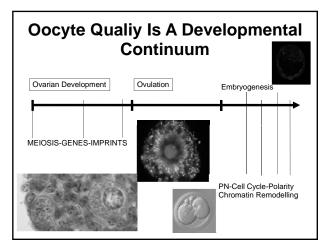


Genome Integrity in Mammalian Oocytes

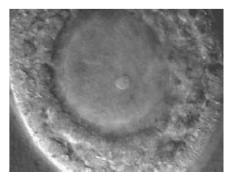
ESHRE Workshop on mammalian folliculogenesis and oogenesis April 19-21 Stresa Italy



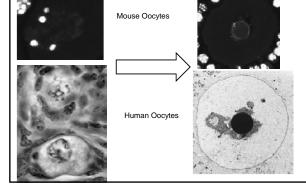
2003 Workshop Lisbon

Genome Integrity

- Structure-is chromatin in open or closed state and organized around the NE and nucleolus
- Function- can it remodel during growth, meiosis, reprogram after fertilization
- Metabolic-can it meet the demands of DNA damage repair in terms of energy, expression of repair factors, and translocation in response to damage stimulus


Outline

- What does "Genome Integrity" mean for oocytes?
- What is the DNA Damage Response (DDR)?
- Is DDR active during oogenesis and folliculogenesis?
- What is the impact of ovarian irradiation on genome integrity?

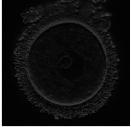

A Brief History

- Chromatin remodels during growth and maturation-unique cell cycle and question of checkpoints
- Age affects OQ and aneuploidy is a problem to humans
- Lied 3 environment exposes us to DDR

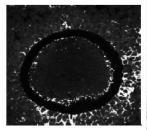
Oocyte Nucleus is Dynamic!

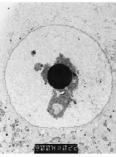
Oocyte Chromatin:Open or Closed?

The SN/NSN picture is incomplete


- When it comes to NSN or SN
- Chromatin is not static
- Is influenced by somatic cell contact
- Changes in response to hormonal stimulation
- Changes in response to induced DNA damage
- Open and closed states of chromatin are much more than a reflection of transcriptional status

Abbreviations are short cuts to the truth

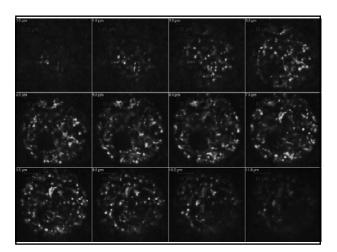

- NSN-non surrounded nucleus
- NSN-not silly nomenclature
- NSS-not stressful Stresa
- NSC-non stim cycles
- NSI-non strategic initiatives
- NSI-negligible social impact
- NSI-negligible scientific impact

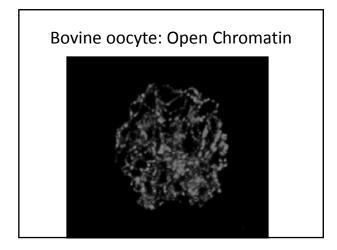

Pincus 1939 More than NSN SN

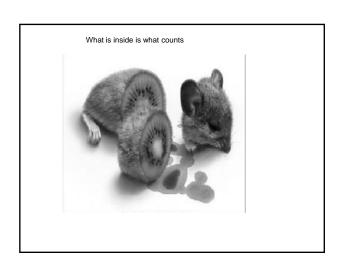
Why chromatin is elusive!

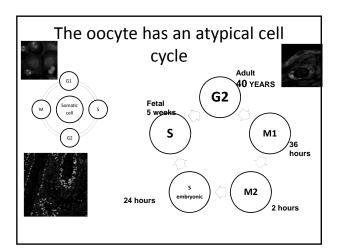
Germinal Vesicle Chromatin Patterns

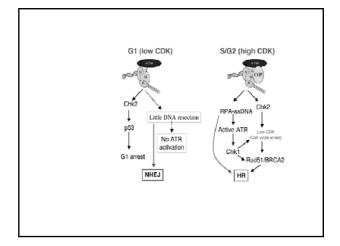
(Bouniol-Baly et al., 1999; De La Fuente and Eppig, 2001)

