

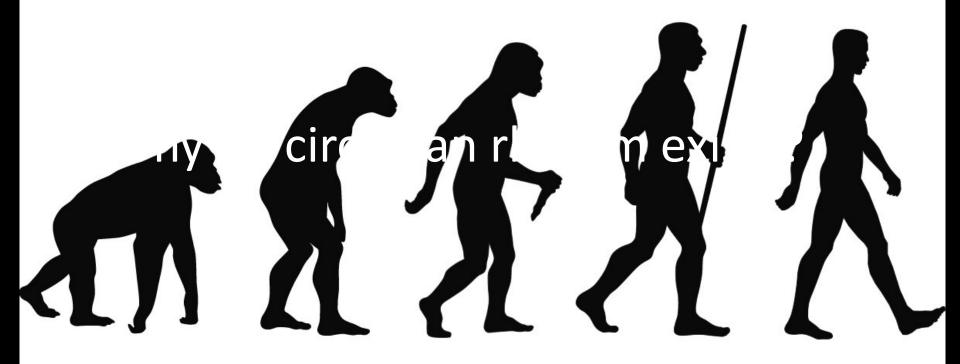
A circadian clock in inflammation and adhesion formation?

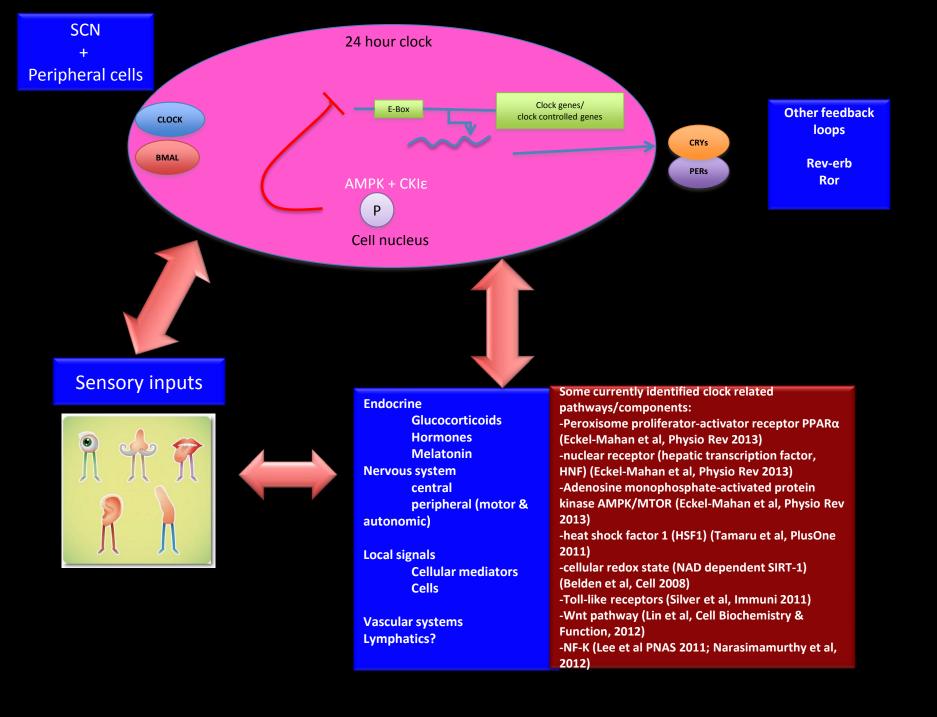
Ying Cheong Senior Lecturer, Consultant in Reproductive Medicine & Surgery Clinical Director, Complete Fertility Centre Southampton, UK University of Southampton Faculty of Medicine

Just a few questions....

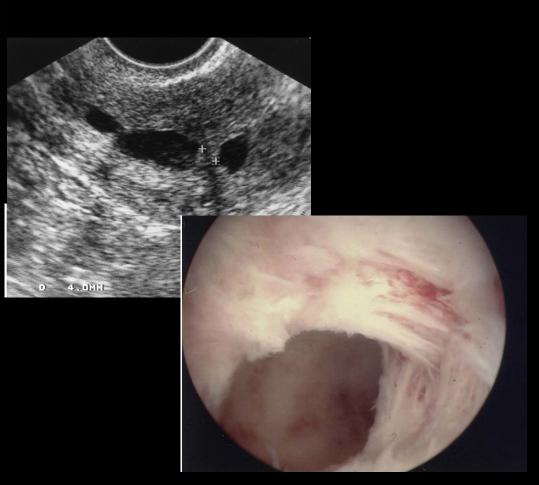
- 1. What is a circadian rhythm and do we need it?
- 2. Is adhesion formation a consequence of inflammation?
- 3. Is inflammation circadian?
- 4. Is there a circadian clock in adhesion formation?
- 5. What are the wider implications of the study of circadian clock?

