### Immunophilin FKBP52 deficiency confers uterine-specific resistance to progesterone signaling during pregnancy

#### S. K. Dey, PhD Cincinnati Children's Research Foundation Cincinnati, Ohio

### Master regulators: Estrogen and Progesterone

- 1. Prostaglandin-nuclear receptor-angiogenic signaling axis (cPLA2α/Cox2/PPARδ/Vegf/Flk1/Ang/Tie)
- 2. miRNA regulation of genes during implantation
- 3. Cytokine-growth factor-homeobox-morphogen signaling axis (Lif/Hb-Egf/Hoxa10/Msx1/lhh/Bmp/Wnt)
- 4. Ligand-receptor signaling with endocannabinoids (Anandamide-CB1)
- 5. Immunophilin/cochaperone signaling with PR (Fkbp52-PR)













Under estrogen influence Luminal epithelium proliferation

le, luminal epithelium S, stroma



Under progesterone influence Luminal epithelium differentiation Stromal proliferation











# Embryo implantation is a powerful model system to study:

- 1. Paracrine/juxtacrine interactions
  - a. Trophectoderm uterine luminal epithelium interaction (Epithelial-epithelial)
  - b. Epithelial-mesenchymal interaction (luminal epitheliumstroma)
- 2. Vascular permeability and angiogenesis
- 3. **Regulated growth** (proliferation and differentiation): decidualization

# Progesterone: the "pregnancy" hormone

- Absolutely required for pregnancy success in most mammals studied
- Ovulation
- Fertilization
- Uterine receptivity
- Decidual response
- Maintenance of uterine quiescence until parturition
- Works via its nuclear steroid hormone receptor, progesterone receptor (PR)



#### Cochaperones

- Tetratricopeptide repeat domain (TPR) binds Hsp90
- Two members of FK506 binding family of immunophilins: FKBP52/FKBP4 and FKBP51/FKBP5

•Cyclosporin-binding immunophilin: Cyclophilin 40 (Cyp40) and protein phosphatase PP5

•FKBP52 and FKBP51: peptidylprolyl cis/trans isomerase activity domain and catalyses conformational changes in protein substrates

•FKBP52 and FKBP51 have different functions toward steroid receptors

### Hoxa10 null mice have reduced uterine P4 responsiveness

- Proteomic analysis of WT and *Hoxa10<sup>-/-</sup>* uterine stromal cells
- Identified FKBP52 as a protein downregulated in *Hoxa10<sup>-/-</sup>* stromal cells

FKBP52 is a cochaperone for PR

Mol Endo 19:683, 2005

### **PR** null mice

- Complete failure of ovulation, fertilization, and implantation (Mulac-Jericevic et. al, Science 289: 1751, 2000)
- Precludes using this mouse model to examine the role of progesterone (P<sub>4</sub>) in early pregnancy events

# Fkbp52 null mice

- Males have decreased androgen receptor responsiveness (Cheung-Flynn et. al, *Mol Endo* 19: 1654, 2005)
- Reason for female infertility remained unknown

#### Infertile Phenotype of Fkbp52/C57 null females

| Genotypes<br>(males x females) | No. of<br>breeders | No. of<br>litters | Average litter size |
|--------------------------------|--------------------|-------------------|---------------------|
| +/+ x ++                       | 28                 | 81                | 6.9 ± 3.0           |
| +/- x +/-                      | 63                 | 195               | 6.7 ± 3.0           |
| +/+ x -/-                      | 53                 | 0                 | 0                   |

 $\label{eq:kbp52} \ensuremath{\mathsf{Fkbp52}}\xspace \ensuremath{\mathsf{Fkbp52}}\xspace \ensuremath{\mathsf{Fkbp52}}\xspace \ensuremath{\mathsf{++}}\xspace \ensuremath{\mathsf{ptsi}}\xspace \ensuremath{\mathsf{ptsi}}\xspace \ensuremath{\mathsf{Fkbp52}}\xspace \ensuremath{\mathsf{++}}\xspace \ensuremath{\mathsf{ptsi}}\xspace \ensure$ 











Examine various stages of early pregnancy in *Fkbp52<sup>-/-</sup>* females

- Ovulation
- Fertilization
- Implantation
- Ovulation and fertilization are comparable to WT females
- What is the reason for infertility in Fkbp52-/- females?







