

Obesity and Women

- ◊ Over 35% of all reproductive age women in the US are obese and about 1/3 of them have some degree of glucose intolerance=Diabesity
- ♦ Diabesity poses specific health related consequences ◊ Diabetes, CVD, Cancer

 - ◊ Ovulatory disorder
 - $\diamond~$ Longer times to conception even if young and ovulatory

Flegal KM, JAMA 2010 Robker, JCEM 2009

 $\diamond~$ Adverse reproductive outcomes

Obesity and Reproductive Outcomes

Outcome	Odds ratio (95% Cl)	Reference	Type of study	Patients, n
Subfertility	2.2 (1.8-2.6)	Nohr et al ¹²	Prospective cohort	4901
Miscarriage	1.67 (1.25-2.25)	Metwally et al ⁶	Metaanalysis	2257
Various fetal anomalies	1.2 (1.03-1.4, cleft lip and palate); 2.24 (1.88-2.69, spina bitida)	Stothard et al ^o	Metaanalysis	863; 1188
Large for gestational age	2.3 (1.9-2.7)	Nohr et al ¹²	Prospective cohort	4901
Preeclamspia	1.6 (1.1-2.25, obese vs nonobese); 3.3 (2.4-4.5, morbidy obese vs nonobese)	Weiss et al ⁴⁸	Prospective cohort	15,225; 14,62
Obesity in the offspring at age 1 y (BMI ≥95th percentile)	1.9 (1.3-2.6)	Nohr et al ¹²	Prospective cohort	4901
BM, body mass index; (2) confidence internal.				
Jungheim. Oberlay and reproduction. Am J Ob	an Oppical 2016.			

Obesity and Reproductive Outcomes Obesity and congenital anomalies Obesity

	Overweight		Obesity	
Congenital anomaly	Odds ratio (95% Cl)	P value	Odds ratio (95% CI)	P value
Neural tube defects	1.2 (1.04-1.38)	.01	1.87 (1.62-2.15)	< .001
Cardiovascular anomalies	1.17 (1.03-1.34)	.02	1.3 (1.12-1.51)	.03
Cleft lip and palate	1.0 (0.87-1.15)	> .99	1.2 (1.03-1.4)	.02
Anorectal atresia	1.19 (0.91-1.54)	.2	1.48 (1.12-1.97)	.006
Craniosynostosis	1.24 (0.98-1.58)	.07	1.18 (0.89-1.56)	.25
Diaphragmatic hernia	0.95 (0.72-1.26)	.72	1.28 (0.95-1.71)	.1
Gastroschisis	0.83 (0.39-1.77)	.63	0.17 (0.1-0.3)	< .001
Hydrocephaly	1.28 (0.93-1.75)	.13	1.68 (1.19-2.36)	.003
Adapted from Stothard KJ et al. ⁶¹ Gumatilake, Obesity and pregna	ncy. Am J Obsies Gynecol 2017.			

Obesity and Offspring Outcomes

Dutcome	Odds ratio (95% GI)	Reference	Type of study	Patients, n
Subfertility	2.2 (1.8-2.6)	Nohr et al ¹²	Prospective cohort	4901
Miscarriage	1.67 (1.25-2.25)	Metwally et al ⁶	Metaanalysis	2257
Various fetal anomalies	1.2 (1.03–1.4, cleft lip and palate); 2.24 (1.86–2.69, spina bifida)	Stothard et al ⁹	Metaanalysis	863; 1188
Large for gestational age	2.3 (1.9-2.7)	Nohr et al ¹²	Prospective cohort	4901
Preeclamopia	1.6 (1.1–2.25, obese vs nonobese); 3.3 (2.4–4.5, morbidly obese vs nonobese)	Weiss et al ⁶⁰	Prospective cohort	15,225; 14,62
Obesity in the offspring at age 1 y (BMI ≥95th percentile)	1.9 (1.3-2.6)	Nohr et al ¹²	Prospective cohort	4901
Bill, occi mass inder, C, confidence interval.				
Jungheim. Oberity and reproduction. Am J Ob	tiet Gyneeol 2010.			