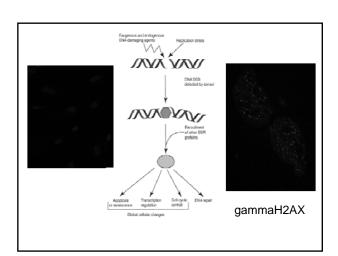


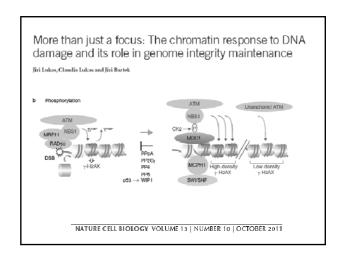

Non-Surrounded Nucleolus (NSN) Nucleolus (SN)


Surrounded

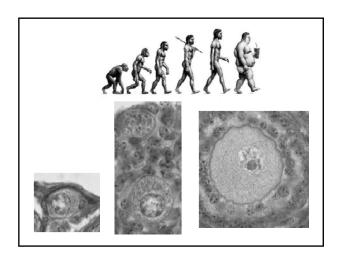

Hucicolu	13 (OIV)		C+/-		C.	All Types			
	NSN	SN	NSN	SN	NSN	SN	NSN	SN	N
Unprimed	28.3 (8.8)	71.7	44.6 (2.2)	55.4	42.1 (4.5)	57.9	38. 3	61.7	876
Primed	6.7 (3.5)	93.3*	22.9 (2.1)	77.1*	28.5 (3.1)	71.5 *	19.4	80.6 *	838


Mean Percent of Oocytes (\pm SEM) for 12 experiments; two-tailed Z-test, p<0.0005




3 stories

• Why current views of oocyte chromatin remain in the dark ages


Why eggs are in a precarious situation-long storage, dynamic chromatin state, and require an intrinsic DDR response

- What happens when DNA damage is imposed on oocytes-just the beginning of a long story
- DDR=DNA Damage Response

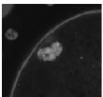
The players in somatic cell DDR are expressed in oocytes In Silico at mRNA level In both homologous recombination (HR, accurate) and non-homologous end joining (NHEJ, error-prone) pathways Post pachytene...Dictyate/diplotene...detected in mouse, rat, non-human primate, bovine and human RAD 51 BRCA2

Some of the players we have studied

At what stages of oogenesis the DDR operate?

- Meiotic Prophase
- In resting primordial follicles
- In growing follicles
- But not during meiotic maturation

BRCA2 deficiency in mice leads to meiotic impairment and

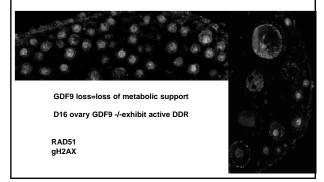

Shyam K, Sharan¹*, April Pyle², Vincenzo Coppola¹, Janice Babus², Srividya Swaminathan¹, Jamie Benedic², Debinah Swing¹, Belty K, Martin¹, Lino Tessarello¹, Janice P, Exans¹, Joel A and Mary Ann Handel²

Cases of autonomous or induced

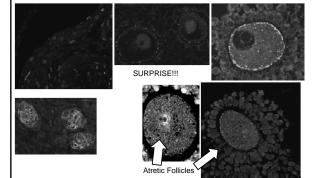
Autonomous

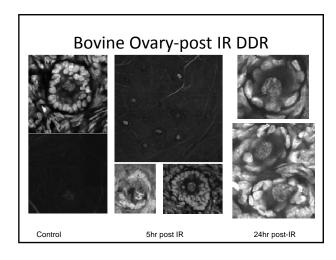
- · Meiotic Prophaseleptotene,zygotene, pachytene(homologous recombination)
- Diplotene (acute after follicle formation; or later in adult life)
- · Growth phase of oogenesis
- Other(nutrition, environmental exposure)

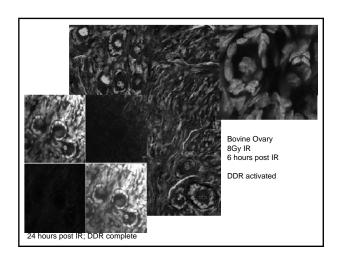
- Chemotherapy
- Cryopreservatio
- Irradiation