What constitutes a circadian rhythm?

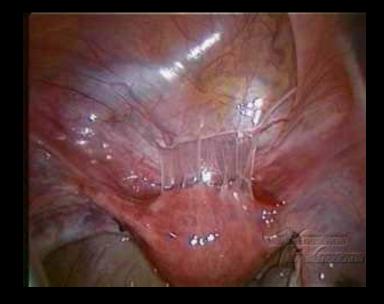

Latin *Circa* – 'around' *Diem* – 'a day'

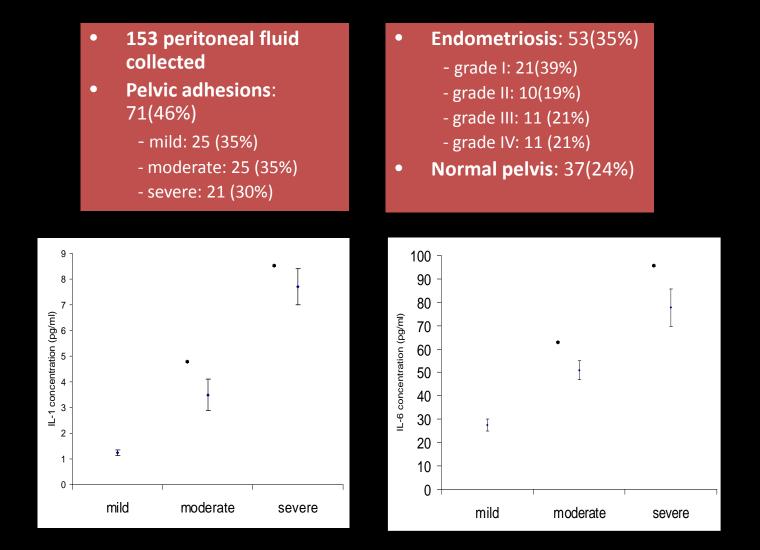

Types of rhythm

Rhythm	Definition
Ultradian	High Frequency – repeats many times in the day
Infradian	Repeats at intervals much longer than 24 hours
Circadian	Approximately a day (24hours)
Circatidal	Approximately every 12.4 hours (with the tide)
Circalunar	Approximately once a month
Circannual	Approximately once a year
Free runnning	Not syncronised to external signals – no rhythm


Body clock - Evolutionary advantage

Adhesion formation is an inflammation dependent process



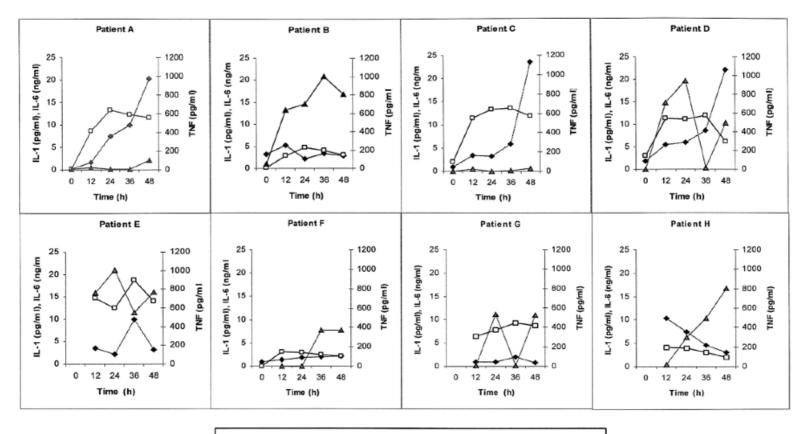

Is adhesion formation an inflammatory process?

What is the pro-inflammatory cytokine profile of peritoneal fluid in women with adhesions?

