Maternal diet, embryo effects and offspring health

Tom Fleming
Univ Southampton, UK
ESHRE Workshop, Stresa, Italy April 2012
Mammalian Folliculogenesis and Oogenesis

The Responsibility of Motherhood
-it can be scary!

Maternal-embryonic communication:

Short-term:
- Fertilisation
- Blastocyst morphogenesis
- Coordination of implantation
- Maternal immunotolerance

Long-term:
- Developmental plasticity - 'selecting' the right phenotype to fit future environment

Implications: DOHaD, ART, IVC, maternal health at conception

Periconceptional Environment

DOHaD

In vitro culture

Developmental plasticity

Maternal obesity

Maternal sickness

Protein rich

Protein deficient

High fat
Mouse Low Protein Diet Model

<table>
<thead>
<tr>
<th>Diet Composition (g/kg)</th>
<th>18% protein</th>
<th>9% protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>180</td>
<td>90</td>
</tr>
<tr>
<td>Corn starch</td>
<td>425</td>
<td>485</td>
</tr>
<tr>
<td>Fiber</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Sucrose</td>
<td>213</td>
<td>243</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>AIN-76 mineral mix</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>AIN-76 vitamin mix</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Corn oil (gm/kl)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

- Mild challenge: 9% protein is sufficient for non-pregnant rodents – therefore not starvation but normal range
- Large study (19 mothers, 114 offspring per treatment) allows detailed associations to be identified
- No effect on gestation length, litter size or male:female ratio

Maternal Emb-LPD and Postnatal Cardiovascular Phenotype

Adult Emb-LPD offspring exhibit:
- Relative hypertension
- Smaller heart mass (females)
- Increased lung ACE activity
- Reduced arterial vasodilatation

Similar datasets:
- Rat Emb-LPD, Kwong et al, 2000, Development Mouse LDP during oocyte maturation,
- Mouse ART culture, Watkins et al, 2007, PNAS

Maternal Emb-LPD and postnatal behaviour

- Assays measure anxiety-related locomotor and exploratory activities
- Mean of tests repeated five times over weeks 8, 11, 14, 17 and 20 after acclimatization
- Emb-LPD offspring exhibit ‘hyperactive’ behaviour

with Hugh Perry and colleagues
Embryo environment and long-term health
Maternal Emb-LPD alters conceptus and postnatal growth and adiposity

Watkins et al. (2008) BOR 78:299

Maternal Emb-LPD alters conceptus and postnatal growth and adiposity

10 15 20 25 30 35 40 45

* * * * *

‡‡

0.4 0.8 1.2 1.6

Birth weight (g)

Females

LPD

NPD

Embryo-LPD

5 10 2 4 6 8 1 0 1 2

Weeks of age

LPD

NPD

Embryo-LPD

Developmental Mechanisms?
Emb-LPD caused: (1) hypertension and dysfunctional CV system
(2) hyperactive behaviour
(3) increased adiposity
(3) increased gestational growth

Correlations:
> Perinatal weight following Emb-LPD or LPD correlates positively with later adult weight, hypertension and, in turn, abnormal behaviour (p<0.05)

Increased gestational growth → Adult disease

Hypothesis:
> Maternal protein undernutrition induces compensatory responses to enhance nutrient delivery to conceptus during gestation to protect and stabilise fetal growth and development

> When responses are appropriate (LPD), normal growth results, but when inappropriate (Emb-LPD), excess perinatal growth results

> Such responses, whether appropriate or not, may confer competitive fitness but also associate with adult disease

> Are embryo-mediated responses clinically relevant?

Board 1 of 3

Richard Oreffo
Stuart Lanham
Emma Lucas
Adam Watkins

Maternal Emb-LPD and fetal bone development
µCT scan d17 fetal skeleton
Emb-LPD – increased bone development

NPD

LPD

Emb-LPD
CLINICAL RELEVANCE:

- **Systolic and diastolic blood pressure** levels higher in IVF children (8-18 years) than controls (P < 0.001) (Ceelen M et al (2008) J Clin Endocrinol Metab. 93:1682-8)
- **Growth velocity** higher in IVF children and is predictive of later elevated blood pressure (Ceelen et al, 2009) Increased early growth disease
- **Birth weight** (adjusted for gestational age, gender) of IVF children significantly different dependent upon commercial culture medium used (Dumoulin et al 2010 Human Reproduction 25:605-612)

- **Dutch winter famine**, 5 months, 1944-45, Amsterdam. Offspring from women exposed to famine during embryo and early gestation show
 - increased prevalence of coronary heart disease; increased blood pressure
 - increased BMI and glucose intolerance Painter et al, 2006a,b; de Rooij et al, 2006; Ravelli et al, 1999.

