Morphological Markers of Blastocyst Quality

Başak Balaban, BSc VKV American Hospital Assisted Reproduction Unit, Istanbul, Turkey

AMERICAN
HOSPITAL

Overview-I Why do we prefer to transfer embryos at the blastocyst stage? Outcome of blastocyst transfers Factors affecting the blastocyst formation & quality

A N

□ v	
о к О V	Overview-II
A	■ What are the morphological markers of blastocyst quality?
⊟ M	■ Blastocyst grading systems
□ E □ R	■ Clinical efficiency of current scoring systems
I C	■ Future aspects for an accurate grading system for the selection of the most
A N	implantation competent blastocyst

■ Why do we prefer to □ A □ M □ Transfer embryos at the □ B □ R □ I □ C □ A □ N □ N
--

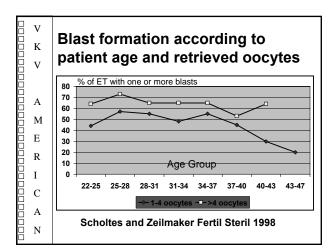
	V K V	Why an alternative for cleavage stage embryo transfer? ADVANTAGES
000000000000000000000000000000000000000	A M E	 1. The embryo is transversing the fallopian tube at cleavage stage; it's in the uterus at blastocyst stage, so premature exposure of early stage embryos to the uterine environment may cause homeostatic stress on the embryo, resulting in a reduced implantation potential(Gardner 1996) 2. Selection of only the embryos that have demonstated the
	R	potential for continued development under embryonic genomic control (Braude 1988)
	I C A	 3. If a blastocysts is more viable than a cleavage-stage embryo than BT could result in higher IR, which gives the possibility of transferring fewer embryos that lowers the costly multiple birth rates (Jones 1999)
	N	Johnson et al.,Best Practice&Research Clin.Obst.Gyanec. 2007

_ v	
□ K	Critics of blastocyst culture
	 1. Having no embryos to transfer(Marek 1999) (The day of patient recruitment into the BT is crucial to this argument)
□ A □ M	 2. Failure to have extra embryos that can be freeze-stored for future use(Tsirgotis 1998)(It's still not clear if this impacts on the final outcome of PR&LBR per started cycle)
E R	 3. MZ twinning(Only retrospective studies were able to show an increased frequency, Behr 2000, Da Costa 2001, Jain 2004)
I	■ 4. Altered sex ratio in births(Menezo 1999)
□ C □ A	■ 5. Sensitivity of the system to suboptimal conditions
□ N	Johnson et al.,Best Practice&Research Clin.Obst.Gyanec. 2007

Clinical outcome of blastocyst transfers	
Blake et al.,Cochrane Database of Systematic Reviews 2007 CD002118 18 RCT comparing early stage ET (Day 2 to 3) with BT (Day 5 to 6) were included (14-published articles, 4 abstracts) Only patients undergoing IVF/ICSI for therapeutic reasons or for oocyte donation were included, whereas IVF/ICSI for IVM oocytes, PGD cases and co-culture methods were excluded 15 trials used sequential media, of which 9 used Vitrolife G1/G2 while the remaining media were combinations of brands or made in house. 3 did not state the media used Most studies recruited women aged <40 years with the exception of Gardner 1998 who had no age limit. The mean age across all studies varied from 29 to 34	

) V		7
K V	Cochrane Data	
A	■ Primary outcome: LBR per couple (no.of live-births per couple)	
M E R	 Secondary outcome: CPR, MPR, high order MPR, miscarriage, embryo freezing, failure to have any ET rate per couple 	
I C	 Outcomes not appropriate for statistical pooling: Live births per OPU and ET,CPR per OPU and ET, implantation rate 	
A N	por or o and arr, imparitation rate	

K Study groups V ■ Patients with good prognosis selected (Gardner 1998, Coskun 2000, Levron 2002, Rienzi Α 2002, Bungum 2003, Frattarelli 2003, Papanikolaou 2005-2006) M E Unselected patients (Karaki 2002, Van der Auwera 2002, Emiliani 2003, R Kolibianakis 2004) I ■ Poor prognosis factors with RIF, or poor C response to ovulation induction Α (Levitas 2004) N


V K **Results of Meta-Analysis** V ■ SIGNIFICANT RESULTS A ■ LBR,CPR in favour of day BT M Embryo freezing per couple, failure to transfer any embryos, cumulative pregnancy rates from fresh&frozen ET in favour of cleavage stage ET E R ■ NON-SIGNIFICANT RESULTS I MPR, high order multiplets (in favour of BT but not sig.), miscarriage rate, monozygotic twinning C A N