- Peritoneal fluid composition significantly influence the process of adhesion formation
- Hypothesis: pro-inflammatory cytokines concentration (IL-1, IL-6 and TNF-alpha) in the peritoneal fluid of women with adhesions are different to those of women without adhesions

Severity of adhesions

* p<0.05

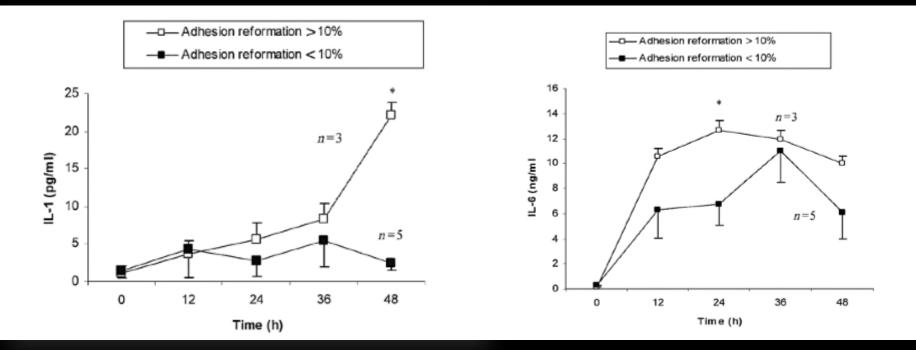

Cheong et al, Hum Reprod 2001

What is the peritoneal fluid proinflammatory cytokine profile at the time of adhesion formation/reformation?

- Examine the kinetics of the peritoneal fluid IL-1, IL-6 and TNF-alpha levels within the 48 hour period after adhesiolysis (during the process of adhesion reformation)
- Correlate the results to adhesion reformation

Kinetics of peritoneal fluid concentrations of interleukin (IL)-1, IL-6 and TNF-α 48 hours after adhesiolysis

Y.C.Cheong et al.

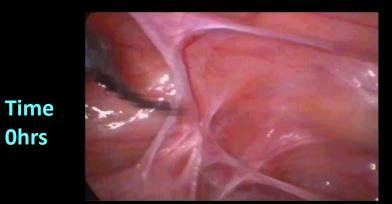

Legend: □: IL-6 (ng/ml), ♦: IL-1 (pg/ml), ▲: TNF-α (pg/ml)

Cheong et al, Hum Reprod, 2002


Human Reproduction Vol.17, No.4 pp. 1039-1045, 2002

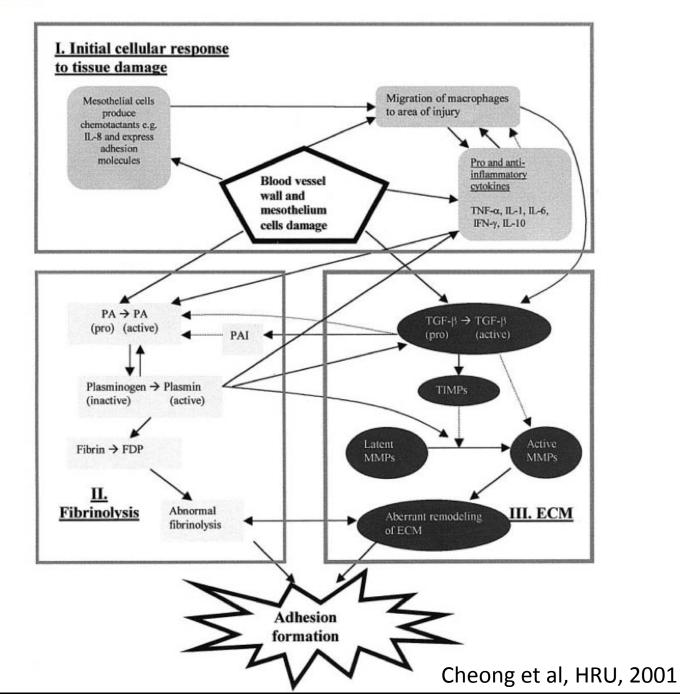
The correlation of adhesions and peritoneal fluid cytokine concentrations: a pilot study

