time.  

�Telomere length calculated using TFL-telo (Zijlmans et al, 
1997) software, related to control telomere signals 

Additional controls:
Condensed chromosomes – signal location at termini
Correlation of nuclear area with signal strength – no 

dilution effect



Telomere signals
Control 5-cell embryo

Polar 
bodies

Blastocyst

Blastomere



Average telomere lengths of oocytes (n=23 from 12 
women) and embryos (n=24 from 9 couples)

* p<0.05

*

*

** p<0.05

**

**

n=15          7          13          6            1           4

**



Average telomere lengths of oocytes at different 
stages of maturation

* p<0.05

*

*

Keefe 

n=  4                  3                  2                14

* et al 
2007



Telomere length is U-shaped during the 
pre-implantation period

p<0.001
p<0.05

n=  23                           19                            4

Oocytes



Variation of average telomere length among 
embryo cohorts of different patients  
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Intra-embryo variability
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Comparison of measured fluorescence 
and nuclear area

• No correlation between fluorescence and area of nuclei.  
Differences in measured fluorescence are due to 
differences in telomere length alone



Telomerase activity in human embryos (Wright et al, 2001)



Conclusions
� Telomeres in human cleavage stage embryos are 

significantly shorter than oocyte telomeres (p<0.001)

� Telomere lengths at blastocyst are significantly longer 

than cleavage stage embryos (p<0.05)

� No difference between ongoing and arrested embryos 

� No difference between frozen and fresh embryos� No difference between frozen and fresh embryos

� Propose:  Telomere length of oocyte is likely important for 

ensuring sufficiency of ALT recombination-based 

mechanism in establishing embryonic telomere 

complement during cleavage phase, before telomerase 

becomes abundant at blastocyst.  

� Oocyte telomere length therefore influences 
embryonic genome stability through cleavage stages



Questions arising
• How does telomere length change between 

oocyte and embryo?  

• What affects telomere lengths in embryonic 

phase?  

– Assess mechanisms of telo extension and – Assess mechanisms of telo extension and 

oxidative damage. 

• What is the importance of inter-blastomere 

variation?  

– Impact of polarity, embryonic genome activation, 

mosaicism?

• More data needed.
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