When do responses to maternal diet occur?

Increased perinatal growth in Emb-LPD conceptuses is detectable in late gestation, a response induced by the blastocyst stage independent of later maternal environment

How do embryos sense their mother’s nutritional status?

A role for amino acids, insulin and mTOR signalling

Depleted maternal insulin and branch chain AA availability following Emb-LPD

How do embryos sense their mother’s nutritional status?
A role for amino acids, insulin and mTOR signalling

Emb-LPD leads to reduced mTOR signalling via S6 in blastocysts

How do embryos respond to their mother’s nutritional status?
Blastocyst protein synthesis rate is responsive to maternal dietary protein – but is stable in LPD

How do embryos respond to their mother’s nutritional status to protect fetal growth?
A role for extra-embryonic lineages

LPD - compensatory increase in ribosomal biogenesis to stabilise protein synthesis rate

Inner cell mass → Foetus
Trophectoderm → Chorio-allantoic placenta
Primary endoderm → Yolk sac placenta
Maternal LPD induces responses in the visceral yolk sac

- LPD increases numbers of endocytic vesicles
- LPD increases rate of endocytosis

Visceral yolk sac megalin (Lrp2 gene)
- 600 kDa transmembrane multiligand (~35) endocytic receptor, LDL-R family
- Localised to apical surface of yolk sac visceral endoderm
- Major role in yolk sac endocytosis

Response by trophectoderm to maternal Emb-LPD treatment:
- Increased proliferation and cell spreading
Emb-LPD stimulates endocytosis in trophectoderm: increased ligand digestion, lysosomes and major receptor (megalin)

Maternal Emb-LPD effect on ES cell derivation and phenotype

- Reduced pool of pluripotent cells within ICM or early emerging ES cell cluster?
Emb-LPD alters ES cell survival and apoptosis

LPD increases level of apoptosis in ESCs, possibly mediated through reduced p-total ERK-1,2 survival signalling

Periconceptional Environment

DOHaD

In vitro culture

Developmental plasticity

Maternal obesity

Maternal sickness

Protein rich

Protein deficient

High fat

Maternal diet

Maternal sickness at conception affects development and health into adulthood

- Induce mouse maternal sickness and inflammatory response
 - Bacterial LPS i.p. injection on Day 1 (zygote)
 - 10, 50 or 150 μg/kg Salmonella enterica enteritidis LPS or saline control

Blastocyst ICM:TE reduced
Fewer ICM cells

Blood pressure normal
Postnatal growth normal

Distinct phenotype from LPD model

Williams et al, 2011 BMC Biology 9:49
Maternal LPS injection at zygote stage – offspring effects

CONCLUSIONS

- **The Responsibility of Motherhood**: Maternal-embryo interactions with life-long consequences are broad, mediated through maternal nutrition, health and physiology affecting adult offspring CV, behaviour, growth, adiposity, immune responsiveness.
- **Embryo sensing mechanism**: Maternal LPS is first detected by embryos through local reduction of intra-maternal amino acid availability causing reduced blastocyst mTOR signaling via S6 pathway.
- **Embryo response mechanisms**: Compensatory responses by the blastocyst stage:
 - evidence of increased ribosomal biogenesis to protect biosynthesis rate
 - stimulate extra-embryonic lineages (trophoblast : visceral endoderm)
 - ES cells from Emb-LPD blastocysts show evidence of increased stress/apoptosis
- **From growth to disease**: Promoting growth will maintain competitive fitness but with the trade-off of disease risk in later life. Activation of growth compensation during gestation correlates positively with disease onset in adulthood.
- **Complexity of processes**: The path from maternal-embryo interaction to developmental programming is an integration of biological processes at hormonal, metabolic, signal transduction, cell cycle and epigenetic levels.

Thanks!