Y.C.Cheong¹, S.M.Laird², J.B.Shelton², W.L.Ledger¹, T.C.Li^{1,3} and I.D.Cooke¹



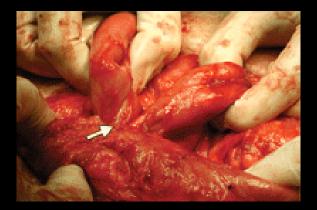
Patient 1

Ohrs


24hrs

Patient 2

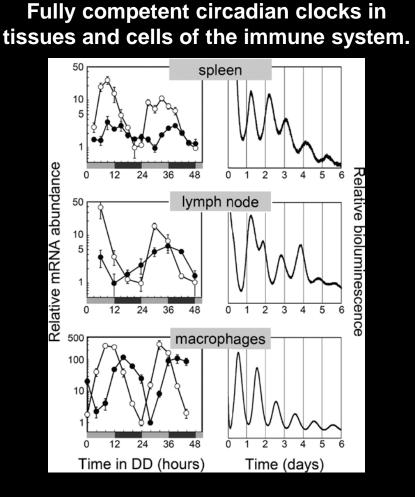
Y.C.Cheong et al.


Inflammatory conditions of the peritoneum are adhesiogenic

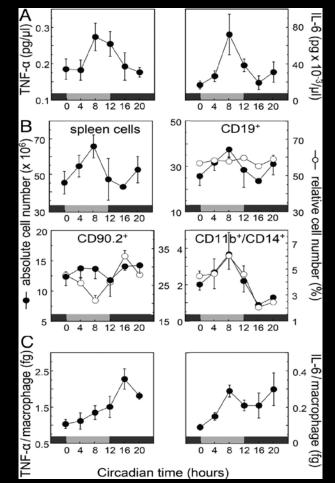
Pelvic inflammatory disease

Endometriosis

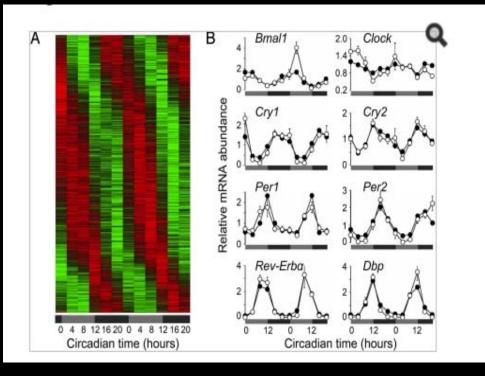
Inflammatory bowel


Just a few questions....

- What is a circadian rhythm and do we need it?
 Is adhesion formation a consequence of inflammation?
- 3. Is inflammation circadian?
- 4. Is there a circadian clock in adhesion formation?
- 5. What are the wider implications of the study of circadian clock?


Is inflammation circadian? The laboratory evidence...

Is inflammation circadian?

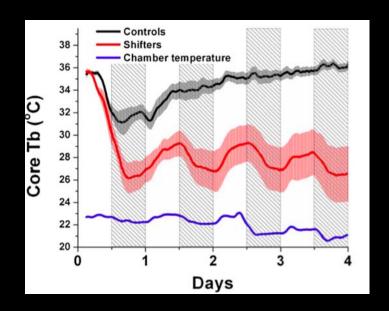


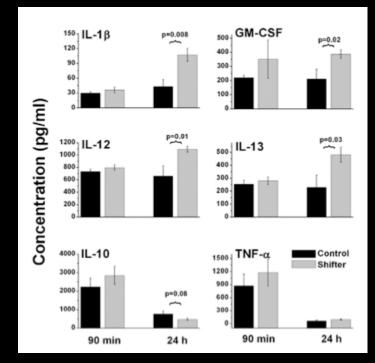
Circadian cytokine secretion upon challenge with bacterial endotoxin.

Keller M et al. PNAS 2009;106:21407-21412

Eight percent of all transcripts in macrophages are expressed with a circadian rhythm.

Inflammation is a circadian process!


