The early life of endometriosis: lessons learned from the baboon

Julie Hastings Human Reproductive Sciences Unit, MRC ESHRE, Glasgow, 2009

- tissue at ectopic sites beyond the uterine cavity
- Associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility
- Affects 1 in 10 women of reproductive age
- Average time to diagnosis is 8-11 years ¹

•

- Estimated economic burden of ~\$22 billion (in 2002) $^{\rm 2}$

Sinaii *et al.*, 2008. Fertil Steril;89:538-545
 Simoens *et al.*, 2007. Hum Reprod Update: 13:395-4

	Inf	ertil	ity?	
TABLE 3				
Results of bivariate analysis ar	nd multiple logistic regr	ession analyses o	omparing endometriosis pat	ients with controls.
Outcome	Endometriosis	Control	Crude OR (95% CI)	Adjusted OR* (95% CI)
All particults ($z_{0} = 2.009$) Programsy rate Fortilization rate Implication rate Implication rate Implication rate Educations and the second second factors only '($z_{0} = 2.003$) Programsy rate Fortilization rate Implication rate Implicati	25.42 39.69 12.22 7.81 3545.04 25.38 59.50 12.22 7.79 3545.04 21.11 54.39 11.31 8.39 11.31 8.19 551.38	29.42 65.94 18.68 7.30 4399.93 22.71 66.69 18.68 7.30 4399.95 22.71 66.69 18.68 7.30 4399.95	0.81 (0.72-0.91) 0.95 (0.94-0.95) 0.84 (0.35-0.87) 1.66 (1.94-1.09) 0.95 (0.94-0.95) 0.84 (0.75-1.09) 0.95 (0.94-0.95) 0.84 (0.75-0.93) 1.66 (0.75-0.93) 1.66 (0.75-0.93) 0.93 (0.75-0.93) 0.93 (0.75-0.93)	$\begin{array}{c} 0.63 (0.51 - 0.77) \\ 0.37 (0.55 - 0.85) \\ 0.05' (0.55 - 0.85) \\ 0.52 (0.55 - 0.97) \\ 0.78 \\ 0.55 (0.44 - 0.70) \\ 0.31 (0.57 - 0.85) \\ 0.55' (0.55 - 0.95) \\ NA \\ 0.78 (0.65 - 0.05) \\ 0.55 (0.47 - 0.55) \\ 0.56 (0.47 - 0.55) \\ NA \end{array}$
Programs rsg impedition (m = 2,575) Programscy rate Fortilization rate Implantation rate Mean no, of occytes Peak E ₂	13.84 74.47 10.23 6.70 1447.74	27.71 66.09 18.08 7.30 4399.93	0.42 (0.31-0.57) 1.08 (1.06-1.10) 0.75 (0.72-0.79) 0.94 (0.91-0.98) N/A	0.45 (0.28-0.74) 1.54 (1.39-1.70) not interpretable not interpretable N/A

Experimental Models of Endometriosis in the Non-human Primate Spontaneous endometriosis reported in the macaque and baboon families of monkeys¹⁻⁴ Surgical diversion of the cervix into the abdomen

- resulted in endometriosis⁵⁻⁷
- Intra-peritoneal seeding with autologous menstrual endometrium in baboons results in endometriosis⁸
- Fecundity was reduced in baboons with advanced spontaneous and experimental endometriosis⁹

McChare *et al.*, 1971. J Med Assoc Ga 60:11-13
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 S. Jinton *et al.*, 1954. Am J Obstet Gynecolde0:1147-1173,
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 S. Fat Linde and Scot. 1950. Am J Obstet Gynecolde0:1147-1173,
 Distonet *et al.*, 1950. Am J Obstet Gynecolde0:1147-1173,
 Distone0:1147-1173,
 Distonet *et al.*, 1950. Am J Obstet Gynecolde0:11

	<u>Up-regulated</u>	Down-regulated	
1 Month	2403	2003	
3 Months	746	826	
6 Months	51	64	
12 Months	767	735	
15 Months	102	50	
Spontaneous	2464	2811	

		Up-re	gulated	Down-	regulated
1 month	3 months	453	(19%)	609	(30%)
	6 months	4	(0.2%)	16	(0.8%)
1.19.6/2	12 months	405	(17%)	530	(26%)
and the	15 months	5	(0.2%)	24	(1%)
	Spontaneous	289	(12%)	145	(7%)
3 months	6 months	6	(0.8%)	11	(1.3%)
201 15°	12 months	217	(29%)	375	(45%)
N 71 1 1 1 7	15 months	1	(0.1%)	13	(2%)
	Spontaneous	109	(15%)	67	(8%)
6 months	12 months	2	(4%)	8	(13%)
1000	15 months	2	(4%)	0	(0%)
	Spontaneous	15	(29%)	1	(2%)
12 month	s 15 months	6	(0.7%)	12	(2%)
p	Spontaneous	121	(6%)	64	(9%)

	126.000	1 1 1				
	<u>1 Month</u>		<u>3 Months</u>		<u>12 Months</u>	
1	CR. S	+	1	+	1	+
ABCB6	KCNJ4	НІ РКЗ	CDKN2B	ALDH6A1	CARD10	BBP
AGRONDKI	DEG3 JA	CAGA G1	CENNBB	BBARG1	CDKN2B	JAGG1
CARIOGA	TO GAT SL	JKGA20256	MARANTES	FSUD06GL2	MGA33	SISCICICEL
CD7MAC:	316/ISC	MAP7	CADICIDAB1	HIPK3	MGAJB	
CDKRN 2NB	MUC3B	PICALM	RCN34	JAG1	MISC3	
CENTB1	PDE4A	RAB33B	MGAT3	SUCLG2	MUC3B	
CHRNE	RGR	SERPI NB9	MUC3B		RGR	
COL1A1	RIN3	SUCGL2	RIN3		RIN3	
DGCR8	SFTPC	TMEFF1	TCF3		TMEPAI	
EDIL3	SHANK1	UTX	ZNF205	P Prover 1 St.		
GSK3A	TCF15					
HRK	TCF3		888° Parka			
IGFALS	TPARL		1.20		10000	
IGLJ3	ZNF205			3		

