Selective αv integrin deletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs

Neil Henderson Wellcome Trust Clinician Scientist and Consultant Hepatologist, MRC Centre for Inflammation Research University of Edinburgh



# Development of a system to allow gene manipulation in hepatic stellate cells (liver specific pericytes)



- Paucity of tools to specifically inactivate genes in liver myofibroblasts
- Limited progress in understanding the underlying biology of liver fibrogenesis
- Hindered the development of new, mechanistically targeted therapies

#### Pericytes



www.udel.edu

Platelet derived growth factor receptor beta (PDGFRβ)

Early induction of PDGFRβ during HSC activation

Hepatic stellate cells previously termed liver specific pericytes

PDGFRβ is a widely used pericyte marker throughout vascular beds

PDGF-BB is the most potent hepatic stellate cell (HSC) mitogen

#### PDGFR $\beta$ Cre mice

Express Cre recombinase under the control of a fragment of the gene encoding platelet derived growth factor receptor beta

PDGFRβ Cre line originally developed by Ralf Adams to specifically target pericytes (Foo SS et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. *Cell*, 2006)

#### mTmG;*PDGFR*β Cre reporter mice

B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J x PDGFRβ Cre+/-

Express red fluorescence prior to, and green fluorescence following, Cre mediated recombination

Membranous fluorophore expression



#### mTmG;*PDGFRβ* Cre



#### Uninjured liver

Fibrotic liver (6 weeks CCL<sub>4</sub> twice weekly)

#### Ai14; *PDGFR*β Cre reporter mice

B6.Cg-Gt(ROSA)26Sor<sup>tm14(CAG-tdTomato)Hze</sup>/J x PDGFRβ Cre<sup>+/-</sup>

These Ai14 mice harbor a targeted mutation of the *Gt(ROSA)26Sor* locus with a *loxP*-flanked STOP cassette preventing transcription of a CAG promoter-driven red fluorescent protein variant (tdTomato)



#### Ai14;*PDGFR*β Cre



#### Uninjured liver

#### **Fibrotic liver**

#### Ai14; *PDGFR*β Cre: Uninjured liver



Ai14; *PDGFR*β Cre: Fibrotic liver



Reporter

#### αSMA

# Reporter / aSMA

#### Cell sorting from Ai14; *PDGFR*β Cre<sup>+/-</sup> mice

Uninjured liver (6 weeks olive oil):



Single cell suspension Cell sort of TdTomato +ve cells mRNA extraction

Fibrotic liver (6 weeks CCl<sub>4</sub>):





Single cell suspension Cell sort of TdTomato +ve cells mRNA extraction

#### Gene expression profiling of sorted TdTomato+ve cells



Ai14;*PDGFR*β Cre mice

#### Cell sorted TdTomato+ve cells after 7 days in culture

#### Reporter / DAPI



#### αSMA / DAPI



*PDGFR*β Cre mediates specific recombination in hepatic stellate cells



Oil

 $CCl_4$ 

#### Stellate cells / Macrophages



# Can we use this system to investigate the biological function of genes in hepatic stellate cells?

#### Integrins



Hynes, Cell 2002

β subunit binding partner expression on sorted Td Tomato reporter cells



#### β subunit binding partner expression on sorted Td Tomato reporter cells



HSC αv integrin expression increases with activation *ex-vivo* 



Effective gene deletion in *itgαv<sup>flox/flox</sup>;PDGFRβ* Cre mice

Hepatic stellate cells:



*itgαv<sup>flox/flox;</sup>*;*PDGFR*β Cre<sup>-/-</sup> (Control)

*itgav*<sup>flox/flox;</sup>;*PDGFR*β Cre<sup>+/-</sup> (αv Cre)

#### Deletion of the av integrin on HSC protects mice from CCI<sub>4</sub>-induced hepatic fibrosis

αv<sup>f/f</sup> / PDGFRβ Cre<sup>+/-</sup>



Control

# Sirius red

*itgαv<sup>flox/flox;</sup>;PDGFR*β Cre mice are protected from liver fibrosis



#### TGF $\beta$ activation by $\alpha v$ integrins



 $\alpha v$  integrin deletion on hepatic stellate cells inhibits profibrotic gene expression via a reduction in TGF $\beta$  activation



 $\alpha v$  integrin deletion on hepatic stellate cells inhibits profibrotic gene expression via a reduction in TGF $\beta$  activation



#### Integrins



Hynes, Cell 2002

Global loss of  $\alpha\nu\beta3$ ,  $\alpha\nu\beta5$  or  $\alpha\nu\beta6$  or conditional loss of  $\alpha\nu\beta8$  on HSCs does not protect mice from CCl<sub>4</sub>-induced hepatic fibrosis



#### Integrins



Hynes, Cell 2002

# Can we target αv integrins using small molecule inhibitors?

## Blockade of αv integrins by a novel small molecule (CWHM 12) attenuates liver fibrosis



## Blockade of αv integrins by a novel small molecule (CWHM 12) attenuates liver fibrosis



Can we use this system to manipulate genes in pericytes / myofibroblasts in other organs?

#### *PDGFR*β Cre in the lung

#### The capillary network of normal and emphysematous human lungs studied by injections of Indian ink

#### J. ALEXANDER REID ' AND BRIAN E. HEARD

From the Postgraduate Medical School of London, Du Cane Road, London, W.12



FIG. 5. Paraffin section of normal alveoli after Indian ink injection. Note remarkable number of capillaries in alveolar walls and how they appear to bulge in the lumina ( $\times$ 100).



FIG. 12. Normal upper lobe showing similar pattern to normal lower lobe in Fig. 13. Both from same lung ( $\times$ 80).

#### PDGFRβ Cre induced recombination in the lung

#### Saline

#### Bleomycin



#### mTmG;PDGFRβ Cre mice

#### Cell sorting from bleomycin injured lungs



#### Reporter / DAPI



#### αSMA / DAPI



Ai14;PDGFRβ Cre mice

#### *itgαv<sup>flox/flox;</sup>;PDGFRβ Cre* mice are protected from lung fibrosis



#### av Cre



Day 28 post bleomycin (1.5U/Kg)

Kidney fibrosis – unilateral ureteric obstruction model (UUO)

#### Renal fibrosis – unilateral ureteric obstruction model (UUO)

#### Sham





#### mTmG;*PDGFR*β Cre mice

#### Renal fibrosis – unilateral ureteric obstruction model

#### Sham





#### mTmG;*PDGFR*β Cre mice

#### Cell sorted TdTomato+ve cells from kidneys



#### Day 7 post op

#### Reporter / DAPI



#### αSMA / DAPI



#### *itgαv<sup>flox/flox;</sup>;PDGFR*β Cre mice mice are protected from kidney fibrosis





#### Summary

Novel system which allows gene manipulation in pericytes and tissue myofibroblasts during organ fibrogenesis

 $PDGFR\beta$  Cre driven  $\alpha v$  integrin deletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs

This system will hopefully accelerate progress in understanding the molecular mechanisms underlying a wide range of fibrotic diseases, leading to the development of new, mechanistically targeted therapies Acknowledgements

Dean Sheppard (UCSF)

### wellcome trust

John Iredale (Edinburgh)

Jackie Maher (Liver Center, UCSF)

Peter Ruminski, David Griggs (St Louis University)

Adam Lacy-Hulbert (Harvard)

Ralf Adams (Max Planck Institute, Munster, Germany)