Obesity and Adverse Pregnancy Outcomes: Proposed Mechanisms

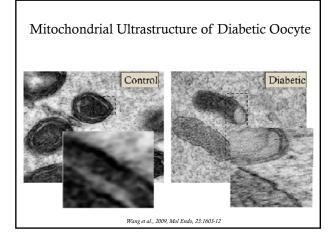
Stage of development	Proposed mechanism	Possible effects on reproduction	Evidence	References
0ncyfe	Abnormal hypothalamic GnRH pulsability; abnormal follicular environment	Poor oocyte quality; impaired ovulation	Human serum samples; human NF specimens; animal specimens	Jain et al st ; Robker* Robker et al ⁴⁷ ; Jungheim et al ⁴¹
Preimplantation embryo	Poor occyte quality; impaired embryonic metabolism and quality; epigenetic modification	Impaired implantation; miscarriage; fetal anormalies and growth abnormalities	Animal specimens; human NF specimens	Jungheim et al ⁴¹ ; Carroll et al ⁴⁴ ; Metwally et al ⁴⁴ ; Eng et al ⁷⁶
Implantation	Abnormal endometrikum	Impaired implantation; miscarriage; fetal growth abnormalities	Human endometrial biopalea	Mozzanega et al ⁷²
Craft (, garaching in-releasing hor	mone; NF, in vite Institution.			
Jungheim: Obesity and reprodu-	tion. AmJ Obsiel Gynecol 2010.			

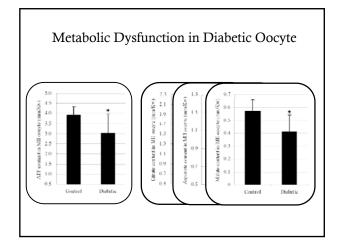
Clinical evidence supporting oocyte as target:

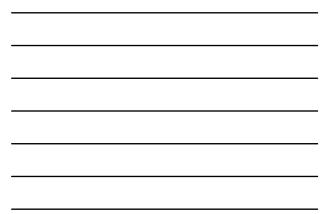
- ◊ Failure to achieve a live birth increases with higher BMI, significantly with the use of autologous oocytes (P < 0.0001), and to a greater extent among women < 35 years of age (P < 0.0001).
- Higher BMI is associated with an increased failure to achieve a clinical intrauterine gestation; this risk was overcome with the use of **DONOR OOCYTES**.

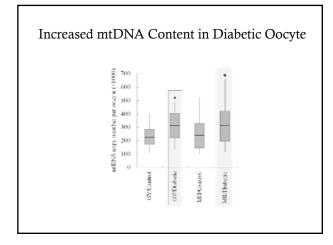
Luke et al., Hum Reprod 2011

Maternal metabolism and the oocyte: Animal Model Data

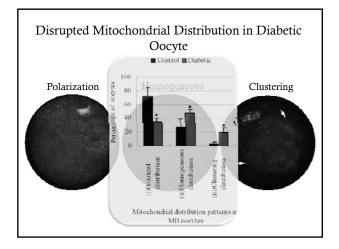


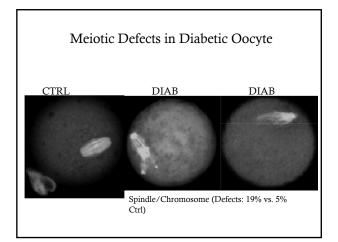

Abnormal maternal physiology and the oocyte: Type 1 diabetes

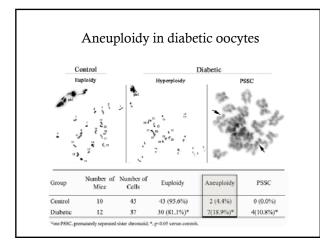

◊ Animal models of Type 1 diabetes

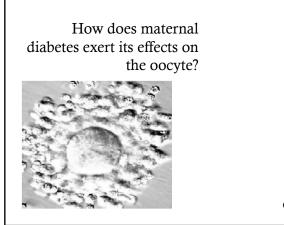

- ♦ Smaller oocytes, impaired maturation, increased granulosa cell apoptosis
- Poor reproductive outcomes: growth restriction and congenital anomalies
- Abnormal mitochondria morphology, mtDNA copy number, spindle defects/chromosome misalignment

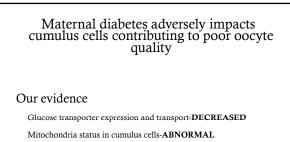
IL Wang Q et al, Mol Endo 2009 Ratchford AM et al., A J Phys Endo Metab; 2007 Chang AS, et al, Endocrinology; 2005 Moley KH et al, J Reprod Fertil; 1991 Wyman A, et al, Endocrinology; 2008 Wang Q et al, PLoS ONE, 2010







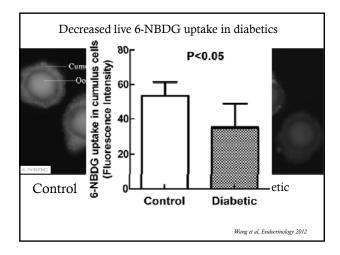




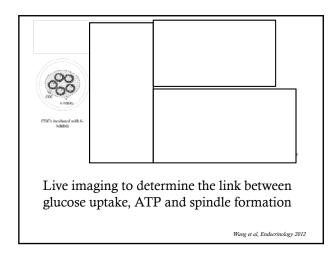
Summary: Maternal diabetes causes

- Structural, spatial and metabolic dysfunction of mitochondria in oocytes;
- Spindle defects and chromosome misalignment result in aneuploid embryos;
- ♦ These defects in oocytes probably contribute to the reproductive problems experienced by type I diabetic women.

