Glycolytic activity as a tool for embryo selection

Marc. Van den Bergh M.A.S. Fertility Laboratory Director Kantonsspital Baden Switzerland

"Fight of the Queens"

Definition:

The totality of the chemical processes that an organism or cell is capable to perform.

Mahler & Cordes, Biological Chemistry 1971, Harper International Edition, N.Y.

- Catabolic reactions & sequences
- Anabolic reactions & sequences
- Anaplerotic reactions & sequences

Catabolic routes:

Degradative processes in which large organic molecules are broken down to simply cellular constituents, with attendant release of chemical free energy.

Anabolic routes:

Synthetic processes that produce complex organic cellular constituents from simpler precursors, frequently involving reductive steps and require the expenditure of chemical free energy.

Anaplerotic routes:

Ancillary sequences that involve the insertion of either a 1 Carbon (CO2) or a 2 Carbon fragment acetyl CoA) into the common pool from which anabolism drains constantly.

CENTRAL PATHWAYS

Carbohydrates

Triose phosphates and/or pyruvate

Fats

Acetyl CoA, propionyl CoA and glycerol

Proteins

Acetyl CoA, oxalacetate α -oxoglutarate,fumarate and succinate

CRUCIAL INTERMEDIATES

- Triose phosphate pyruvate acetyl CoA
- Oxalacetate aspartate, α -oxoglutarate glutamate
- Complete cyclic combustion of actetyl CoA to CO₂ and H₂O (Citric Acid Cycle)

GOAL

 To develop an artificial mixture of known chemical components that can substitute for the natural microenvironments encountered by an embryo as it develops from the one cell zygote to the blastocyst.

J.D. Biggers (1998) Int. J. Dev. Biol.42, 879-884

Glycolytic Activity

GOAL

- Specific Parameter(s)
 - Reflecting Health Competent of the Embryo
- Non-Invasive Method
 - User Friendly
 - Accurate & Precise

LIMITATIONS

- There are no preparations for the study of embryo metabolism in situ or in vivo, such as exist for large vascularized tissues.
- For this reason it remains an act of faith that metabolism of the embryo in vitro reflects that in the female tract.

H.J. Leese Oxford Reviews of Reproductive Biology (1991) 13, 35-72

MORE THAN HALF A CENTURY OF METABOLIC STUDIES

Early Pioneers

1949 Hammond J.

 Physiological Saline Hen egg white and yolk: mouse 8cell stage to blastocyst.

1956-57 Whitten

 Krebs Ringer bicarbonate physiological saline, with crystalline BSA, Ca-lactate.

1958 Mc Laren & Biggers

- Normal offspring in mouse with Whittens medium.

1965 Brinster

- Glucose is not possible as sole energy substrate for the mouse
 - (pyruvate, phosphoenolpyruvate, oxalacetate as substitute for lactate)

