PREDICTIVE POWER OF

OXYGEN CONSUMPTION

IN ASSESSMENT OF

OOCYTE /EMBRYO QUALITY

Ana Sousa Lopes, DVM, PhD *

OBJECTIVE

†success rates of IVF treatments

Only 50% of all transferred embryos get implanted

number transferred embryos by treatment cycle

Multiple gestations → obstetrical & neonatal complications

OOCYTE SELECTION

EMBRYO SELECTION

Nutrition and metabolism of early embryos: Non-invasive assessment

Depletion

Appearance

Gardner DK. and Leese HJ. (1999). Assessment of embryo metabolism and viability. In: Handbook of In vitro Fertilization Trounson A, Gardner DK (eds). Pp 348-366. CRC Press.

 H_20

 CO_2

Lactate

Amino acids

 NH_4^+

Enzymes

Cytokines

Proteins

WHY OXYGEN???

Oxygen provides the best indication of overall metabolic activity

BECAUSE

is directly related to ATP production via oxidative phosphorylation.

AND

An adequate cohort of good quality mitichondria is mandatory for a GOOD quality oocyte and embryo

Harvey et al. (2002)

MEASURING OXYGEN CONSUMPTION ...

- a) Cartesian diver techniques Fridhandler et al. 1957: Mills & Brinster 1967
- b) Spectrophotometric Methods Magnusson et al. 1977; Nilsson et al. 1982
- c) Ultramicrofluorescence techniques Houghton et al. 1996; Thompson et al. 1996
- d) Eletrochemical techniques
 - Overström method Overström 1987
 - Scanning Electrode Technique Smith et al. 1995, 1999; Trimarchi et al. 2000
 - Scanning Electrochemical microscopy Shiku et al. 2001; Koike et al. 2010

The EmbryoScope

Unisense Fertilitech

- Non invasive
- Rapid
- Simple and practical
- Adapted to measure individual embryos
- Accurate and consistent (reproducible)
- Highly sensitive
- Does not interfere with viability

THE PRINCIPLE

GV, MI (Day 0 and 1) and MII oocytes (Day 1, aged oocytes)

Rates ranged between = 0.6 - 0.7 nl/h

Differences in oxygen consumption

- Oocytes
- Patients
- Oocytes developing in vitro vs. arrested in vitro

Age and hormonal levels

Table 4. Baseline respiration rates of day 0 (D0) oocytes according to the age of the patient.

Patient age (years)	<i>D0</i> -n	GV Baseline respiration rate (nl O / h)a	n	DO-MI Baseline respiration rate (nl O ʃh) ^a
<35	42	0.575 (0.014)	32	0.569 (0.016)
35-37	25	0.608 (0.008)	9	0.628 (0.014)
38-40	16	0.532 (0.012)	8	0.499b (0.021)
>40	16	0.461 ^b (0.098)	12	0.466 ^b (0.013)

• FSH (lower oxygen consumption in patients with high FSH levels)

• Age (higher oxygen consumption in oocytes of younger women)

Stimulation protocol

Higher oxygen consumption of oocytes in patients stimulated with FSH

Tejera et al. 2010 ESHRE Rome

Stimulation protocol & hormonal levels

Total dose of gonadotrophins

Estradiol levels

Tejera et al. 2011 (in preparation)

Fertilization

Oxygen consumption higher in oocytes with correct fertilization

Embryo quality

Higher oxygen consumption in oocytes producing good quality embryos (not significant)

56 couples	348 oocytes	248 embryos	Day-3
† †			

Tejera et al. 2010 ESHRE Rome

Implantation

Higher oxygen consumption in oocytes producing embryos that sucessfully implanted

• In vitro produced embryos

(day 3: 8- cell stage)

(day 7: blastocyst stage)

• In vivo produced embryos

Lopes et al. (2005) Reproduction Lopes et al. (2007) Human Reproduction

Lopes et al. (2007) Human Reproduction

Lopes et al. (2007) Human Reproduction

* Lopes et al. (2005) Reproduction* Lopes et al. (2007) Human Reproduction

Lopes et al. 2007 Human Reproduction

Pregnancy status

OXYGEN CONSUMPTION CATEGORY	PREGNANT	NON- PREGNANT
High (> 1.0 nl/h)	25 % (n = 1)	75 % (n = 3)

Medium (0.78 - 1.10 nl/h)

$$0 \% (n = 0)$$

Low
$$(< 0.78 \text{ nl/h})$$

Embryos (human)

Tejera et al. (2010) Fertility & Sterility

Embryos (human)

Scanning Electrochemical Microscopy (SECM)

MEASUREMENT OF OXYGEN CONSUMPTION RATE OF EMBRYOS TO SELECT THE BEST EMBRYO FOR E-SET. M. Koike, Y. Kumasako, K. Goto, H. Ito, T. Utsunomiya, H. Abe. St-Luke Clinic, Oita, Japan; Department of Obstetrics and Gynecology Faculty of Medicine Fukuoka University, Fukuoka, Japan; Graduate Program of Human Sensing and Functional Sensor Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan.