Factors key to adhesi formation	on	Participants	Circadian	References		
Cellular components						
Macrophage		Mouse peritoneal macrophagess	1	Hayashi et al, Biol Pharm Bull, 2006; Keller et al, PNAS 2009;		
Fibroblast		Human skin	1	Sandu et al, Cell Mol Life Sc 2012; Yagita et al,	Science 2001;	
Lymphocyte		Rat	1	Esquifino et al, Brain Behav immun, 1996		
Leukocyte	n	Annu kon		nonente of		
Platelets		лапу кеу	com	ponents of	al, Platelets, 2012	
NK cells						
Erythrocytes	aa	nesion to	orma	tion process		
T & B Cells		I I				
Mediators		nas bee	n sno	own to be		
Fibrinolysis		•			ti et al, Chronobiol Int	
PA PAI		CII	cadia	an		
Cytokines IL-1 IL-6 TNF-α TGF-β/activi VEGF GMCSF	n	wouse, numan	v	Motzkus et al, J Mol Neurosci 2002; Cavadini et al, Proc Natl Acad Sci USA 2007 Kon et al, Nat Cell Biol 2008; Koyanagi et al, Cancer Res 2003	7;	
Integrins MAC-1 VCAM		Human	1	Redwine et al, Brain Behav Immun 2004; t Exp Allergy 1998.	en Hacken et al, Clin	
Matrix remodellin MMP, TIMPs Collagen	•	Human	1	Martino et al, J Mol Med 2004;Markoulli e Ophthalmol Vis Sci, 2012	et al, Invest	


When does disrupted circadian rhythm becomes pathological? Tipping the balance....

If we alter the body clock, what happens to inflammation and healing? Laboratory data...

• Exposure to altered day night rhythm dysregulates inflammatory response and increases susceptibility to endotoxins in mice (Castanon-Cervantes et al, J Immunol 2010)

• Knock out models

Knock out models	Biological effect	References
Bmal1 ^{-/-} mice NONO ^{gt} mice Per1/per2 ^{mut}	Poor wound healing; disorganised granulation tissue Immature granulation and fibroblast proliferation Defective wound healing	Kowalska et al, PNAS 2012

Circadian rhythm in clinical practice

1. Many inflammation dependent pathologies are predisposed to the time of day

Clinical entity	Circadian manifestation	References
Rheumatoid arthritis	Maximum stiffness, pain ~ 8am and symptoms correlates with higher and more prolonged inflammatory response	Straub et al, Arthritis & Rheumatism, 2007
Myocardial infarction, angina, stent thrombosis	More prone to occur at night/ early morning hours	Isik et al, 2012
Renal colic	Morning peak	Manfredini et al, BMJ 2002
Asthmatic attack	Worst at night	Martin et al, Chronobiol Int 1999

2. Disruption of circadian rhythm is associated with reproductive disorders

Miscarriage

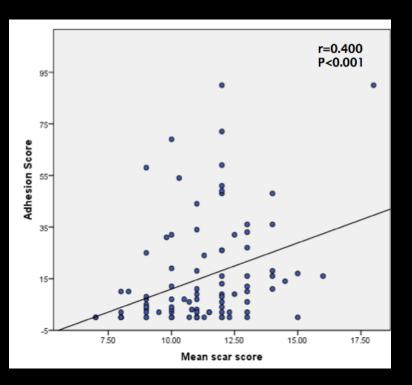
	Nights Days		/S	Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Axelsson 1989	19	163	17	185	5.0%	1.30 [0.65, 2.60]	
Axelsson 1996	57	367	71	567	16.6%	1.28 [0.88, 1.87]	+=-
Eskenazi 1994	0	0	353	1057		Not estimable	
Hemminki 1985	4	12	27	90	1.5%	1.17 [0.32, 4.20]	
Infante-Rivard 1993	4	11	165	700	1.1%	1.85 [0.54, 6.41]	
Lawson 2012	89	664	536	5109	37.7%	1.32 [1.04, 1.68]	-
Whelan 2007	91	680	541	5242	38.0%	1.34 [1.06, 1.70]	-
Total (95% CI)		1897		11893	100.0%	1.33 [1.14, 1.54]	•
Total events	264		1357				
Heterogeneity: Chi ² = 0				$^{2} = 0\%$			0.02 0.1 1 10 50
Test for overall effect: Z	Days Nights						

Menstrual dysfunction

Study or Subgroup	Experimental Events Total E		Control Events Total		Odds Ratio Weight M-H, Fixed, 95% Cl		Odds Ratio M-H, Fixed, 95% CI
study of Subgroup	Lvents	Total	Lvents	TUtai	weight	1	M-11, FIXed, 55% CI
Chung 2005	12	41	19	72	35.9%	1.15 [0.49, 2.71]	
Hatch 1999	35	79	21	83	42.0%	2.35 [1.21, 4.57]	
Su 2008	33	280	4	49	22.1%	1.50 [0.51, 4.45]	
Total (95% CI)		400		204	100.0%	1.73 [1.08, 2.77]	◆
Total events	80		44				
Heterogeneity: $Chi^2 = 1.74$, $df = 2$ (P = 0.42); $I^2 = 0\%$					0.01 0.1 1 10 100		
Test for overall effect:	Z = 2.29	(P = 0.)	02)				Favours control Favours nights