1976 Wordinger & Brinster

• Glucose is necessary for blastocyst formation

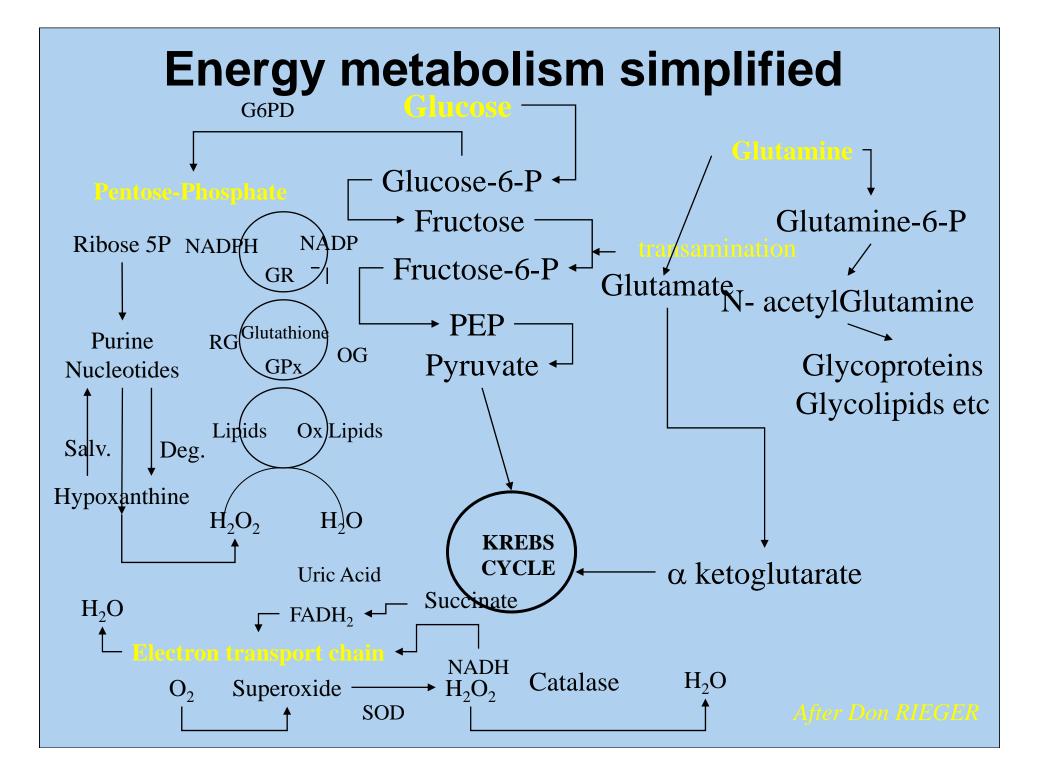
Proposed – Studied Parameters

- Glucose
- Pyruvate
- Lactate
- Glutamate
- Amino Acids
- Fatt.

- Energy Source
- Key Anabolic Precursor
 - Synthesis
 - Triacylglycerols
 - Phospholipids
 - Mucopolysaccharides & glycoproteins
 - Ribose moieties, NADPH (lipids, glutathione)

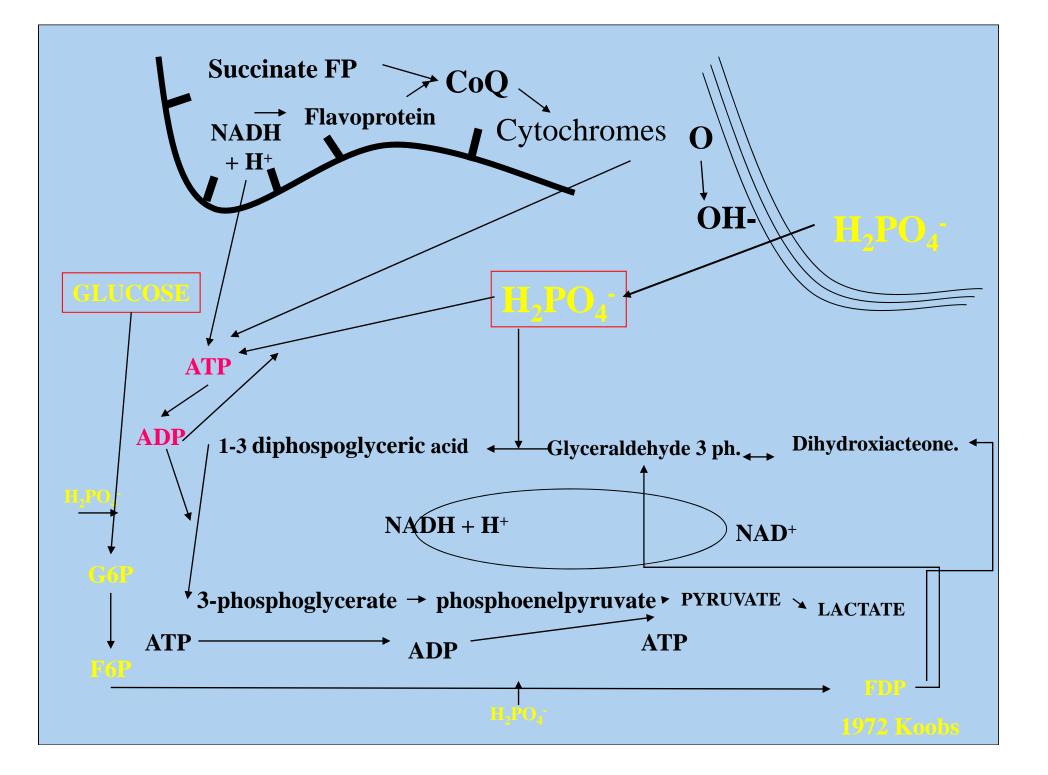
Respiration - Glycolysis

- Krebs –TCA-cycle
 - Glucose
 - Pyruvate decarboxilation
 - Acetyl CoA
 - 38 ATP
 - Electron transport
 - Superoxide anion
 - H₂O₂