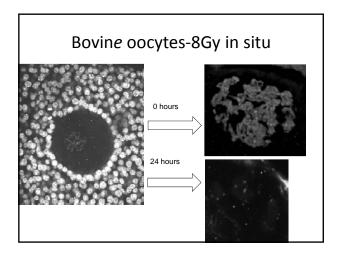


does		
infertili		
C Flames* USA 10 24261, USA Boomborg		
d DSBs		
J D3B3		
n		


Experimental models


- Knock out mice (GDF9, FSHb)
- Aging mice (E15-315 days)
- Prepubertal Mice (15-21 days)-IR
- Rat Ovary-dioxin exposure
- Bovine Ovary-IR
- Bovine oocytes-IR
- Cryopreserved Ovary (bovine, mouse)


Genetic models for follicle arrest



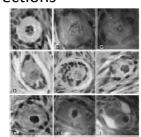
DDR in Oocytes: Induced or Constitutive ?

DNA lesion density decreases during meiotic progression

T30IR

GV=33.7+/- 2.4 foci/nucleus n=78 M2=14.9=/- 5.1 n=93

Cell cycle progresses without resolution of DSBs


Future Directions

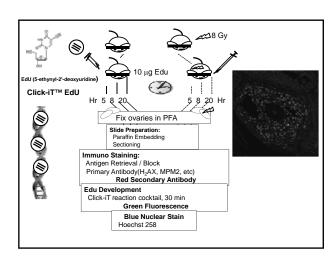
- Fertility Preservation
- OTC

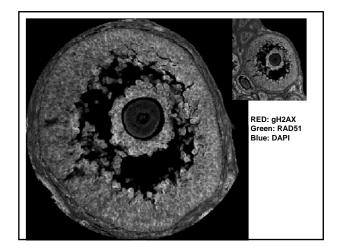
No IR

T6 IR

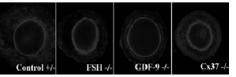
• Protective strategies-adjuvant therapies targeting p63.

Take home message

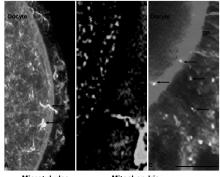

- The DNA Damage Response (DDR) is alive and well in mammalian oocytes
- It operates constitutively to maintain chromatin integrity during oocyte differentiation
- Ionizing radiation activates a robust response that leads to follicle loss and premature ovarian failure
- After induced DDR, or as a result of age-related accumulation of repair efforts, the genetic integrity of embryos and offspring may carry battle scars into the next generation.

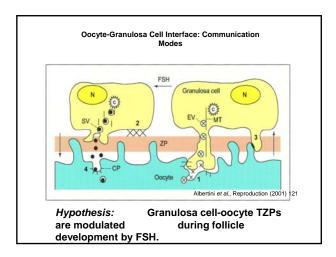

Friends, colleagues, and funding

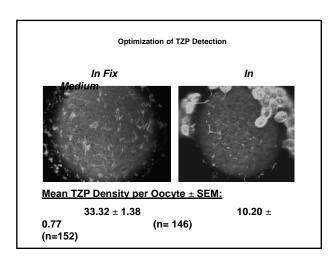
• The lab..then and now

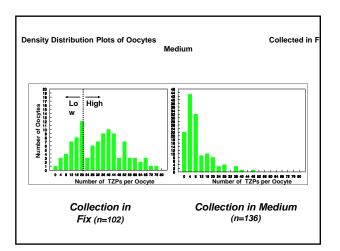


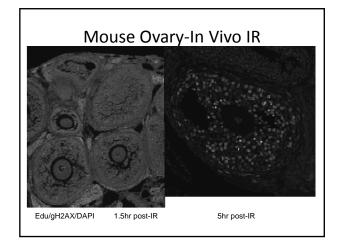
- Evelyn Flaherty Tilly-Telfer, Marie McLaughlin
- The Biogenesi Group-Cristina, Beatrice, Rubens, and of course Lucia and Gio
- NIH, March of Dimes, ESHE Fund, Hall Foundation


Lessons from KnockOuts


Follicle Arrest Arrest
Arrest Secondary
Primary Secondary


OocytePartialDeficientDeficientCompetencies


Properties of Microtubule TransZonal Projections (TZPs)



Microtubules Mitochondria Endosomes