Small for gestational age

	Shifts		Days			Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixe	ed, 95% CI
Croteau 2006	609	1657	900	3613	37.1%	1.75 [1.55, 1.99]		
Xu 1994	59	298	14	762	0.7%	13.19 [7.23, 24.05]		│ <u> </u>
Zhu 2004	758	7772	1722	32465	62.2%	1.93 [1.76, 2.11]		
Total (95% CI)		9727		36840	100.0%	1.94 [1.80, 2.08]		•
Total events	1426		2636					
Heterogeneity: $Chi^2 = 41.68$, $df = 2$ (P < 0.00001); $I^2 = 95\%$							0.01 0.1	1 10 100
Test for overall effect: $Z = 18.04$ (P < 0.00001)							0.01 0.1	Shifts


Stocker et al.

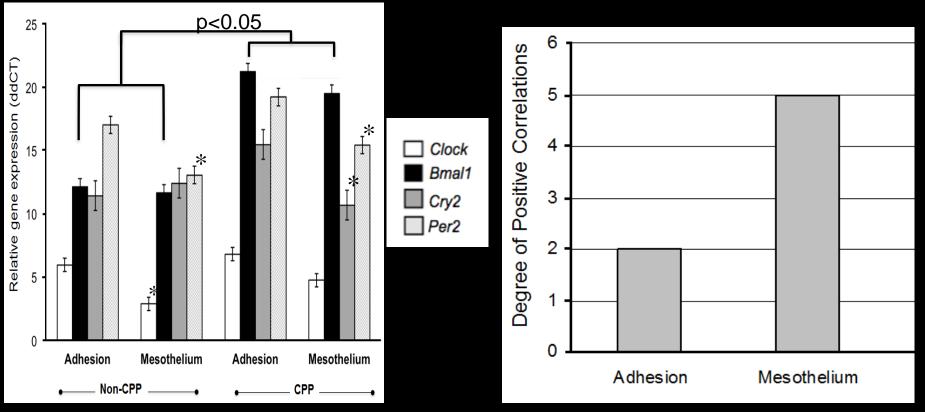
2. Disruption of circadian rhythm predispose to many inflammatory disorders

Clinical entities	Risk	References
Cancers (Breast, prostate, colorectal, lymphoma)	↑	Schernhammer et al, J Natl Cancer Inst, 2003; Schernhammer et al, Epidemiology 2006; Lahti et al, Int J Cancer 2008; Kubo et al, Am J Epidemiol, 2006
Metabolic disorders	↑	Morikawa et al, Scand J Work Environ, 2005; Karlsson et al, Occup Environ Med 2001;
Cardiovascular event	↑	Tenkanen et al, Scand J Work Environ 1998; Haupt et al, Artherosclerosis, 2008; Tuchsen et al, Occup Environ Med 2006;
Skin disorders	1	Ruiz et al, Innate Immunity 2012; Hirotsu et al, PlusOne 2012

Similarities between cutaneous and peritoneal healing

	No Adhesions			Severe	g value
	(n= 29)		Adhesions (n= 71)		
Colour					
Perfect	4	6	0	0	P=0.73
Slight mismatch	18	40	6	1	
Obvious mismatch	7	13	3	0	
Gross mismatch	0	1	1	0	
Colour					
Matt	25	43	8	1	P=0.63
Shiny	4	17	2	0	
Contour					
Flush with the surrounding skin	15	26	2	1	g=0.23
Not flush	14	34	8	0	
Texture*					
Normal	17	21	2	1	g=0.01
Palpable	12	39	8	0	
Margins					
Distinct	22	37	7	1	P=0.51
Indistinct	7	23	3	0	
Size*					
<1cm	15	16	0	0	
1-5cm	6	18	3	1	g=0.03
>5cm	8	26	7	0	
Number of incisions*					
Single	27	35	6	1	g=0.01
Multiple	2	25	4	0	

Stocker et al


Do human adhesion tissue have clock genes?