- G-6-P
- 2 Pyruvates

Embden-Meyerhof

– 2 ATP



Crabtree Effect

- Manifistation of Respiratory Inhibition after addition of glucose or a hexose capable of being phosphorylated by hexosekinase.
- Competition between glycolysis and oxidative phosphorylation for ADP and Phosphate.
- Glycolysis does not remain inhibited but increases to a steady state until all the glucose is phosphorylated

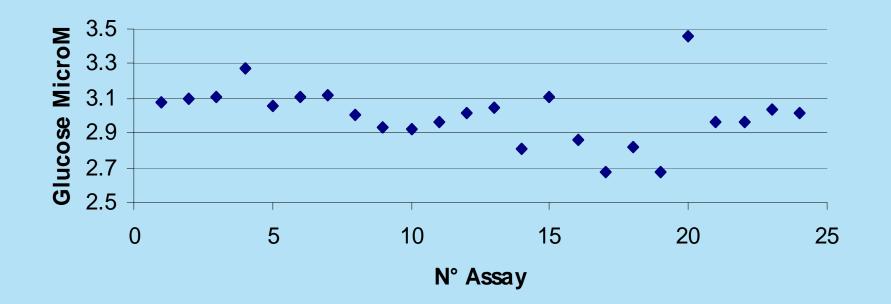
Glycolytic activity as a selection tool?

- Emden-Mayerhof-pathway
 - 1 Glucose converted to 2 lactate
- Used in Cattle and mouse to select embryos embryos with high implantation.
 - Renard JP. et al 1980.
 - Gardner D. et al. 1996.

Microfluorometric Assays

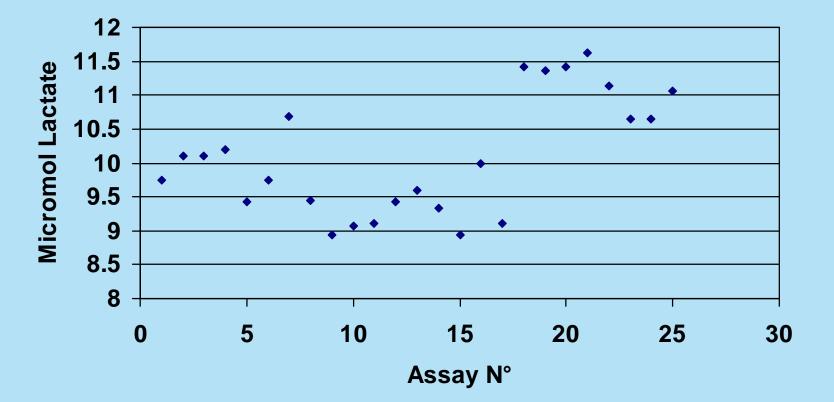
Glucose + ATP	HK →	glucose- 6phosphat	e + ADP
Glucose-6-phosphate + NADP	•+/NAD	$\begin{array}{c} \mathbf{G6PDH} \\ \mathbf{PH} + \mathbf{H}^{+} \rightarrow \end{array}$	6-phosphogluconate