Early PR loss is sig. higher after day 3 single ET than day 5 single BT 221 (44.2) 1.49 (1.17-1.90) Pregnancy rate (%) Miscarriages <7 weeks Ectopic pregnancies Early pregnancy loss rate (%) 56 38 56/209 (26.8) 38/221 (17.2) 1.76 (1.10-2.81) Clinical pregnancy rate (%) Twin pregnancies (%) 148 (24.5) 3 (2.0) 177 (35.4) 1 (0.6) 1.68 (1.29-2.18) 151/603 (25.0) 1.68 (1.31-2.18) Implantation rate (%) 178/500 (35.6) < 0.00 Only elective SET 160/417 (38.4) 1.47 (1.11-1.94) 184/385 (47.8) Pregnancy rate (%) 0.008 Clinical pregnancy rate (%) 116/417 (27.8) 146/385 (37.9) 1.58 (1.17-2.13) D3 group: a single embryo was transferred on day 3 of culture. D5 group: a single blastocyst was transferred on day 5 of culture; SET = single embryo transfer; OR = odds ratio; CI = confidence interval; NS = not significant. Patients < 36, ≤2rank trial, Equal no.of ET in each group, GnRH antogonist protocol Papanikolaou et al.,RBM Online 2006

Day of ET	Day 3	Day 5	Day 3	Day 5
Embryo quality	Excellent	Excellent	Moderate	Moderate
No. of patients (%)	86 (86.9)	76 (59.4)	13 (13.1)	52 (40.6)
Age (y)	31.7 ± 2.5	31.7 ± 3.0	31.6 ± 4.3	31.9 ± 2.5
No. of IVF attempts	86	76	13	52
No. of of oocytes	902	942	131	578
No. of zygotes	625 (69.3%)	629 (66.8)	82 (62.6%)	398 (68.8%)
No. of embryos on day 3	607	610	79	368
Grades I and II (% of day 3 embryos)	299 (49.3%)	294 (48.2)	0	164 (44.6%)
Grades III and IV (% of day 3 embryos)	308 (50.7%)	316 (51.8)	79 (100%)	204 (55.4%)
No. of blastocysts (% of day 3 embryos)		279 (45.7)		91 (24.7%)
Grade A (% of day 3 embryos)		138 (22.6)		0
Grade B (% of day 3 embryos)		141 (23.1)		91 (24.7%)
No. of ETs	86	76	11	42
No. of pregnancies	28	37	3	15
No. of miscarriages	6 (21.4%)	5 (13.5%)	2 (66.6%)	4 (26.7%)
No. of ongoing pregnancies/cycles	22 (25.6%)	31 (40.8%)	1 (7.7%)	11 (21.2%)
No. of ongoing pregnancies/ETs	22 (25.6%)	31 (40.8%)	1 (9.1%)"	11 (26.2%)

□ v	
K	
v	Gamete related factors
A E C A A	1. Maternal factors
□ R	■ Maternal age
_ I	■ Oocytes retrieved
C	
□ A □ N	
□ N	

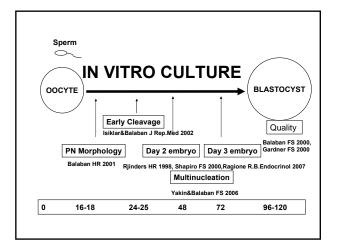
V K V	Results of bla	•	
A		< 40	> 40
M E	Prog to blast(%) Pregnancy/ET(%)	40.5 44.6	22.2* 21.1**
R	Imp/emb(%)	19.9	8.9**
I	Cancelled ET(%)	11.6	38.7***
C			
A	*n + 004 **n + 04 ***n + 05		
N	*p<.001,**p<.01,***p<.05 Pantos et al. Fertil Ste		

V K V	Effect of maternal age of recipient when receiving blastocysts					
A		< 35 years	35-39	>39		
M	# recepients	8	27	78		
E R	# blasts txf	2.0	2.1	2.1		
I	Implantation (fetal heart)	68.8%	64.3%	63.6%		
C	CPR/ET	87.5	88.9	88.5		
A						
N	Schoolcraft and Gardner Fertil Steril 2000					