| Embryo transfer experiments show that wild-type blastocysts fail to implant in <i>Fkbp52</i> /C57 null females    |
|-------------------------------------------------------------------------------------------------------------------|
| Embryo transfer experiments show that wild-type<br>blastocysts fail to implant in <i>Fkbp52/</i> C57 null females |
| Genotype                                                                                                          |
| Genotype                                                                                                          |
| Genotype                                                                                                          |
| Genotype                                                                                                          |
| No. of No. of Hesterr                                                                                             |
| blastocysts No. of mice No. of IS                                                                                 |
| Blastocysts Recipients transferred recipients with IS (%) No. of IS recovere                                      |
| 7.3                                                                                                               |
| +/+ +/+ or +/- 178 10 8 (80%) 74 (41%) ±4.0* 2 <sup>a</sup>                                                       |
| +/+ -/- 79 4 <b>0 (0%)</b> 0 0 <sup>14b</sup>                                                                     |

\*2 mice without IS yielded one blastocyst each b14 blastocysts were recovered from 3 recipients \*mean ±SD







# FKBP52 is critical to uterine receptivity and implantation in mice

### C57Fkbp52/null mice:

- Normal ovulation
- Implantation failure
  - Reduced P4 responsiveness
  - Exaggerated estrogenic influence

PNAS 102: 14326, 2005

Ovulation is not impaired suggesting uterine responsiveness to PR signaling differs from ovarian responsiveness



Locally high P4 levels in the ovary may enhance basal PR activity sufficient for ovulation

# Determine whether exogenous P4 treatment rescues the infertile phenotype of *Fkbp52* null mice

- Use silastic implants placed on day 2 of pregnancy (day 1 = vaginal plug)
- Examine implantation on day 5 of pregnancy

#### P4 fails to rescue implantation of transferred WT blastocysts in C57 *Fkbp52* null females

| Geno       | otype               | No. of                     | No. of     | No. of IS   | No. of               |
|------------|---------------------|----------------------------|------------|-------------|----------------------|
| Blastocyst | Recipient           | blastocysts<br>transferred | Recipients | (%)         | embryos<br>recovered |
| WT         | WT                  | 82                         | 6          | 49/82 (59%) | n/a                  |
| WT         | KO + P <sub>4</sub> | 83                         | 5          | 6/83 (7%)   | 45                   |

P4 supplementation fails to restore expression of P4-regulated genes (*Hoxa-10, lhh* and *Areg*) critical for uterine receptivity.

# Rescue implantation failure in *Fkbp52* null uteri on a different genetic background

- CD1: outbred, more robust reproduction
- Changed background of mice to CD1 background to F10 generation
- Can P4 supplementation rescue implantation failure in *Fkbp52/CD1* null mice?
   – First characterize reproductive phenotype





| Genotype | Day of<br>Pregnancy | No. of<br>Mice | No. of Mice<br>with IS (%) | No. of<br>IS | No. of embryos<br>recovered |
|----------|---------------------|----------------|----------------------------|--------------|-----------------------------|
| wт       | 5                   | 16             | 16 (100%)                  | 12.2 ± 0.3   | n/a                         |
| КО       | 5                   | 14             | 2 (14%)                    | 7.0 ± 0.3    | 66                          |
| NO       | 5                   | 14             | 2 (1470)                   | 7.0 ± 0.5    |                             |
|          |                     |                |                            |              |                             |
|          |                     |                |                            |              |                             |





# P4 implant rescues implantation failure in CD1 *Fkbp52* null females



























 Inject mice with P4 (2 mg/0.1ml oil/mouse) sc from day 2 of pregnancy until sacrifice (D14) or D17 to allow labor to occur









### Conclusions

• The major reproductive phenotype in mice missing *Fkbp52* is unique to uterine deficiency in the context of implantation

• P4-PR-FKBP52 signaling is a function of genetic makeup

• More robust P4-PR signaling is required for pregnancy maintenance than is required for uterine receptivity and implantation in *Fkbp52* null mice

Blastocyst's presence determines the ability of P4 to rescue decidualization

•FKBP52 may have a unique PR-independent role during pregnancy (placenta/embryo?)

JCI 117: 1824, 2007

## **Clinical Implications**

•Infertility and P4 resistance Exogenous P4 treatment results in a decrease in miscarriages in women with history of pregnancy loss

• Endometriosis and P4 resistance

P4 resistance promotes this disease process























## Acknowledgements

- Susanne Tranguch
  Yasushi Hirota
  David F. Smith
  S. K. Das • Takiko Daikoku
- Yasushi Hirota Haibin Wang
- Huirong Xie
- Xiaofei Sun
- Hao Zhang
- Jiyoung Hong

NRSA/NIDA, NICHD, NIDA









P4 supplementation fails to restore expression of P4-regulated genes critical for uterine receptivity

Hoxa-10, Ihh and Areg