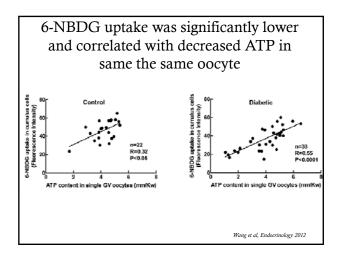
٢

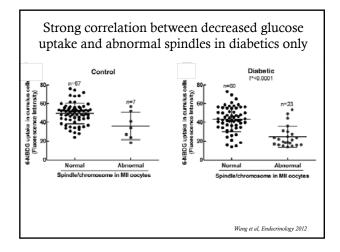


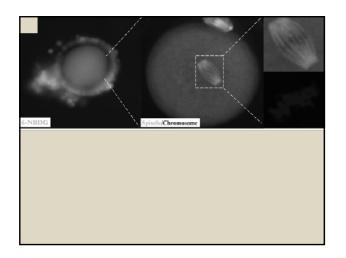
Gap junction communication-IMPAIRED

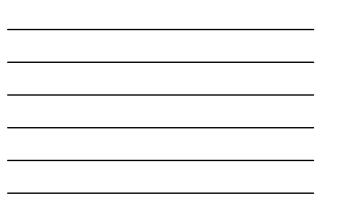

Wang et al, PLoS, ONE, 2010

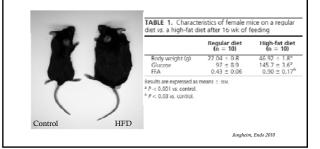
New data using fluorescent tagged glucose analog NDBG


Wang et al, Endocrinology 2012

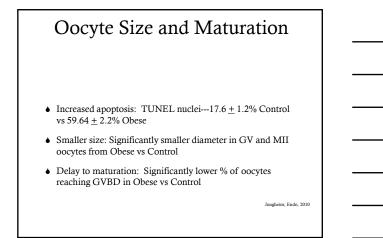


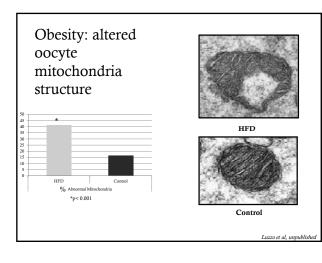


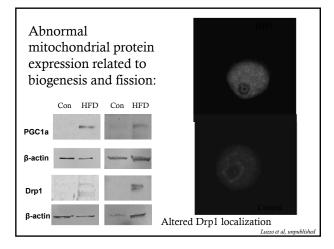


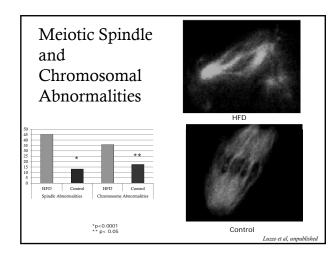


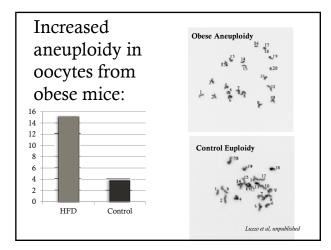
Conclusion of diabetes work

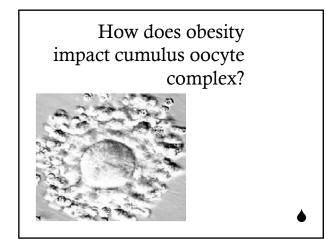

- Maternal diabetes affects oocyte and cumulus cell via metabolic changes in part due to communication difficulties
- COCs are adversely affected by the diabetic environment which directly affects oocyte ATP and spindle formation
- This may be the cause of poor pregnancy outcome in these patients as well as others with high rates of poor outcomes