V K **Gamete Related Factors** V 2. Paternal factors A M Origin of the spermatozoa used for insemination (Ejaculated vs epididymal vs testicular spermatozoa Е R ■ Maturation stage of the sperm cell I (Spermatids) C A N

 V K V		-	aculated		•	
		Ejaculated sperm	Epididymal sperm (OA)	Testicular sperm (OA)	Testicular sperm (NOA)	
A	MII oocytes	4478	291	239	416	
M E	Fertilization(%)	76.8*	71.8	70.2	60.1*	
E R	Blasts %	62.5**	52.6	49	40**	
I	Blasts on D5(%)	92*	76	77.9	61.7*	
C	G1+G2 Blasts(%)	81	84	81.8	71.2	
A	*p<0.05,**p<0.01					
N	Balab	an et al. I	Hum Repro	d 2001		

Progression to bl	astocvst of F	ROSI		
embryos	,			
	Testicular Sperm	Testicular RS		
No of MII oocytes	556	356		
Fertilization(%)	74.5*	56*		
Embryos observed	153	141		
Blastocysts (%)	51*	20*		
BG1+BG2 blastocysts(%)	75.3	0		
Blast formation on day 5(%)	58.4	0		
Hatched blasts (%)	32	0		
*P<0.05				
Balaban <i>et al.</i> Hum Reprod 2000				


00000000	V K V	Procedural factors
	A M E	■ IVF/ICSI
10000000	R I C	
	A N	

V K V	Blastocyst for spare IVF and				
		ICSI	IVF	Р	
A	Embryos cultured	446	748		
M	Mean spare emb/cycle	4.6	7.4	<0.001	
E	Blastocysts %	8.9%	23.5%	<0.001	
R	Hatched blastocysts	20%	39%	<0.05	
I					
C	Griffiths et al. Hum Reprod 2000				
A		-			
N					

V K V	<u>-</u>		•
Δ	Treatment Procedure	IVF	ICSI
M	Cycles with at least one	274	429
Е	Total number of embryos	1253	1622
K I	Surplus embryo/cycle	4.57 31.8%	3.88 23.0%*
C	formation/cycle	0.1370	20.070
A N	* p<0.001 Dumuolin <i>et al.</i> Hum R	eprod 2000	
	K V A M E R I C	Cycles with at least one surplus emb cultured Total number of embryos Surplus embryo/cycle Incidence of blast formation/cycle	V Stage of ICSI vs IVF em Treatment Procedure IVF Cycles with at least one surplus emb cultured Total number of embryos 1253 Surplus embryo/cycle 4.57 Incidence of blast 31.8% formation/cycle * p<0.001

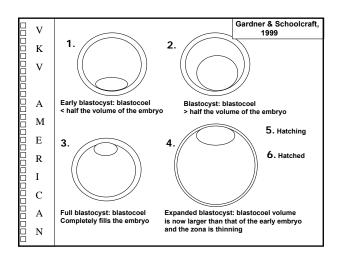
V K V	Indirect factors
A M E	■ Culture conditions
R I C C A N	

GIII	G1.2-G2.2	GIII	G1.2-G2.2
199	201	36	37
9.8 (1-20)	10.4 (1-20)	10.7 (5-16)	10.8 (5-18)
1432 (72.9)	1492 (71.1)	295 (74.4)	293 (73.0)
885 (63)	746 (50.9)	185 (64)	149 (51.7)
606 (43.1)	314 (21.4)	128 (44.2)	65 (22.5)
_	_	189 (65.3)	137 (47.5)
I -	_	118 (62.4)	67 (48.9)
l -	_	79 (42.7)	39 (28.4)
607	664	82	93
3.0 (1-4)	3.3 (1-4)	2.2 (1-3)	2.5 (1-3)
100/199 (50.3)	76/201 (37.8)	25/36 (69.4)	19/37 (51.4
156/607 (25.7)	96/664 (14.5)	37/82 (45.1)	27/93 (29.0
46/100 (46.0)	25/76 (32.9)	12/25 (48.0)	7/19 (36.8)
54/36/10	51/20/5	13/12/0	12/6/1
	199 9.8 (1-20) 1432 (72.9) 885 (63) 606 (43.1) - - 607 3.0 (1-4) 100/199 (50.3) 156/607 (25.7) 46/100 (46.0)	199 201 9.8 (1-20) 10.4 (1-20) 1432 (72.9) 1492 (71.1) 885 (63) 746 (50.9) 606 (43.1) 314 (21.4)	199 201 30 9.8 (1-20) 10.4 (1-20) 10.7 (5-16) 1432 (72.9) 1492 (71.1) 295 (74.4) 885 (63) 746 (50.9) 185 (64) 606 (43.1) 314 (21.4) 128 (44.2) [189 (65.3) (907 (64.4) 3.0 (1-4) 3.3 (1-4) 2.2 (1-3) 100/199 (50.3) 76/201 (37.8) 25/36 (69.4) 156/607 (25.7) 96/664 (14.5) 37/82 (45.1) 46/100 (46.0) 25/76 (32.9) 12/25 (48.0)