	LDH	
Lactate + NAD ⁺	\rightarrow	pyruvate + NADH + H ⁺

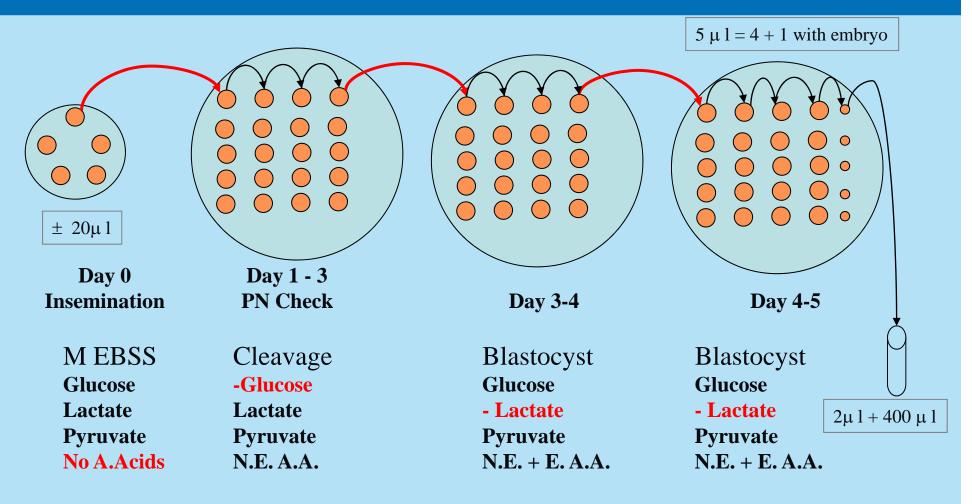


Microfluorometric Assays

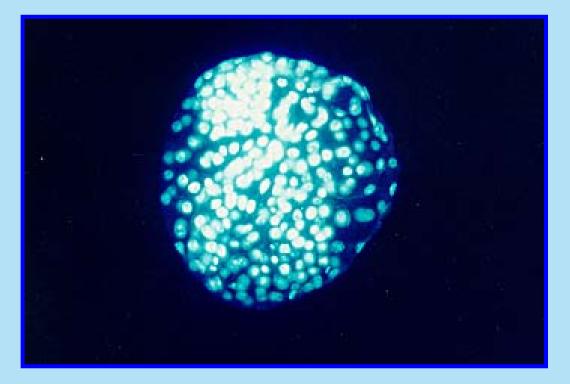
PRECLINICAL WORK


Inter-assay variation Glucose M = 3.O2 S.D. = 0.16 C.V. = 4.97 %

PRECLINICAL WORK

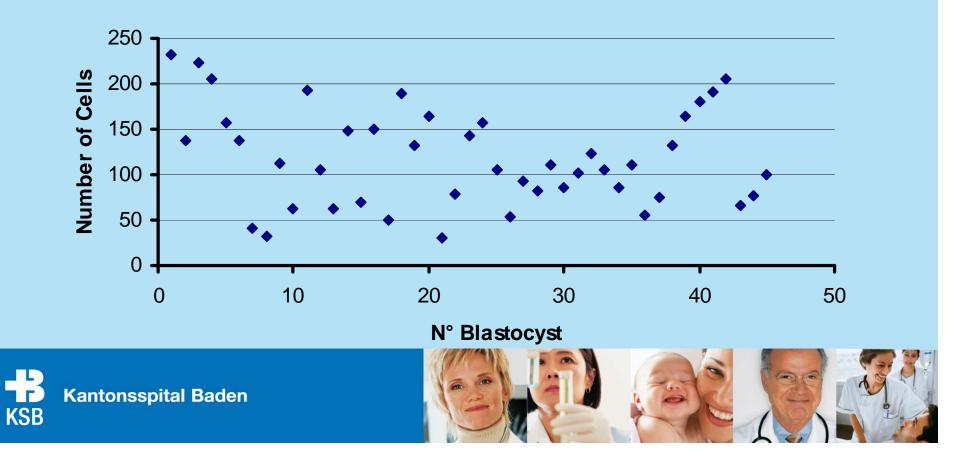

Inter Assay Variation Lactate. M=10.1 \pm 0.87 SD C.V. = 8.7%

Sequential Culture System


PRECLINICAL WORK

	N (%)
EMBRYOS CULTURED	114
BLASTOCYST OBTAINED ON DAY 6	65/114 (57%)
BLASTOCYST ASSESSED FOR TOTAL CELL COUNT	45/ 65 (69%)

BISBENZEMIDE STAIN



PRECLINICAL WORK

Total Cell Count in blastocysts on day 6 of culture. Mean = 118 S.D. = 53

Overall Results.