Sadek et al

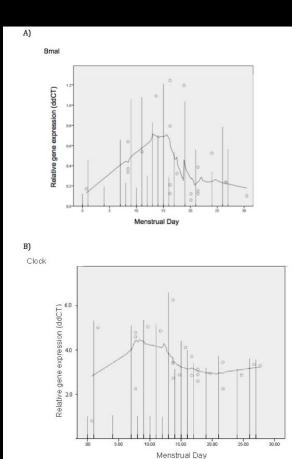
- N=26 paired adhesion and mesothelium
- Recruited women were aged 18-45 years old, had no history of malignancy, endometriosis, recent pregnancy or shift work

Expression level of clock genes in adhesion and mesothelium

Values are means ± SEM. *p<0.05 between adhesion and mesothelium in the non-CPP or CPP groups. Degree of correlation in gene expressions within normal or pathological tissue, stratified for disease state

Sadek et al,

Sadek et al

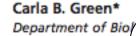

Clock genes are also expressed in the endometrium

Relative gene expression (ddCT) values plotted against date of last menstrual period (A) *Bmal1* expression (B) *Clock* expression

50 endometrial biopsies Mean age of 34±5.4 years Mean BMI of 25.8±6.6

Levels of mRNA expression for the clock genes were quantified by qRT-PCR

Why are these clock sches in the adhesion and endometrial tissue?



OK so what??

Therapeutic implications

Time for chronotherapy? Clock genes dictate sensitivity to cyclophosphamide

PNAS

emporal ical proce ture of li orderly, c opmental processe organization is als

Regulation of Circadian Behavior and Metabolism by Synthetic REV-ERB Agonists

Laura A. Solt^{1,*}, Yongjun Wang^{1,*}, Subhashis Banerjee¹, Travis Hughes¹, Douglas J. Kojetin¹, Thomas Lundasen¹, Youseung Shin², Jin Liu¹, Michael D. Cameron², Romain Noel², Soung-Hee Yoo³, Joseph S. Takabashi³, Andrew A. Butler⁴, Theodore M.

Chronotherapy With Low-Dose Aspirin for Prevention of Complications in Pregnancy

Diana E. Ayala,1 Rafael Ucieda,2 and

¹Bioengineering & Chronobiology Laboratorie Physiopathology Service, Obstetrics and Gyne Coruña, Spain

> ³Howard Hughe Southwestern M

EXTENDED REPORT

Low-dose prednisone chronotherapy for rheumatoid arthritis: a randomised clinical trial (CAPRA-2)

Frank Buttgereit,¹ Daksha Mehta,² John Kirwan,³ Jacek Szechinski,⁴ Maarten Boers,⁵ Rieke E Alten,⁶ Jerzy Supronik,⁷ Istvan Szombati,⁸ Ulrike Romer,⁹ Stephan Witte,⁹ Kenneth G Saag¹⁰

ABSTRACT

Objective To assess the efficacy and safety of low-dose prednisone chronotherapy using a new

Objective to assess the efficacy and safety of low-dose predhisone chronotheracy using a new with circadian biological rhythms. The chronotherapeutic approach has shown promise in several therapeutic areas, including the management

58

therapeutic approach has shown promise in several therapeutic areas, including the management

Is it time for chrono-therapeutics in healing?

Conclusion

- Circadian rhythm is important for many biological / physiological processes
- Disruption of the circadian rhythm is associated with diseases such as cancer, cardiovascular disorders and metabolic diseases
- Inflammation is govern by a circadian rhythm
- Many molecular and cellular pathways of adhesion formation has been shown to be circadian in nature
- Adhesion tissue and endometrium express clock genes although the biological function is yet to be uncovered
- Future research needs to investigate the molecular and clinical importance of the body clock in the pathogenesis of adhesions in order to translate chronobiological mechanisms into possible chronotherapy

Thank you

NicK Macklon Khaled Sadek Linden Stocker Jane Glazebrook Thommai Anthony Asha Jeganathan Joanna Radcliff Kate Gomes

T C Li

Susan Laird William Ledger Ian Cooke

Felino Cagampang Kim Bruce

Funders

Infertility Research Trust Sheffield Charitable Foundation Complete Fertility Centre Southampton Research Medical Council Southampton Moulton Charitable Foundation