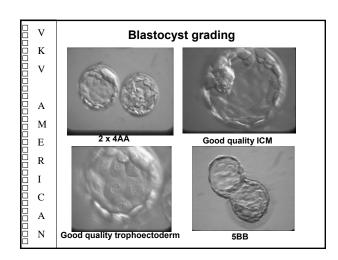
	Blastocyst f	formation rates	
Bungum 2003	55.2%	Levitas 2004	43%
Coskun 2000 Devreker 2000	28% Not stated	Levron 2002	34.2%
Emiliani 2003	48%	Livingstone 2002	Not stated
Frattarelli 2003	Not stated	Motta 1998	Not stated
Gardner 1998	46.5%	Papanikolaou 2005	Not stated
Hreinsson 2004	33%	Papanikolaou 2006	Not stated
Karaki 2002	33%	Rienzi 2002	44.8%
Kolibiankis 2004	50.7%	Schillaci 2002	60.3%
Konolankis 2004	J0.7 70	Van der Auwera Blake et al.,Coc	44.7% hrane Review 200

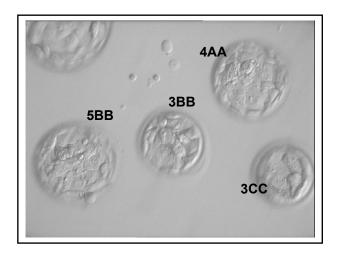
	V	
	K	
1000	V	■What are the morphological
	A	markers of blastocyst
	M	quality?
	E	** Cell charecteristics
	R	** Developmental speed
	I	■Blastocyst grading systems
	C	
	A	
	N	

V K V V A A C A A C A A C A C A C C C A A C C A A C C C C C C C A C	Expansion & Cell charecteristics
---	----------------------------------


Blastocyst Grading K v A early cavitation resulting in an eccentric and then expanded cavity lined by a distinct ICM region and TE layer M Е delayed initial cavitation exhibiting a transitional phase between early cavitation and expansion R I ■ BG3 blastocysts with several degenative foci in the ICM; cells appear dark and necrotic C A Docras, Hum Reprod 1993 N

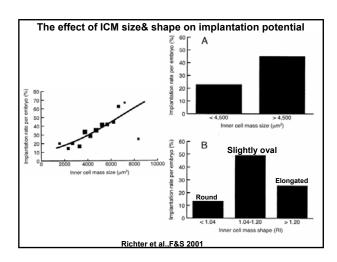
Blastocyst quality OF RASTORISHER OF RASTORISHER

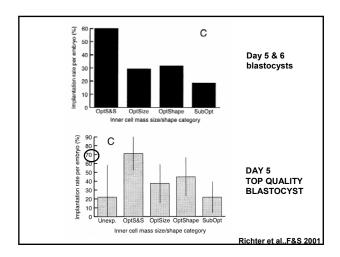

V K V	Outcome of homogenous blastocyst transfers				
	Variable	Only G1 blastocysts	Only G2 blastocysts	Only G3 blastocysts	
A M	Cycles	32	47	98	
E	Blasts txf Mean	96 (3)	155 (3.2)	392 (4)	
R	CPR / ET	22/23 (68.7%)	29/47 (61.7%)	13/98 (13.3%)	
I	Implantation / embryo	56.2%	46.4%	7.1%	
C A	Multiples / Total pregnancies	90.9%	68.9%	15.3%	
N			Balaban, F	ertil Steril, 2000	

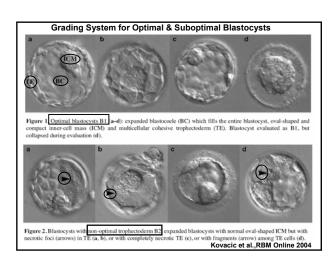


K 2. ICM & Trophoectoderm Quality V **For blastocysts graded as 3-6**(full blastocyst onward) A **ICM Grading** M A) Tightly packed, many cells B) Loosely grouped, several cells Е C) Very few cells R I **Trophectoderm Grading** C A) Many cells forming a cohesive epithelium B) Few cells forming a loose epithelium A c) Very few large cells N