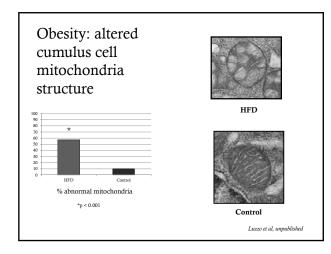

This may include oocyte from obese, PCOS and/or aged women

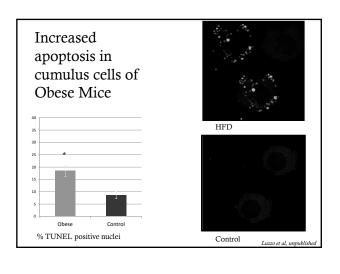

Obesity and Reproductive Outcomes: A High Fat Diet (HFD) Model of Obesity

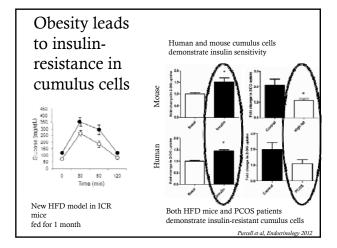


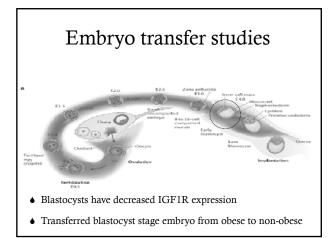


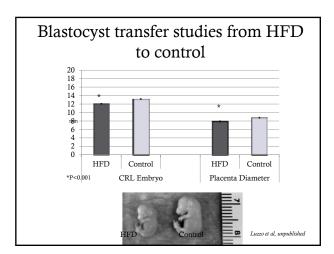


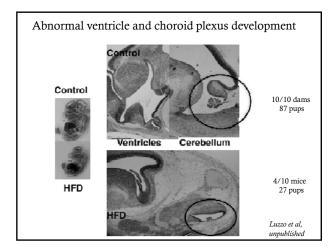


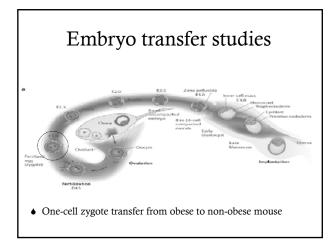


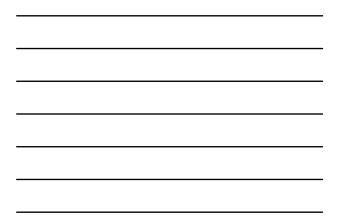


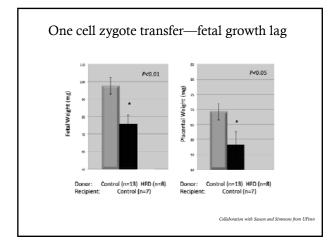


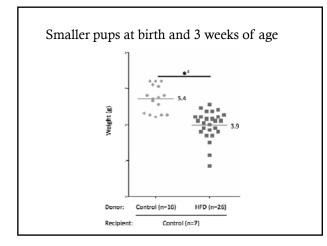


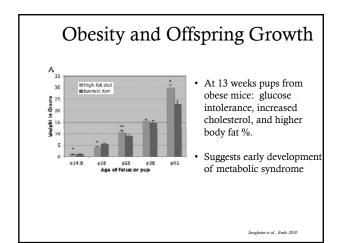


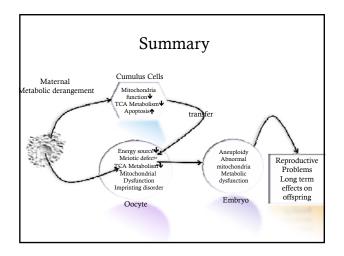


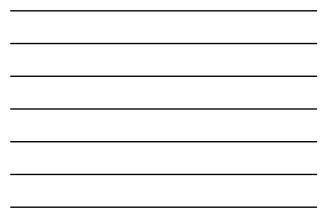






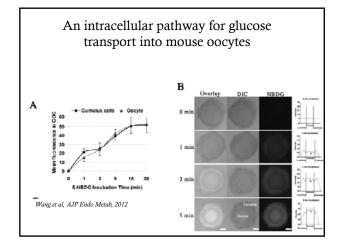





Conclusions

- Maternal diabetes has adverse effects on pregnancy as early as the oocyte maturation step
- Energy metabolism of the oocyte is compromised, possibly due to metabolic perturbation in the cumulus cells

Conclusions


- Energy depletion results in abnormal spindle formation and chromosome misalignment which may manifest as miscarriages in diabetic women
- Mitochondrial dysfunction may carry over to the next generation resulting in malformations, growth retardation and metabolic syndrome in the offspring

