MANCHESTER

Differentiation of mesothelial cells – potential role in fibrosis

Scarring in the female reproductive tract' ESHRE, Edinburgh 5-6th February 2013

Sarah Herrick Institute of Inflammation and Repair The University of Manchester, UK

Repair scenarios

- After injury...
- the ideal is regeneration...
- but usually repair with scarring occurs...
- if inadequate and weak, chronic wounds form...
- or if excessive, hypertrophic/ fibrotic scarring results

Importance of the mesothelium

- Mesothelium
 - single layer of squamous epithelium
 - mesodermally derived
 - all three serosal cavities
- Subserosal connective tissue
- Peritoneal fluid
- Functions
 - Non-adhesive barriersurfactant and microvilli
 - Solute and fluid transport
 - Immune function
- Pathology

Peritoneal repair scenarios

Abdominal/pelvic surgery often leads to adhesion formation

- Form after a range of peritoneal insults
- Complications :
 - Small bowel obstruction
 - infertility in women
 - difficulty of repeat surgery
 - chronic pelvic pain
- 5.5% of all abdominal repeat surgery directly due to adhesions - SCAR studies
- Reform after surgical adhesiolysis
- Limited preventative treatment barrier devices
- Pharmaceutical interventions?

Peritoneal dialysis commonly results in peritoneal sclerosis

- Peritoneal dialysate high glucose, low pH, high lactate
- Peritonitis
- Thickening of peritoneal membrane leads to ultrafiltration failure
- Rare condition of PD Encapsulating Peritoneal Sclerosis (EPS)
- Cocooning of viscera by mass scar tissue leading to bowel obstruction
- Incidence linked to time on dialysis
 - 2 years 1.9%
 - 8 years 19.4%
- Surgical management
- Pathophysiology?

How does tissue repair progress to fibrosis?

- Coagulation and inflammation
- Granulation tissue formation
- Re-epithelialisation
- Tissue contraction
- Remodeling and scar formationfibrosis

Important role of the 'fibroblast' in tissue repair and fibrosis

McAnulty R. Int J Biochem Cell Biol (2007)

Does the mesothelium play a role in peritoneal fibrosis?

Peritoneal repair scenarios

Proposed schemes of mesothelial regeneration

Rodent model of surgical injury

- Isolate and label rat cells
 - mesothelial cells
 - peritoneal lavage cells
 - peritoneal macrophages
 - lung fibroblasts
- Laparotomy and simple abrasion injury
- Intra-peritoneal injection of fluorescent Di-I labelled cells
- Assessed distribution of labelled cells post-injury

Mesothelial cells in serosal fluid increase after injury in rats

HBME+ve

Percentage of Mesothelial Cells Over a 3-day period

Foley-Comer et al., 2002. J Cell Sci 115, 1383

Incorporation of isolated free-floating mesothelial cells on denuded surface

Formation of junctional components by incorporated mesothelial cells

Dil-fibroblasts **Dil-mesothelial cells**

Foley-Comer et al., 2002. J Cell Sci 115, 1383

Di-I labelled mesothelial cells incorporate into multiple layers

Epithelial-Mesenchymal Transdifferentiation (EMT) of mesothelial cells *in vitro*

Epithelial

HGF/TGF-β1/EGF Sub-culture Fibrin/collagen gel Dialysis fluid Menstrual effluent

Mesenchymal

epithelial – fibroblast - myofibroblast - smooth muscle-like phenotype

Pathway to epithelial-mesenchymal transdifferentiation

Kalluri R and Weinberg RA, J Clin Invest 199 (2009)

Does mesothelial cell EMT occur in vivo?

Mesothelium EMT contributes to blood vessels of the heart, lung, mesentery and gut during development

Wilm B et al. Development 2005;132:5317-5328

Mesothelial cell EMT occurs with injury in adult

Yanez-Mo et al., (2003) NEJM 348:403-413; Yang et al. (2003). Kidney Int 63: 1530-1539

Transforming Growth Factor (TGF)-β

Fibrogenic cytokine:

- Wound healing
- Fibrosis
- Growth and development
- 3 mammalian isoforms:
- TGF-β1, TGF-β2 and TGF-β3

Secreted in latent form

Activation

Once activated can signal through

- TGF-βRI
- TGF-βRII
- SMAD pathway

Functions

- Induction of myofibroblasts
- Increase in ECM production
- Upregulates protease inhibitors

Mouse model of peritoneal fibrosis

- Peter Margetts, McMaster University, Canada

Adenovirus delivery of TGF-β1 – 20days – transient peritoneal fibrosis Expression extended by helper-dependent adenovirus – 70days – severe fibrosis/EPS

Liu L et al., Perit Dial Int 29; 508 (2009);

Margetts P et al., J Am Soc Nephrol 12; 2029 (2001) and J Am Soc Nephro 16,425 (2005)

Peritoneal expression of mesenchymal markers after adenovirus infection

Margetts P J et al. JASN 2005;16:425-436

Is there a genetic predisposition to peritoneal fibrosis?