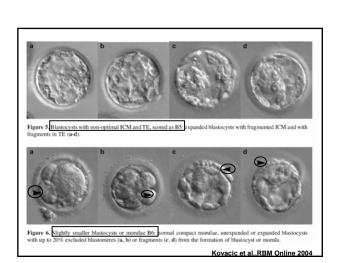
	V K V	Effect o	of blasto ncy	cyst sco	ore on
			2 blasts > 3 AA	1 blast > 3 AA	Blasts < 3AA
	A	# embryos txf	2	2	2
	M	Mean Age	32.9	33.3	33.3
Ĭ	Е	# of transfers	68	23	16
	R	Blast devel. From 2 PN(%)	57*	46.5**	33.3
	I	Implantation/ embryo(%)	69.9*	50.0	28.1
	C	Clinical PR(%)	86.8*	69.6	43.8
	A	*p<.001,**p<.01	ı		
	N			Gardner et al. F	ertil Steril 2000

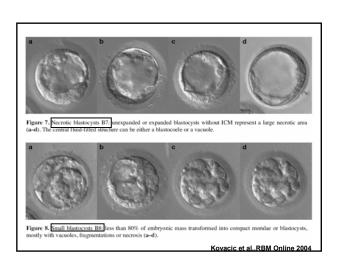

 V K V	Blastocyst TROPHOECTODERM QUALITY is the most important predictor of Implantation					
A		Blastocyst expansion & IR(%)	ICM Quality & IR(%)	Trophoectoderm Quality & IR(%)		
M E R	Fresh cycles:156	3: 67 2: 58 1: 53	A: 68 B: 62 C: 61	A: 76** B: 56 C: 50		
I C	Correlation of cryosurvival of thawed blastocysts	NS	NS	A: 85 B: 63 C: 62		
A N	*p<.05,Gardner 3-part scoring system,NS-Not sig. IR of a 3AA is 70%!! Zaninovic et al.,F&S Vol:76,Suppl.1, 2001					

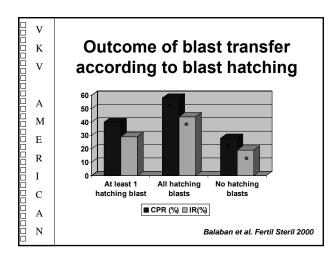

V K V	Blastocyst ICM QUALITY is the most in predictor of Implantation						
		ICM Grade A	ICM Grade B	ICM Grade C			
A M	No.of cycles	72	83	32			
E R	Mean Age	35.0	35.4	32.8			
I	CPR%*	41.7	24.1	6.3			
C A	IR%*	41.7	24.1	6.3			
N	Gardner 3-part gra		k et al., F&S Vol	:82,Suppl.2 200			


Developmental Event	Day 4	Day 5
	Compaction	
Complete	N	S
Incomplete	N	S
Regional	S	S
Fusion-like	S	S
None	S	A
	Cavitation	
Single cavity	*	N
Beginning	N	S
Large vacuoles	A	A
Multiple vacuoles	A	A
]	Inner cell mass formation	•
Distinct/organized	*	N
Forming	*	S
Large cells	*	S
Small mass	*	S
None	*	A
Tr	ophoectoderm organizatio	n
Cohesive	*	N
Large cells	*	S
Irregular	*	A
* Not expected on this day, N=no	ormal, S=suboptimal, A=abr	normal

	V K V	Quantative Grading of Human Blastocyst
0000	A	■ <u>Blastocyst diameter</u> (400X-from outer zona to outer zona, ranged from 155-265µms)
100000000000000000000000000000000000000	M E	■ <u>Trophoectoderm cell numbers</u> (cross-sectional circumference of exp.blasts.ranged form 4-20)
1000	R	 ICM SIZE (longest length and widest perpendicular width of each ICM-ranged from 1050-15.000 μm²)
0000	I C	■ <u>ICM SHAPE</u> (Roundness index:-length divided by width. Round(1), slightly oval more elongated-ranged from 1-2.4)
	A	
	N	Richter et al.,F&S 2001