	1 st CYCLE	2 nd CYCLE	3 rd CYCLE	4 th CYCLE	TOTAL (%)
TRANSFERS	27	20	11	10	68 (92%)**
NO TRANSFER	0	2	3	1	6 (8%)**
UNKNOWN	1	0	1	2	4 (5.8%)**
BIOCHEMICAL PREGNANCY	3	2	0	2	7 (9.5%)**
CLINICAL PREAGNACY	9	7	5	2	23 (31%)**
MISCARRIAGE	2	2	0	0	4 (5.4%)**
DELIVERED	1	2	1	0	4 (5.4%)**
PREGNANCY RATE/ ET *	12/26 (46%)	11/18 (61%)	6/7 (86%)	2/7 (28%)	31/58 (53)%

Glucose-uptake and stage at D-5

STAGE	Ν	GLUCOSE pM/24h ± S.E.M.
HATCHING & EXPANDED BLASTOCYST	77	524 ± 32
YOUNG BLASTOCYST	62	536 ± 34
MORULA	26	623 ± 64
antonsspital Baden		

-B KSB

Lactate-uptake and stage at D-5

	STAGE	Ν	GLUCOSE pM/24h ± S.E.M.
	HATCHING & EXPANDED BLASTOCYST	77	524 ± 32
	YOUNG BLASTOCYST	62	536 ± 34
	MORULA	26	623 ± 64
H KSB	Kantonsspital Baden		

Glycolytic Activity and stage D-5

STAGE	Ν	% GLYCOLYTIC ACTIVITY /24h ± S.E.M.
HATCHING & EXPANDED BLASTOCYST	61	41 ± 3
YOUNG BLASTOCYST	49	32 ± 4
MORULA	12	46 ± 13

Glycolytic Avtivity Pregnant Non-Pregnant

	PREGNANT N= 34	NON- PREGNANT N= 47	Р
GLUCOSE UPTAKE pM/24h Mean ± S.E.M.	626 ± 54	456 ± 50	0.02
LACTATE PRODUCTION pM/24h Mean ± S.E.M.	324 ± 32	336 ± 40	0.8
% GLYCOLYTIC ACTIVITY Mean ± S.E.M.	28 ± 3	51 ± 7	0.003

CONCLUSION

Blastocysts in the group leading to a pregnancy h

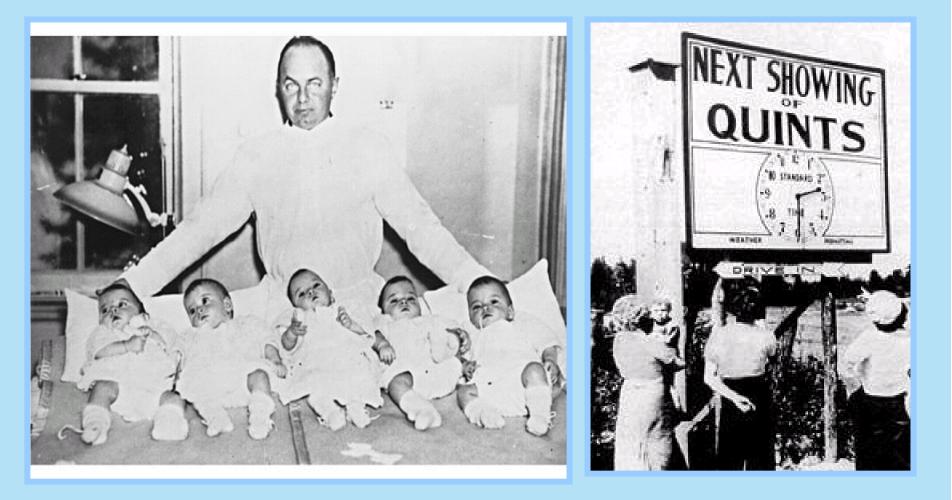
- a higher Glucose-uptake
- a lower Glycolytic Activity

CONSIDERATION 1

DATA POLUTED BY TRANSFER OF MORE THAN 1 EMBRYO.

DIFFERENCE MAYBE MORE DISTINCT ?

CONSIDERATION 2


Practical aspects.

- Culture is labor intensive.
- Fluorimetric Assays fastidious.
- Absence of blastocysts with low activit

Dionne quintuplets

Thanks to

Pr. Dr. Y. Ménézo Pr. Dr. K. Elder Dr. D. Brison J. Biramane Dr. S. Emiliani A-S. Vannin M. Verdoodt.