Mouse strain differences in the fibrotic response

Strain	Susceptibility	Fibrosis Type	Reference
C57BL/6J	Susceptible	Pulmonary	Haston et al., 1996
		Hepatic	Hillebrandt et al., 2002
		Renal	Kato et al., 2008
C57BL/6	Susceptible	Pulmonary Intestinal Hepatic Renal	Schrier et al., 1983 Skwarchuk and Travis, 1998 Knight et al., 2007 Puri et al., 2010
	Intermediate	Hepatic	Shi et al., 1997
	Resistant	Renal	Sugimoto et al., 2007
		Cardiac	Faulx et al., 2005
BALB/c	Susceptible	Hepatic	Shi et al., 1997
	Resistant	Pulmonary Hepatic Renal	Schrier et al., 1983 Knight et al., 2007 Puri et al., 2010
BALB/cJ	Susceptible	Hepatic	Hillebrandt et al., 2002
A/J	Susceptible	Cardiac	Faulx et al., 2005
	Resistant	Hepatic	Hillebrandt et al., 2002

Mouse family tree – Jackson Labs

Petkov P. et al., Genome Res. 2004 14: 1806-1811

Animal model of peritoneal fibrosis - mouse strain differences

- Intraperitoneal injection of TGF-β1 expressing adenovirus administered to mice.
- After 4 or 10 days peritoneal tissue and omental tissue samples collected and analysed for fibrogenic differences

Louise Walkin, PhD student

Mouse stain differences in the development of peritoneal fibrosis

Margetts P et al., Nephrol Dial Transplant. (2012)

Mesothelial cell culture – mouse strain differences?

Mouse strain difference in mesothelial cells – collagen production

Mesothelial cells

Fibroblasts

EMT markers?

Inhibition of EMT to prevent peritoneal fibrosis

Human adhesions show the presence of myofibroblasts and clusters of smooth muscle

Herrick et al., J Pathology 2000, 192: 67-72; Sulaiman et al., Ann Surg 2001, 234: 256-261

Does mesothelial cell EMT occur in the pathogenesis of adhesion formation?

Remodeling of Peritoneal-like Structures by Mesothelial Cells: Its Role in Peritoneal Healing

Fernando Bittinger,*¹ Caroline Schepp,* Christoph Brochhausen,* Hans Anton Lehr,* Mike Otto,* Holger Köhler,* Carsten Skarke,* Siegfried Walgenbach,† and C. James Kirkpatrick*

*Department of Pathology, and †Department of Surgery, Johannes Gutenberg University, Mainz, Federal Republic of Germany

In collagen gel

On gel with blood clot

30 mins

Inhibition of TGF-β1 and 2 reduces adhesion formation in murine model

- Neutralising antibody to TGF- β1 and 2 given topically on day of surgery and i.p 4hrs presurgery, post-surgery and every 4hrs for 24hrs
- Significant reduction of adhesions by blocking TGF- β1 and -β2 by 7 days

Gorvy et al. Am J Pathol 2005, 1005-1019.

Source and plasticity of mesothelial cells?

Evidence for a bone marrow source of regenerating mesothelial cells

Campbell et al., (2000) J Vasc Res. 37; 364-371

Renal Failure, 32(9): 1081–1087, (2010) Copyright © Informa UK Ltd. ISSN 0886-022X print/1525-6049 online D0I: 10.3109/0886022X.2010.509901

LABORATORY STUDY

Potential role of bone marrow-derived cells in the turnover of mesothelium

Kuo-Su Chen,¹ Chao-Hung Wang,² Tzung-Hai Yen,¹ Jim-Ray Chen,³ Ming-Jui Hung,² and Ching-Yuang Lin⁴

- GFP- bone marrow transplant into irradiated mice
- Found 2.2% of mesothelium GFP-labelled after 6 months
- Bone-marrow derived cells contribute to normal mesothelial turnover
- After injury?

Stimulated rat mesothelial cells accumulate lipid during adipogenic differentiation - Steve Mutsaers, UWA, Perth

Lansley S. et al., J Cell Mol Med 2011;15(10):2095-105.

Stimulated rat mesothelial cells express alkaline phosphatase during chrondrogenic differentiation

Bone Marrow Mesenchymal Cells (BMMC)

Mesothelial Cells

Stimulated rat mesothelial cells form mineralized bone nodules – Von Kossa staining

Bone Marrow Mesenchymal Cells (BMMC)

Mesothelial Cells

Lansley S. et al., J Cell Mol Med 2011;15(10):2095-105.

Conclusions

- Mesothelial cells undergo EMT during peritoneal fibrosis adhesion formation?
- Inhibit EMT prevents peritoneal fibrosis adhesion formation?
- Mesothelial cells show multipotential ability in culture in people?
- Apparent bone marrow source of mesothelial cells do these cells have stem cell-like properties?
- Need to perform cell tracking studies which promoter?
- Use primary human mesothelial cells source?
- Multidisciplinary approach?

Acknowledgements

Manchester University

Sylwia Wilkosz Dylan Gorvy Grenham Ireland Jonathan Epstein Louise Walkin

UCL

Hassan Sulaiman Adam Foley-Comer Geoff Laurent

Manchester Royal Infirmary Angela Summers Paul Brenchley

Titus Augustine

Christie Hospital, Manchester Malcolm Wilson

University of Western Australia, Perth Steve Mutsaers

McMaster University, Canada Peter Margetts

Medical Research Council