00000000	V K V	Quantative Grading of Human Blastocyst
	A M E R I C	■ Blastocyst diameter (400X-from outer zona to outer zona, ranged from 155-265µms) **NO EFFECT: The mean diameter of exp.blasts.identical between implanting and non-implanting blastocysts(195µm vs. 194µm,p:.81) ■ Trophoectoderm cell numbers (cross-sectional circumference of exp.blasts.ranged form 4-20) **NO EFFECT: The no.of cells in across-sectional circumference identical between implanting and non-implanting blastocysts(11.0 vs. 10.8,p:.64)
	N	Richter et al.,F&S 2001





Morphological type of blastocyst	Transferred blastocysts	Transferred blastocysts with known outcome (%)	Implantations (%) ^a	Miscarriages (%)	Births (%) ^b
Optimal B1 Suboptimal	766	706	366 (51.8)	47 (12.8)	319 (45.2
B2) B3	71	61	(22 (36.1))	2 (9.1)	20 (32.8
B3	178	145	44 (30.3)	5 (11.4)	39 (26.9
34	111	87	25 (28.7)	5 (20)	20 (23)
35	73	62	16 (25.8)	5 (31.3)	11 (17.7
36	87	72	17 (23.6)	5 (29.4)	12 (16.7
37	26	26	3 (11.5)	1 (33.3)	2 (7.7)
B8	84	82	6 (7.3)	5 (83.3)	1 (1.2)
Total	1396	1241 (88.9)	527 (41.3)	75 (14.2)	424 (34.2

V K V	Comparison of two blastocyst grading systems						
		Doci	ras sys	tem	Gard	lner sy	stem
A M		2 Blasts BG1/BG2	1 Blast BG1/BG2	All blasts BG3	2 blasts >3AA	1 blast >3AA	All blasts < 3AA
E	Blastocyst%	54.1	50.0	45.3	58.4	46.2	38.7
R	No. ET	2.2	2.2	3.3	2.1	2.4	3.5
I	CPR (%)	70.0	60.8	18.8	86.4	72.5	37.5
C	IR (%)	43.2	30.2	5.8	64.5	44.2	12.8
A	MPR (%)	35.8	29.5	0	52.7	42.9	16.7
N					Balaba	an et al.,F	&S 2006

000000000000000000000000000000000000000	V K V A M E R I C A	Developmental speed of the blastocyst
	A N	

Higher IR wi	th day	5 b	lastoc	ysts
Variable	Day 5 transfer group		Day 6 transfer group	P value
Number of patients Age (y)* No. of oocytes* No of cleavage embryos* Fertilization (%)* Blastocyst number* Blastocyst formation (%)* Number transferred* Implantation rate (%)* Pregnancy rate (%)* Twinning rate (%)*	73 34.1 ± 3.4 14.3 ± 5.4 8.71 ± 4.62 61.9 ± 18.2 3.0 ± 1.8 46.3 ± 19.1 3.0 ± 1.1 23.33 [22.1] 37.86 (52/73) 17.86 (5/28)		63 33.5 ± 3.9 14.0 ± 7.0 7.89 ± 4.38 56.3 ± 15.5 2.1 ± 1.1 32.9 ± 20.7 1.9 ± 1.0 4.86 3.6 11.11 (7/63) 0 (0/7)	NS NS NS NS .003 .002 .002 .001
"Means ± one standard deviation. "Means (medians in parentheses). "Proportions (percentlages in parentheses). Retrospective clinical study, Day 5 CPR triple as high as day 6, Day 5 IR five times higher than day Barrenetxea et al.,F&S 200		50 40 - 30 30 - 30 10 - 30 10 - 30 30 30 30 30 30 30 3	p = 0.0	4.86

	V	
	K	■ Metabolic markers
	V	
		** Measurement of glucose consumption&lactate production(Gardner&Lane 1996)
		** BhCG,HLA-G, SP1 measurements(Saith 1996, Jurisicova et al,1999)
	A	** sHLA-G in culture media(Fuzzi 2002, Sher 2004,2005, Noci 2005)
	M	■ Genetical Markers
	E	
	R	PGD for aneoploidy screening-Trophoectoderm biopsy. High levels of mosaicism and long duration of an in depth chromosome analysis(Magli 2000, DerHaag 2003)
	I	** PGD for specific gene mutations(Kokkali 2005)
	C	■ Epigenetic Markers
	A	** Gene expression profile in the ICM and trophoblast(Dreesen 2002,)
Ē	N	