RESULTS: Among the cycles (N=72) that embryos showed morphologically exactly same grade by Veeck's method, the pregnancy rate in cycles with an embryo elected based on morphological evaluation plus measuring the oxygen consumption rate had a significantly higher pregnancy rate of 50.0%(18/36). compare with an embryo elected by conventional morphological method was 25.0%(9/36). Further more, the abortion rate of the oxygen measured group(5.6% 1/18) was less than the conventional group(22.2% 2/9). Finally, on-going pregnancy rate was significantly higher in the oxygen measured group(47.2% 17/36) than the conventional morphological method group(19.4% 7/36).

Repetitive measurements of oxygen consumption

EmbryoscopeTM Unisense

Repetitive measurements with acquisition of digital images from each embryo

Denuded zygotes (previous IVF for 6 h)

Loaded in the Embryoslide

Repetitive O2 measurements + Digital pictures

Lopes et al. (2010) Human Reproduction

Time in relation to	Mean oxygen	SEM
cleavage (min)	cons. (nl/h)	
-72	0.4988ª	0.0099
-36	0.4911 ^{b,c}	0.0107
0	$0.4920^{b,d}$	0.0100
36	0.4925 ^b	0.010
72	0.4873 ^{c,d}	0.0099

= cell division observed in recorded images

Callesen et al. 2006

Depart. Genetics & Biotechnology, Aahrus University, Denmark

O2 consumption during DEVELOPMENT

Zygote developing to the expanded blastocyst stage

Patterns of O2 consumption

114 embryos

Callesen et al. 2006 Genetics & Biotechnology Aahrus University, Denmark

Embryos (murine)

Table 1 Mean individual oxygen consumption rates ± standard error of the estimate

Developmental stage	Mean oxygen consumption (nl O ₂ h ⁻¹ embryo ⁻¹ ±SE) All embryos	Mean oxygen consumption (nl O ₂ h ⁻¹ embryo ⁻¹ ±SE) embryos reaching exp blast	Mean oxygen consumption (nl O ₂ h ⁻¹ embryo ⁻¹ ±SE) embryos arrested before exp blast
2 cell 4 cell 7–8 cell Morula Expanded	0.162±0.0043 (n=93) 0.166±0.0038 (n=128) 0.197±0.0089 (n=33) 0.234±0.0056 (n=142) 0.464±0.0185 (n=69)	0.162±0.0073 (n=20) 0.172±0.0053 (n=55) 0.218±0.0115 (n=15) 0.261±0.0070 (n=71)	0.162±0.0052 (n=73) 0.161±0.0053 (n=73) 0.179±0.0120 (n=18) 0.207±0.0074 (n=71)
blastocyst			

N number of embryos with a recorded oxygen consumption.

Cleavage stage (2-8cell) individual oxygen consumption ranges between 0.16 - 0.20 nl/h

Oxygen consumption rises slightly at the morula stage and significantly at the expanded blastocys stage

Embryos (murine)

Table 2 Grouping of embryos according to their oxygen consumption, and Odds Ratios (with 95% confidence intervals) for development to expanded blastocysts among various consumption groups

Developmental	Low consumption group	High consumption group	OR (95% CI) High consumers for
stage	nl O ₂ h ⁻¹ embryo ⁻¹	$nl O_2 h^{-1} embryo^{-1}, (n)$	development to expanded blastocyst
2 cell	<0.145 (n = 39)	>0.145 (n = 54)	1.93 (0.67-5.57)
4 cell	< 0.145 (n = 43)	>0.145 (n = 85)	2.25 (1.04-4.90)
7-8 cell	< 0.190 (n = 14)	>0.190 (n = 19)	4.07 (0.85-19.4)
Morula	<0.230 (n = 72)	>0.230 (n = 70)	3.18 (1.60-6.32)

ONLY at the Morula stage was higher oxygen consumption associated with subsequent development to the blastocysts stage.

Embryos (human)

Different O2 rates and profiles for embryos developing vs. arresting in vitro

- Non used thawed embryos (2PN to blastocysts)
- 1 & 3PN embryos
- Day 2 and 3 discarded embryos
- Day 4 abnormal embryos from PGD

Embryos (human)

Oxygen consumption is steady until day 4, ranging bt 0.5- 0.6 nl/h

Oxygen consumption rises is consistent with blastocyst formation (range 1.0 -1.3 nl/h)

THUS.....

- Oxygen consumption measured once/continuously is a valuable parameter for assessing oocyte/embryo metabolism
- Combining oxygen consumption with other viability criteria may improve in the selection of superior embryos before transfer.
- Patterns of oxygen consumption around the time of cleavage may also help in selecting better quality embryos
- Analysis of metabolism (and thus oxygen) can be crucial for implementation of the SET policies (mostly embryos similar morphology).

ACKNOWLEDGMENTS

Henrik Callesen

TRANS EMBRYO GENETICS Denmark

Søren Madsen

Torben Greve

Marcus Messeguer AlbertoTejera

Jeremy Thompson Michelle Lane

Niels Ramsing

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA E DO ENSINO SUPERIOR

Portugal