A maternal-zygotic effect gene maintains genomic imprinting in embryos

Xiajun (John) Li, PhD Mount Sinai School of Medicine New York, USA

Discovery of genomic imprinting

Parental effect mediated by genomic imprinting

- 1. Discovered by Dr. Surani and Dr. Solter 25 years ago
- 2. Essential for embryonic development
- 3. Observed in eutherian and marsupial mammals, and plants
- 4. Parental origin-specific expression of imprinted genes
- 5. Cis-acting imprinting control region (ICR)
- 6. Germline-derived differentially methylated region (DMR)
- 7. Imprinting-related diseases (cancer, diabetes, etc.)

Parental origin-specific expression of imprinted genes

The ontogeny of genomic DNA methylation imprint (Adapted from Tilghman S. *Cell* 96:185-93, 1999)

Zfp57 encodes a putative KRAB zinc finger protein

Features of the KRAB zinc finger proteins:

- **1. KRAB zinc finger proteins are unique to vertebrates.**
- 2. There are over 300 members in the human genome.
- 3. KRAB zinc finger proteins interact with the co-repressor KAP-1/TIF1 β /Trim28 via KRAB box.

KRAB-ZFP proteins target HP1, HDACs and MBD3 to initiate repression

Adapted from Dr. Frank Rauscher's talk at the AACR meeting

Conditional knockout allele (floxed allele) and deleted (null) allele were constructed for *Zfp57*

Zfp57 mutant has reduced viability

Cross		Expected %	Observed %
4	~	of mutants	of mutants
+/-	+/-	25%	11%
+/-	-/-	50%	23%
-/-	+/-	50%	0%

Zfp57 has both maternal and zygotic functions

Maternal gene product of *Zfp57* is deposited in early embryos

-/- \$ x-/- \$ +/-\$ x-/- \$ +/-\$ x-/- \$

Zfp57 mutants displayed perinatal and neonatal zygotic lethality

Cross		Stage	% of dead	
4	0		mutant/total mutant	
+/-	+/-	E18.5	17% (n=18)	
		P1 pup	45% (n=20)	
 +/-	-/-	E18.5	0% (n=12)	
		P1 pup	40% (n=43)	

Loss of both maternal and zygotic *Zfp57* results in maternal-zygotic lethality around midgestation

Zfp57 is a maternal-zygotic effect gene

Zfp57 is primarily expressed in the germline in a polyA Northern blot

S: Stomach LI: Large Intestine L: Liver SP: Spleen T: Thymus K: Kidney LG: Lung C: Cerebrum H: Heart M: Muscle MG: Mammary Gland O: Ovary TE: Testis SV: Seminal Vesicle

S LI L SP T K LG C H M MG O TE SV

Zfp57 is specifically expressed in the oocytes by RNA in-situ hybridization

Antisense probe

Sense probe

A ZP3-cre transgene can be used to study maternal effect genes

LacZ reporter mouse X **ZP3-Cre** transgenic mouse

Adapted from de Vries, W. et al, Genesis 26:110-112, 2000.

Ablating maternal *Zfp57* in the oocytes can cause maternal-zygotic embryonic lethality

Two possible mechanisms for the maternalzygotic effect of *Zfp57*

- 1. Deposition of maternal cytoplasmic factors Redundant maternal and zygotic products
- 2. Heritable maternal nuclear determinants Genomic imprinting

Loss of *Zfp57* causes opposite effects on expression of the co-regulated imprinted *Dlk1* and *Gtl2* genes

PolyA Northern blot

Loss of *Zfp57* perturbs the imprinting status at the *Dlk1-Gtl2* domain

Maternal-zygotic effect of *Zfp57* on DNA methylation imprints

3, zygotic mutant

5, maternal-zygotic mutant

Met, methylated

Un, unmethylated

Loss of *Zfp57* causes loss of DNA methylation imprints

DNA methylation at the Snrpn DMR is absent in the occytes derived from null female mice

O Unmethylated CpG dinucleotide

Methylated CpG dinucleotide

Zfp57 is involved in the maintenance and acquisition of DNA methylation imprints

Summary

- 1. *Zfp57* is an essential maternal-zygotic effect gene.
- 2. *Zfp57* is involved in the acquisition and maintenance of DNA methylation imprints.
- 3. *Zfp57* maintains a large subset of paternal and maternal methylation imprints.

Acknowledgments

Harvard Medical School

Philip Leder (Mentor)

Fen Zhou

Cambridge Anne C. Ferguson-Smith Mitsuteru Ito Neil Youngson

Mount Sinai

Monica Andrade Dana Cullen Jipo Sheng Xiaopan Zuo

Helen Hay Whitney Foundation Black Family Stem Cell Institute American Heart Association National Institutes of Health (in process)

Purpose of my trip:

- 1. Learn novel things
- 2. Make new friends
- 3. Establish good collaborations
- 4. Visit historic places
- 5. Recruit talented students